Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach

The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 77; pp. 649 - 659
Main Authors Liu, Minliang, Liang, Liang, Sun, Wei
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2018
Subjects
Online AccessGet full text
ISSN1751-6161
1878-0180
1878-0180
DOI10.1016/j.jmbbm.2017.10.022

Cover

Abstract The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians.
AbstractList The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians.The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians.
The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a ‘coarse to fine’ fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians.
Author Liang, Liang
Sun, Wei
Liu, Minliang
Author_xml – sequence: 1
  givenname: Minliang
  surname: Liu
  fullname: Liu, Minliang
– sequence: 2
  givenname: Liang
  surname: Liang
  fullname: Liang, Liang
– sequence: 3
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29101897$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPJCEUhclEMz5mfoGJYemmWqDrhQsTYxw1MXGjawK3qCk6VFEC1cZ_P1S301EXroDLd869cI7Q3uAGjdAJJQtKaHm-Wqx6pfoFI7RKlQVh7Ac6pHVVZ4TWZC_tq4JmJS3pAToKYUVISUhd_0QHjCeHmleHyNyEaHoZjRuwa7EZ8NqsHe41dHIwIC0evRu1j0aHGYidxtKlI-BXae0FvsL9ZKPJvA7OThufxngNEQctPXRYjslBQvcL7bfSBv37fT1Gz39unq7vsofH2_vrq4cMliWJma7zJm_aknGlKtZUeUVVzhgAg5ZzRiUr8qZYNpRVquCkYaoACUBapvKC5-3yGF1ufcdJ9boBPUQvrRh9eqZ_E04a8flmMJ3469aiKHlJeJEMzt4NvHuZdIiiNwG0tXLQbgqCzhibB0vo6cdeuyb__zcByy0A3oXgdbtDKBFzimIlNimKOcW5mFJMKv5FBSZuMkoDG_ut9h_Tqab5
CitedBy_id crossref_primary_10_1038_s41598_019_49438_w
crossref_primary_10_1016_j_jmbbm_2022_105081
crossref_primary_10_1016_j_actbio_2022_03_042
crossref_primary_10_1016_j_jmps_2021_104539
crossref_primary_10_1016_j_cmpb_2023_107616
crossref_primary_10_1115_1_4048029
crossref_primary_10_1115_1_4047721
crossref_primary_10_3390_app12083954
crossref_primary_10_1016_j_jmps_2023_105424
crossref_primary_10_3389_fbioe_2023_1304278
crossref_primary_10_3390_biomechanics2020016
crossref_primary_10_1016_j_cma_2020_113402
crossref_primary_10_1016_j_jmbbm_2023_105922
crossref_primary_10_1007_s10237_024_01907_6
crossref_primary_10_1016_j_cma_2018_12_030
crossref_primary_10_1016_j_compbiomed_2021_104794
crossref_primary_10_1007_s10439_023_03275_1
crossref_primary_10_3389_fcvm_2020_00075
crossref_primary_10_3390_app12168049
crossref_primary_10_2139_ssrn_3962823
crossref_primary_10_1016_j_jbiomech_2022_111106
Cites_doi 10.1115/1.4005685
10.1152/ajpheart.00567.2003
10.1016/j.jbiomech.2015.03.012
10.1016/j.jmbbm.2016.12.003
10.1016/j.cma.2017.02.028
10.1098/rsif.2005.0073
10.1016/j.jmbbm.2012.11.015
10.1016/j.jbiomech.2010.07.004
10.1148/rg.246045065
10.1016/j.jmbbm.2013.03.014
10.1007/s10237-010-0266-y
10.1016/j.jmbbm.2013.03.016
10.1007/s13239-011-0052-8
10.1016/S0021-9290(02)00367-6
10.1109/34.121791
10.1007/11546849_48
10.1007/s10439-013-0928-x
10.1115/1.3130810
10.1016/j.jmbbm.2017.05.001
10.1016/j.media.2016.09.006
10.1146/annurev.bioeng.10.061807.160521
10.1007/s10237-008-0124-3
10.1007/s10237-010-0279-6
10.1016/j.jmbbm.2013.01.013
10.1016/j.carpath.2008.01.001
10.1016/j.medengphy.2008.03.002
10.1016/j.jmbbm.2015.09.022
10.1016/j.jbiomech.2008.06.022
10.1016/j.athoracsur.2013.06.037
10.1007/s10237-015-0653-5
10.1016/j.jbiomech.2009.02.009
10.1016/j.jmbbm.2014.10.003
10.1007/s10439-015-1374-8
10.1016/j.jbiomech.2016.01.020
10.1007/s10237-005-0008-8
10.1016/j.actbio.2013.07.044
