Using nondirect product Wigner D basis functions and the symmetry-adapted Lanczos algorithm to compute the ro-vibrational spectrum of CH4–H2O
By doing calculations on the methane–water van der Waals complex, we demonstrate that highly converged energy levels and wavefunctions can be obtained using Wigner D basis functions and the Symmetry-Adapted Lanczos (SAL) method. The Wigner D basis is a nondirect product basis and, therefore, efficie...
        Saved in:
      
    
          | Published in | The Journal of chemical physics Vol. 154; no. 12; pp. 124112 - 124130 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melville
          American Institute of Physics
    
        28.03.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9606 1089-7690 1089-7690  | 
| DOI | 10.1063/5.0044010 | 
Cover
| Summary: | By doing calculations on the methane–water van der Waals complex, we demonstrate that highly converged energy levels and wavefunctions can be obtained using Wigner D basis functions and the Symmetry-Adapted Lanczos (SAL) method. The Wigner D basis is a nondirect product basis and, therefore, efficient when the kinetic energy operator has accessible singularities. The SAL method makes it possible to exploit symmetry to label energy levels and reduce the cost of the calculation, without explicitly using symmetry-adapted basis functions. Line strengths are computed, and new bands are identified. In particular, we find unusually strong transitions between states associated with the isomers of the global minimum and the secondary minimum. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 0021-9606 1089-7690 1089-7690  | 
| DOI: | 10.1063/5.0044010 |