10.1016/j.jmbbm.2012.03.012
10.1016/j.jmbbm.2016.03.025
10.1016/j.jmbbm.2015.07.029
10.1109/42.832958
10.1038/nature14539
10.1152/ajpheart.00908.2014
10.1016/j.cam.2012.10.034
10.1016/j.jmbbm.2015.03.024
10.1109/TBME.2008.2006012
10.1109/TMI.2014.2308894
10.1016/j.cma.2008.08.002
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jmbbm.2017.10.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
EndPage 659
ExternalDocumentID PMC5696095
29101897
10_1016_j_jmbbm_2017_10_022
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL104080
– fundername: NHLBI NIH HHS
  grantid: R21 HL127570
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
SSH
7X8
5PM
ID FETCH-LOGICAL-c360t-e84d4df629bb72d7471b422cc2cf9921a254d53d127b590d2b5cacc0f2b4594f3
ISSN 1751-6161
1878-0180
IngestDate Tue Sep 30 16:43:16 EDT 2025
Sun Sep 28 07:51:27 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Wed Oct 29 21:19:00 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Constitutive parameter estimation
Finite element analysis
Multi-resolution direct search
Principal component analysis
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-e84d4df629bb72d7471b422cc2cf9921a254d53d127b590d2b5cacc0f2b4594f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work and should be considered as co-first authors.
PMID 29101897
PQID 1960927471
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696095
proquest_miscellaneous_1960927471
pubmed_primary_29101897
crossref_primary_10_1016_j_jmbbm_2017_10_022
crossref_citationtrail_10_1016_j_jmbbm_2017_10_022
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2018
References Kroon (10.1016/j.jmbbm.2017.10.022_bib25) 2009; 198
Liu (10.1016/j.jmbbm.2017.10.022_bib29) 2012; 134
Zhao (10.1016/j.jmbbm.2017.10.022_bib55) 2009; 76
Barrett (10.1016/j.jmbbm.2017.10.022_bib4) 2004; 24
Joldes (10.1016/j.jmbbm.2017.10.022_bib22) 2016; 58
Wang (10.1016/j.jmbbm.2017.10.022_bib48) 2011; 2
10.1016/j.jmbbm.2017.10.022_bib8
Guo (10.1016/j.jmbbm.2017.10.022_bib17) 2003; 285
Iliopoulos (10.1016/j.jmbbm.2017.10.022_bib20) 2009; 31
Avril (10.1016/j.jmbbm.2017.10.022_bib3) 2010; 43
Wittek (10.1016/j.jmbbm.2017.10.022_bib51) 2016; 58
Humphrey (10.1016/j.jmbbm.2017.10.022_bib19) 2002
Martin (10.1016/j.jmbbm.2017.10.022_bib33) 2013; 9
Sokolis (10.1016/j.jmbbm.2017.10.022_bib43) 2017; 67
Franquet (10.1016/j.jmbbm.2017.10.022_bib12) 2013; 27
10.1016/j.jmbbm.2017.10.022_bib24
Besl (10.1016/j.jmbbm.2017.10.022_bib6) 1992; 14
Pierce (10.1016/j.jmbbm.2017.10.022_bib40) 2015; 41
van Disseldorp (10.1016/j.jmbbm.2017.10.022_bib47) 2016; 49
Karatolios (10.1016/j.jmbbm.2017.10.022_bib23) 2013; 96
Grédiac (10.1016/j.jmbbm.2017.10.022_bib16) 2006; 42
Schulze-Bauer (10.1016/j.jmbbm.2017.10.022_bib41) 2003; 36
Wittek (10.1016/j.jmbbm.2017.10.022_bib52) 2013; 27
Jansen Klomp (10.1016/j.jmbbm.2017.10.022_bib21) 2016; 2016
Ares (10.1016/j.jmbbm.2017.10.022_bib2) 2017; 319
Martin (10.1016/j.jmbbm.2017.10.022_bib32) 2015; 308
Masson (10.1016/j.jmbbm.2017.10.022_bib34) 2011; 10
Davis (10.1016/j.jmbbm.2017.10.022_bib11) 2016; 61
Compas (10.1016/j.jmbbm.2017.10.022_bib10) 2014; 33
Zhang (10.1016/j.jmbbm.2017.10.022_bib54) 2017; 35
Pengcheng (10.1016/j.jmbbm.2017.10.022_bib38) 2000; 19
Pierce (10.1016/j.jmbbm.2017.10.022_bib39) 2015; 47
Masson (10.1016/j.jmbbm.2017.10.022_bib35) 2008; 41
Genovese (10.1016/j.jmbbm.2017.10.022_bib15) 2013; 27
Genet (10.1016/j.jmbbm.2017.10.022_bib14) 2015; 48
Miller (10.1016/j.jmbbm.2017.10.022_bib36) 2013; 27
Anon (10.1016/j.jmbbm.2017.10.022_bib1) 2011
Zeinali-Davarani (10.1016/j.jmbbm.2017.10.022_bib53) 2011; 10
Labrosse (10.1016/j.jmbbm.2017.10.022_bib26) 2009; 42
Stålhand (10.1016/j.jmbbm.2017.10.022_bib44) 2009; 8
Taylor (10.1016/j.jmbbm.2017.10.022_bib45) 2009; 11
Weisbecker (10.1016/j.jmbbm.2017.10.022_bib50) 2012; 12
Liang (10.1016/j.jmbbm.2017.10.022_bib28) 2017
Choudhury (10.1016/j.jmbbm.2017.10.022_bib9) 2009; 18
Trabelsi (10.1016/j.jmbbm.2017.10.022_bib46) 2016; 44
Holzapfel (10.1016/j.jmbbm.2017.10.022_bib18) 2000; 61
Liu (10.1016/j.jmbbm.2017.10.022_bib31) 2017; 72
Bellini (10.1016/j.jmbbm.2017.10.022_bib5) 2014; 42
Olsson (10.1016/j.jmbbm.2017.10.022_bib37) 2006; 5
Smoljkić (10.1016/j.jmbbm.2017.10.022_bib42) 2015; 14
Webb (10.1016/j.jmbbm.2017.10.022_bib49) 2011
LeCun (10.1016/j.jmbbm.2017.10.022_bib27) 2015; 521
Gasser (10.1016/j.jmbbm.2017.10.022_bib13) 2006; 3
Bols (10.1016/j.jmbbm.2017.10.022_bib7) 2013; 246
Liu (10.1016/j.jmbbm.2017.10.022_bib30) 2009; 56
References_xml – volume: 134
  year: 2012
  ident: 10.1016/j.jmbbm.2017.10.022_bib29
  article-title: Using In vivo cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4005685
– volume: 285
  start-page: H2614
  year: 2003
  ident: 10.1016/j.jmbbm.2017.10.022_bib17
  article-title: Variation of mechanical properties along the length of the aorta in C57bl/6 mice
  publication-title: Am. J. Physiol. - Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00567.2003
– volume: 48
  start-page: 2080
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib14
  article-title: Heterogeneous growth-induced prestrain in the heart
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.012
– volume: 67
  start-page: 87
  year: 2017
  ident: 10.1016/j.jmbbm.2017.10.022_bib43
  article-title: Regional distribution of circumferential residual strains in the human aorta according to age and gender
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.12.003
– year: 2002
  ident: 10.1016/j.jmbbm.2017.10.022_bib19
– volume: 319
  start-page: 287
  year: 2017
  ident: 10.1016/j.jmbbm.2017.10.022_bib2
  article-title: Identification of residual stresses in multi-layered arterial wall tissues using a variational framework
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.02.028
– volume: 3
  start-page: 15
  year: 2006
  ident: 10.1016/j.jmbbm.2017.10.022_bib13
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2005.0073
– volume: 27
  start-page: 132
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib15
  article-title: An improved panoramic digital image correlation method for vascular strain analysis and material characterization
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.11.015
– volume: 43
  start-page: 2978
  year: 2010
  ident: 10.1016/j.jmbbm.2017.10.022_bib3
  article-title: Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.07.004
– volume: 24
  start-page: 1679
  year: 2004
  ident: 10.1016/j.jmbbm.2017.10.022_bib4
  article-title: Artifacts in CT: recognition and avoidance
  publication-title: RadioGraphics
  doi: 10.1148/rg.246045065
– volume: 27
  start-page: 167
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib52
  article-title: In vivo determination of elastic properties of the human aorta based on 4D ultrasound data
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.03.014
– volume: 10
  start-page: 689
  year: 2011
  ident: 10.1016/j.jmbbm.2017.10.022_bib53
  article-title: Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0266-y
– year: 2011
  ident: 10.1016/j.jmbbm.2017.10.022_bib49
– volume: 27
  start-page: 184
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib12
  article-title: Identification of the in vivo elastic properties of common carotid arteries from MRI: a study on subjects with and without atherosclerosis
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.03.016
– volume: 2
  start-page: 324
  year: 2011
  ident: 10.1016/j.jmbbm.2017.10.022_bib48
  article-title: Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-011-0052-8
– volume: 36
  start-page: 165
  year: 2003
  ident: 10.1016/j.jmbbm.2017.10.022_bib41
  article-title: Determination of constitutive equations for human arteries from clinical data
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00367-6
– volume: 14
  start-page: 239
  year: 1992
  ident: 10.1016/j.jmbbm.2017.10.022_bib6
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.121791
– ident: 10.1016/j.jmbbm.2017.10.022_bib24
  doi: 10.1007/11546849_48
– volume: 42
  start-page: 233
  year: 2006
  ident: 10.1016/j.jmbbm.2017.10.022_bib16
  article-title: The virtual fields method for extracting constitutive parameters from full-field measurements: a review
  publication-title: Strain
– volume: 42
  start-page: 488
  year: 2014
  ident: 10.1016/j.jmbbm.2017.10.022_bib5
  article-title: A microstructurally motivated model of arterial wall mechanics with mechanobiological implications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0928-x
– volume: 76
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib55
  article-title: Pointwise identification of elastic properties in nonlinear hyperelastic membranes—Part II: experimental validation
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3130810
– volume: 72
  start-page: 148
  year: 2017
  ident: 10.1016/j.jmbbm.2017.10.022_bib31
  article-title: A new inverse method for estimation of in vivo mechanical properties of the aortic wall
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.05.001
– volume: 35
  start-page: 599
  year: 2017
  ident: 10.1016/j.jmbbm.2017.10.022_bib54
  article-title: Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.09.006
– volume: 11
  start-page: 109
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib45
  article-title: Patient-specific modeling of cardiovascular mechanics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160521
– volume: 8
  start-page: 141
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib44
  article-title: Determination of human arterial wall parameters from clinical data
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0124-3
– ident: 10.1016/j.jmbbm.2017.10.022_bib8
– volume: 10
  start-page: 867
  year: 2011
  ident: 10.1016/j.jmbbm.2017.10.022_bib34
  article-title: Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0279-6
– volume: 27
  start-page: 154
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib36
  article-title: On the prospect of patient-specific biomechanics without patient-specific properties of tissues
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.01.013
– volume: 18
  start-page: 83
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib9
  article-title: Local mechanical and structural properties of healthy and diseased human ascending aorta tissue
  publication-title: Cardiovasc. Pathol.
  doi: 10.1016/j.carpath.2008.01.001
– volume: 31
  start-page: 1
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib20
  article-title: Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.03.002
– volume: 58
  start-page: 122
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib51
  article-title: A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.09.022
– volume: 2016
  start-page: 4726094
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib21
  article-title: Imaging techniques for diagnosis of thoracic aortic atherosclerosis
  publication-title: Int. Vasc. Med.
– start-page: 1
  year: 2017
  ident: 10.1016/j.jmbbm.2017.10.022_bib28
  article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm
  publication-title: Biomech. Model. Mechanobiol.
– volume: 61
  start-page: 1
  year: 2000
  ident: 10.1016/j.jmbbm.2017.10.022_bib18
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elast. Phys. Sci. Solids
– volume: 41
  start-page: 2618
  year: 2008
  ident: 10.1016/j.jmbbm.2017.10.022_bib35
  article-title: Characterization of arterial wall mechanical behavior and stresses from human clinical data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.06.022
– volume: 96
  start-page: 1664
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib23
  article-title: Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2013.06.037
– volume: 14
  start-page: 1045
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib42
  article-title: Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-015-0653-5
– volume: 42
  start-page: 996
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib26
  article-title: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.02.009
– volume: 41
  start-page: 92
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib40
  article-title: Human thoracic and abdominal aortic aneurysmal tissues: damage experiments, statistical analysis and constitutive modeling
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2014.10.003
– volume: 44
  start-page: 84
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib46
  article-title: Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1374-8
– volume: 49
  start-page: 2405
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib47
  article-title: Influence of limited field-of-view on wall stress analysis in abdominal aortic aneurysms
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.01.020
– volume: 5
  start-page: 27
  year: 2006
  ident: 10.1016/j.jmbbm.2017.10.022_bib37
  article-title: Modeling initial strain distribution in soft tissues with application to arteries
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-005-0008-8
– volume: 9
  start-page: 9392
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib33
  article-title: Predictive biomechanical analysis of ascending aortic aneurysm rupture potential
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.07.044
– volume: 12
  start-page: 93
  year: 2012
  ident: 10.1016/j.jmbbm.2017.10.022_bib50
  article-title: Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.03.012
– start-page: 431
  year: 2011
  ident: 10.1016/j.jmbbm.2017.10.022_bib1
  article-title: Echocardiography
– volume: 61
  start-page: 235
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib11
  article-title: Local mechanical properties of human ascending thoracic aneurysms
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.025
– volume: 58
  start-page: 139
  year: 2016
  ident: 10.1016/j.jmbbm.2017.10.022_bib22
  article-title: A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.07.029
– volume: 19
  start-page: 36
  year: 2000
  ident: 10.1016/j.jmbbm.2017.10.022_bib38
  article-title: Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.832958
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib27
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 308
  start-page: H1306
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib32
  article-title: Patient-specific finite element analysis of ascending aorta aneurysms
  publication-title: Am. J. Physiol. - Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00908.2014
– volume: 246
  start-page: 10
  year: 2013
  ident: 10.1016/j.jmbbm.2017.10.022_bib7
  article-title: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.10.034
– volume: 47
  start-page: 147
  year: 2015
  ident: 10.1016/j.jmbbm.2017.10.022_bib39
  article-title: A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.03.024
– volume: 56
  start-page: 378
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib30
  article-title: Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2006012
– volume: 33
  start-page: 1275
  year: 2014
  ident: 10.1016/j.jmbbm.2017.10.022_bib10
  article-title: Radial basis functions for combining shape and speckle tracking in 4D echocardiography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2308894
– volume: 198
  start-page: 3622
  year: 2009
  ident: 10.1016/j.jmbbm.2017.10.022_bib25
  article-title: Elastic properties of anisotropic vascular membranes examined by inverse analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.08.002
SSID ssj0060088
Score 2.2981396
Snippet The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 649
SubjectTerms Aged
Algorithms
Anisotropy
Aorta - diagnostic imaging
Aorta - physiology
Aorta, Abdominal - diagnostic imaging
Aorta, Abdominal - physiology
Aorta, Thoracic - diagnostic imaging
Aorta, Thoracic - physiology
Aortic Aneurysm, Thoracic - diagnostic imaging
Aortic Aneurysm, Thoracic - pathology
Blood Pressure
Computer Simulation
Elasticity
Endothelium, Vascular - pathology
Finite Element Analysis
Humans
Models, Cardiovascular
Principal Component Analysis
Software
Stress, Mechanical
Tomography, X-Ray Computed
Ultrasonography
Title Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach
URI https://www.ncbi.nlm.nih.gov/pubmed/29101897
https://www.proquest.com/docview/1960927471
https://pubmed.ncbi.nlm.nih.gov/PMC5696095
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: ACRLP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: .~1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: AIKHN
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: AKRWK
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAyrMLBRmJW8gqcV52b1VVVCHgQit6i-IXZLWbrMpukTjw2_HYcZLdpQi4RKuxdxL5m0wmk5nPCL3mRBjUswgy9zRMmU5CpokKOeWJ4IWMowr6nT98zM8u0neX2eVQEmS7S1Z8Kn78tq_kf1A1MoMrdMn-A7K9UiMwvw2-5mgQNse_wvjU3J-LPuarm-C6vm6DhYJuXrv4S0i1XwFnqq8FqFpQE3yv5nPXlG4rCkPz0t1daeAeckGXDvGc4zcEsaBydD7f9A9DrrHfis01uuXoy3_qtavZbyDL8mUQd9nr92Ppp7X1jJ9VPU5RxHSUolDOrVLg8Y3dnk3e73bbtzjHmTvi0h2H7nILs-lswTkQB8TFFIrxXC_zCOLlwmJMGDCQuYrfLR5tP3Qb3SHmCQDbfEx_9uVAJu6j1LNS2fq_nTMCb3SnYzOI2Xkz2S6wHUUs5_vofocSPnZ28wDdUs1DdG9EQPkI1YMF4VbjusFgQXhAFA8WBBMM3NhZEAYLOsLHeNt-sLMf7OwHe_t5jC7enp6fnIXd5huhSPJoFSqaylTqnDDOCyIhd8FTQoQgQjNG4opkqcwSGZOCZyyShGeiEiLShKcZS3XyBO01baMOEBZKS50oySw_X8w5o0nFtaYk5UWS6QkifjVL0THTwwYp89KXIM5Ki0YJaIDQoDFBb_o_LR0xy5-nv_IwlcaBwlexqlHt-lsZA-eizc1M0FMHW6_Q4z1BxQag_QQgZ98caeqvlqQ9yy2X47MbdT5Hd4d75RDtra7W6oUJcFf8pbXMX33uq_0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+in+vivo+mechanical+properties+of+the+aortic+wall%3A+A+multi-resolution+direct+search+approach&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Liu%2C+Minliang&rft.au=Liang%2C+Liang&rft.au=Sun%2C+Wei&rft.date=2018-01-01&rft.eissn=1878-0180&rft.volume=77&rft.spage=649&rft_id=info:doi/10.1016%2Fj.jmbbm.2017.10.022&rft_id=info%3Apmid%2F29101897&rft.externalDocID=29101897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon