Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach
The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In...
Saved in:
| Published in | Journal of the mechanical behavior of biomedical materials Vol. 77; pp. 649 - 659 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
01.01.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-6161 1878-0180 1878-0180 |
| DOI | 10.1016/j.jmbbm.2017.10.022 |
Cover
| Abstract | The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians. |
|---|---|
| AbstractList | The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians.The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a 'coarse to fine' fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians. The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in vivo material properties often demand high computational cost and mesh correspondence of the aortic wall between different cardiac phases. In this paper, we propose a novel multi-resolution direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS approach consists of the following three steps: (1) representing constitutive parameters with multiple resolutions using principal component analysis (PCA), (2) building links between the discretized PCA spaces at different resolutions, and (3) searching the PCA spaces in a ‘coarse to fine’ fashion following the links. The estimation of material parameters is achieved by minimizing a node-to-surface error function, which does not need mesh correspondence. The method was validated through a numerical experiment by using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the results show that the number of FE iterations was significantly reduced compared to previous methods. The approach was also applied to the in vivo CT data from an aged healthy human patient, and using the estimated material parameters, the FE-computed geometry was well matched with the image-derived geometry. This novel MRDS approach may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which requires fast feedback to clinicians. |
| Author | Liang, Liang Sun, Wei Liu, Minliang |
| Author_xml | – sequence: 1 givenname: Minliang surname: Liu fullname: Liu, Minliang – sequence: 2 givenname: Liang surname: Liang fullname: Liang, Liang – sequence: 3 givenname: Wei surname: Sun fullname: Sun, Wei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29101897$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPJCEUhclEMz5mfoGJYemmWqDrhQsTYxw1MXGjawK3qCk6VFEC1cZ_P1S301EXroDLd869cI7Q3uAGjdAJJQtKaHm-Wqx6pfoFI7RKlQVh7Ac6pHVVZ4TWZC_tq4JmJS3pAToKYUVISUhd_0QHjCeHmleHyNyEaHoZjRuwa7EZ8NqsHe41dHIwIC0evRu1j0aHGYidxtKlI-BXae0FvsL9ZKPJvA7OThufxngNEQctPXRYjslBQvcL7bfSBv37fT1Gz39unq7vsofH2_vrq4cMliWJma7zJm_aknGlKtZUeUVVzhgAg5ZzRiUr8qZYNpRVquCkYaoACUBapvKC5-3yGF1ufcdJ9boBPUQvrRh9eqZ_E04a8flmMJ3469aiKHlJeJEMzt4NvHuZdIiiNwG0tXLQbgqCzhibB0vo6cdeuyb__zcByy0A3oXgdbtDKBFzimIlNimKOcW5mFJMKv5FBSZuMkoDG_ut9h_Tqab5 |
| CitedBy_id | crossref_primary_10_1038_s41598_019_49438_w crossref_primary_10_1016_j_jmbbm_2022_105081 crossref_primary_10_1016_j_actbio_2022_03_042 crossref_primary_10_1016_j_jmps_2021_104539 crossref_primary_10_1016_j_cmpb_2023_107616 crossref_primary_10_1115_1_4048029 crossref_primary_10_1115_1_4047721 crossref_primary_10_3390_app12083954 crossref_primary_10_1016_j_jmps_2023_105424 crossref_primary_10_3389_fbioe_2023_1304278 crossref_primary_10_3390_biomechanics2020016 crossref_primary_10_1016_j_cma_2020_113402 crossref_primary_10_1016_j_jmbbm_2023_105922 crossref_primary_10_1007_s10237_024_01907_6 crossref_primary_10_1016_j_cma_2018_12_030 crossref_primary_10_1016_j_compbiomed_2021_104794 crossref_primary_10_1007_s10439_023_03275_1 crossref_primary_10_3389_fcvm_2020_00075 crossref_primary_10_3390_app12168049 crossref_primary_10_2139_ssrn_3962823 crossref_primary_10_1016_j_jbiomech_2022_111106 |
| Cites_doi | 10.1115/1.4005685 10.1152/ajpheart.00567.2003 10.1016/j.jbiomech.2015.03.012 10.1016/j.jmbbm.2016.12.003 10.1016/j.cma.2017.02.028 10.1098/rsif.2005.0073 10.1016/j.jmbbm.2012.11.015 10.1016/j.jbiomech.2010.07.004 10.1148/rg.246045065 10.1016/j.jmbbm.2013.03.014 10.1007/s10237-010-0266-y 10.1016/j.jmbbm.2013.03.016 10.1007/s13239-011-0052-8 10.1016/S0021-9290(02)00367-6 10.1109/34.121791 10.1007/11546849_48 10.1007/s10439-013-0928-x 10.1115/1.3130810 10.1016/j.jmbbm.2017.05.001 10.1016/j.media.2016.09.006 10.1146/annurev.bioeng.10.061807.160521 10.1007/s10237-008-0124-3 10.1007/s10237-010-0279-6 10.1016/j.jmbbm.2013.01.013 10.1016/j.carpath.2008.01.001 10.1016/j.medengphy.2008.03.002 10.1016/j.jmbbm.2015.09.022 10.1016/j.jbiomech.2008.06.022 10.1016/j.athoracsur.2013.06.037 10.1007/s10237-015-0653-5 10.1016/j.jbiomech.2009.02.009 10.1016/j.jmbbm.2014.10.003 10.1007/s10439-015-1374-8 10.1016/j.jbiomech.2016.01.020 10.1007/s10237-005-0008-8 10.1016/j.actbio.2013.07.044 10.1016/j.jmbbm.2012.03.012 10.1016/j.jmbbm.2016.03.025 10.1016/j.jmbbm.2015.07.029 10.1109/42.832958 10.1038/nature14539 10.1152/ajpheart.00908.2014 10.1016/j.cam.2012.10.034 10.1016/j.jmbbm.2015.03.024 10.1109/TBME.2008.2006012 10.1109/TMI.2014.2308894 10.1016/j.cma.2008.08.002 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.jmbbm.2017.10.022 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-0180 |
| EndPage | 659 |
| ExternalDocumentID | PMC5696095 29101897 10_1016_j_jmbbm_2017_10_022 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL104080 – fundername: NHLBI NIH HHS grantid: R21 HL127570 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACLOT ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- ~HD AFXIZ AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM RIG SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c360t-e84d4df629bb72d7471b422cc2cf9921a254d53d127b590d2b5cacc0f2b4594f3 |
| ISSN | 1751-6161 1878-0180 |
| IngestDate | Tue Sep 30 16:43:16 EDT 2025 Sun Sep 28 07:51:27 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 Wed Oct 29 21:19:00 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constitutive parameter estimation Finite element analysis Multi-resolution direct search Principal component analysis |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-e84d4df629bb72d7471b422cc2cf9921a254d53d127b590d2b5cacc0f2b4594f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work and should be considered as co-first authors. |
| PMID | 29101897 |
| PQID | 1960927471 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696095 proquest_miscellaneous_1960927471 pubmed_primary_29101897 crossref_primary_10_1016_j_jmbbm_2017_10_022 crossref_citationtrail_10_1016_j_jmbbm_2017_10_022 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of the mechanical behavior of biomedical materials |
| PublicationTitleAlternate | J Mech Behav Biomed Mater |
| PublicationYear | 2018 |
| References | Kroon (10.1016/j.jmbbm.2017.10.022_bib25) 2009; 198 Liu (10.1016/j.jmbbm.2017.10.022_bib29) 2012; 134 Zhao (10.1016/j.jmbbm.2017.10.022_bib55) 2009; 76 Barrett (10.1016/j.jmbbm.2017.10.022_bib4) 2004; 24 Joldes (10.1016/j.jmbbm.2017.10.022_bib22) 2016; 58 Wang (10.1016/j.jmbbm.2017.10.022_bib48) 2011; 2 10.1016/j.jmbbm.2017.10.022_bib8 Guo (10.1016/j.jmbbm.2017.10.022_bib17) 2003; 285 Iliopoulos (10.1016/j.jmbbm.2017.10.022_bib20) 2009; 31 Avril (10.1016/j.jmbbm.2017.10.022_bib3) 2010; 43 Wittek (10.1016/j.jmbbm.2017.10.022_bib51) 2016; 58 Humphrey (10.1016/j.jmbbm.2017.10.022_bib19) 2002 Martin (10.1016/j.jmbbm.2017.10.022_bib33) 2013; 9 Sokolis (10.1016/j.jmbbm.2017.10.022_bib43) 2017; 67 Franquet (10.1016/j.jmbbm.2017.10.022_bib12) 2013; 27 10.1016/j.jmbbm.2017.10.022_bib24 Besl (10.1016/j.jmbbm.2017.10.022_bib6) 1992; 14 Pierce (10.1016/j.jmbbm.2017.10.022_bib40) 2015; 41 van Disseldorp (10.1016/j.jmbbm.2017.10.022_bib47) 2016; 49 Karatolios (10.1016/j.jmbbm.2017.10.022_bib23) 2013; 96 Grédiac (10.1016/j.jmbbm.2017.10.022_bib16) 2006; 42 Schulze-Bauer (10.1016/j.jmbbm.2017.10.022_bib41) 2003; 36 Wittek (10.1016/j.jmbbm.2017.10.022_bib52) 2013; 27 Jansen Klomp (10.1016/j.jmbbm.2017.10.022_bib21) 2016; 2016 Ares (10.1016/j.jmbbm.2017.10.022_bib2) 2017; 319 Martin (10.1016/j.jmbbm.2017.10.022_bib32) 2015; 308 Masson (10.1016/j.jmbbm.2017.10.022_bib34) 2011; 10 Davis (10.1016/j.jmbbm.2017.10.022_bib11) 2016; 61 Compas (10.1016/j.jmbbm.2017.10.022_bib10) 2014; 33 Zhang (10.1016/j.jmbbm.2017.10.022_bib54) 2017; 35 Pengcheng (10.1016/j.jmbbm.2017.10.022_bib38) 2000; 19 Pierce (10.1016/j.jmbbm.2017.10.022_bib39) 2015; 47 Masson (10.1016/j.jmbbm.2017.10.022_bib35) 2008; 41 Genovese (10.1016/j.jmbbm.2017.10.022_bib15) 2013; 27 Genet (10.1016/j.jmbbm.2017.10.022_bib14) 2015; 48 Miller (10.1016/j.jmbbm.2017.10.022_bib36) 2013; 27 Anon (10.1016/j.jmbbm.2017.10.022_bib1) 2011 Zeinali-Davarani (10.1016/j.jmbbm.2017.10.022_bib53) 2011; 10 Labrosse (10.1016/j.jmbbm.2017.10.022_bib26) 2009; 42 Stålhand (10.1016/j.jmbbm.2017.10.022_bib44) 2009; 8 Taylor (10.1016/j.jmbbm.2017.10.022_bib45) 2009; 11 Weisbecker (10.1016/j.jmbbm.2017.10.022_bib50) 2012; 12 Liang (10.1016/j.jmbbm.2017.10.022_bib28) 2017 Choudhury (10.1016/j.jmbbm.2017.10.022_bib9) 2009; 18 Trabelsi (10.1016/j.jmbbm.2017.10.022_bib46) 2016; 44 Holzapfel (10.1016/j.jmbbm.2017.10.022_bib18) 2000; 61 Liu (10.1016/j.jmbbm.2017.10.022_bib31) 2017; 72 Bellini (10.1016/j.jmbbm.2017.10.022_bib5) 2014; 42 Olsson (10.1016/j.jmbbm.2017.10.022_bib37) 2006; 5 Smoljkić (10.1016/j.jmbbm.2017.10.022_bib42) 2015; 14 Webb (10.1016/j.jmbbm.2017.10.022_bib49) 2011 LeCun (10.1016/j.jmbbm.2017.10.022_bib27) 2015; 521 Gasser (10.1016/j.jmbbm.2017.10.022_bib13) 2006; 3 Bols (10.1016/j.jmbbm.2017.10.022_bib7) 2013; 246 Liu (10.1016/j.jmbbm.2017.10.022_bib30) 2009; 56 |
| References_xml | – volume: 134 year: 2012 ident: 10.1016/j.jmbbm.2017.10.022_bib29 article-title: Using In vivo cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions publication-title: J. Biomech. Eng. doi: 10.1115/1.4005685 – volume: 285 start-page: H2614 year: 2003 ident: 10.1016/j.jmbbm.2017.10.022_bib17 article-title: Variation of mechanical properties along the length of the aorta in C57bl/6 mice publication-title: Am. J. Physiol. - Heart Circ. Physiol. doi: 10.1152/ajpheart.00567.2003 – volume: 48 start-page: 2080 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib14 article-title: Heterogeneous growth-induced prestrain in the heart publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.03.012 – volume: 67 start-page: 87 year: 2017 ident: 10.1016/j.jmbbm.2017.10.022_bib43 article-title: Regional distribution of circumferential residual strains in the human aorta according to age and gender publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.12.003 – year: 2002 ident: 10.1016/j.jmbbm.2017.10.022_bib19 – volume: 319 start-page: 287 year: 2017 ident: 10.1016/j.jmbbm.2017.10.022_bib2 article-title: Identification of residual stresses in multi-layered arterial wall tissues using a variational framework publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.02.028 – volume: 3 start-page: 15 year: 2006 ident: 10.1016/j.jmbbm.2017.10.022_bib13 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2005.0073 – volume: 27 start-page: 132 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib15 article-title: An improved panoramic digital image correlation method for vascular strain analysis and material characterization publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.11.015 – volume: 43 start-page: 2978 year: 2010 ident: 10.1016/j.jmbbm.2017.10.022_bib3 article-title: Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.07.004 – volume: 24 start-page: 1679 year: 2004 ident: 10.1016/j.jmbbm.2017.10.022_bib4 article-title: Artifacts in CT: recognition and avoidance publication-title: RadioGraphics doi: 10.1148/rg.246045065 – volume: 27 start-page: 167 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib52 article-title: In vivo determination of elastic properties of the human aorta based on 4D ultrasound data publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.03.014 – volume: 10 start-page: 689 year: 2011 ident: 10.1016/j.jmbbm.2017.10.022_bib53 article-title: Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0266-y – year: 2011 ident: 10.1016/j.jmbbm.2017.10.022_bib49 – volume: 27 start-page: 184 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib12 article-title: Identification of the in vivo elastic properties of common carotid arteries from MRI: a study on subjects with and without atherosclerosis publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.03.016 – volume: 2 start-page: 324 year: 2011 ident: 10.1016/j.jmbbm.2017.10.022_bib48 article-title: Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-011-0052-8 – volume: 36 start-page: 165 year: 2003 ident: 10.1016/j.jmbbm.2017.10.022_bib41 article-title: Determination of constitutive equations for human arteries from clinical data publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00367-6 – volume: 14 start-page: 239 year: 1992 ident: 10.1016/j.jmbbm.2017.10.022_bib6 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.121791 – ident: 10.1016/j.jmbbm.2017.10.022_bib24 doi: 10.1007/11546849_48 – volume: 42 start-page: 233 year: 2006 ident: 10.1016/j.jmbbm.2017.10.022_bib16 article-title: The virtual fields method for extracting constitutive parameters from full-field measurements: a review publication-title: Strain – volume: 42 start-page: 488 year: 2014 ident: 10.1016/j.jmbbm.2017.10.022_bib5 article-title: A microstructurally motivated model of arterial wall mechanics with mechanobiological implications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0928-x – volume: 76 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib55 article-title: Pointwise identification of elastic properties in nonlinear hyperelastic membranes—Part II: experimental validation publication-title: J. Appl. Mech. doi: 10.1115/1.3130810 – volume: 72 start-page: 148 year: 2017 ident: 10.1016/j.jmbbm.2017.10.022_bib31 article-title: A new inverse method for estimation of in vivo mechanical properties of the aortic wall publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.05.001 – volume: 35 start-page: 599 year: 2017 ident: 10.1016/j.jmbbm.2017.10.022_bib54 article-title: Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.09.006 – volume: 11 start-page: 109 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib45 article-title: Patient-specific modeling of cardiovascular mechanics publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160521 – volume: 8 start-page: 141 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib44 article-title: Determination of human arterial wall parameters from clinical data publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0124-3 – ident: 10.1016/j.jmbbm.2017.10.022_bib8 – volume: 10 start-page: 867 year: 2011 ident: 10.1016/j.jmbbm.2017.10.022_bib34 article-title: Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0279-6 – volume: 27 start-page: 154 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib36 article-title: On the prospect of patient-specific biomechanics without patient-specific properties of tissues publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.01.013 – volume: 18 start-page: 83 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib9 article-title: Local mechanical and structural properties of healthy and diseased human ascending aorta tissue publication-title: Cardiovasc. Pathol. doi: 10.1016/j.carpath.2008.01.001 – volume: 31 start-page: 1 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib20 article-title: Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.03.002 – volume: 58 start-page: 122 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib51 article-title: A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.09.022 – volume: 2016 start-page: 4726094 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib21 article-title: Imaging techniques for diagnosis of thoracic aortic atherosclerosis publication-title: Int. Vasc. Med. – start-page: 1 year: 2017 ident: 10.1016/j.jmbbm.2017.10.022_bib28 article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm publication-title: Biomech. Model. Mechanobiol. – volume: 61 start-page: 1 year: 2000 ident: 10.1016/j.jmbbm.2017.10.022_bib18 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elast. Phys. Sci. Solids – volume: 41 start-page: 2618 year: 2008 ident: 10.1016/j.jmbbm.2017.10.022_bib35 article-title: Characterization of arterial wall mechanical behavior and stresses from human clinical data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.06.022 – volume: 96 start-page: 1664 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib23 article-title: Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2013.06.037 – volume: 14 start-page: 1045 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib42 article-title: Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0653-5 – volume: 42 start-page: 996 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib26 article-title: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.02.009 – volume: 41 start-page: 92 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib40 article-title: Human thoracic and abdominal aortic aneurysmal tissues: damage experiments, statistical analysis and constitutive modeling publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2014.10.003 – volume: 44 start-page: 84 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib46 article-title: Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1374-8 – volume: 49 start-page: 2405 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib47 article-title: Influence of limited field-of-view on wall stress analysis in abdominal aortic aneurysms publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.01.020 – volume: 5 start-page: 27 year: 2006 ident: 10.1016/j.jmbbm.2017.10.022_bib37 article-title: Modeling initial strain distribution in soft tissues with application to arteries publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-005-0008-8 – volume: 9 start-page: 9392 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib33 article-title: Predictive biomechanical analysis of ascending aortic aneurysm rupture potential publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.07.044 – volume: 12 start-page: 93 year: 2012 ident: 10.1016/j.jmbbm.2017.10.022_bib50 article-title: Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.03.012 – start-page: 431 year: 2011 ident: 10.1016/j.jmbbm.2017.10.022_bib1 article-title: Echocardiography – volume: 61 start-page: 235 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib11 article-title: Local mechanical properties of human ascending thoracic aneurysms publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.03.025 – volume: 58 start-page: 139 year: 2016 ident: 10.1016/j.jmbbm.2017.10.022_bib22 article-title: A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.07.029 – volume: 19 start-page: 36 year: 2000 ident: 10.1016/j.jmbbm.2017.10.022_bib38 article-title: Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.832958 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib27 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 308 start-page: H1306 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib32 article-title: Patient-specific finite element analysis of ascending aorta aneurysms publication-title: Am. J. Physiol. - Heart Circ. Physiol. doi: 10.1152/ajpheart.00908.2014 – volume: 246 start-page: 10 year: 2013 ident: 10.1016/j.jmbbm.2017.10.022_bib7 article-title: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.10.034 – volume: 47 start-page: 147 year: 2015 ident: 10.1016/j.jmbbm.2017.10.022_bib39 article-title: A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.03.024 – volume: 56 start-page: 378 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib30 article-title: Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2006012 – volume: 33 start-page: 1275 year: 2014 ident: 10.1016/j.jmbbm.2017.10.022_bib10 article-title: Radial basis functions for combining shape and speckle tracking in 4D echocardiography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2308894 – volume: 198 start-page: 3622 year: 2009 ident: 10.1016/j.jmbbm.2017.10.022_bib25 article-title: Elastic properties of anisotropic vascular membranes examined by inverse analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.08.002 |
| SSID | ssj0060088 |
| Score | 2.2981396 |
| Snippet | The patient-specific biomechanical analysis of the aorta requires in vivo mechanical properties of individual patients. Existing approaches for estimating in... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 649 |
| SubjectTerms | Aged Algorithms Anisotropy Aorta - diagnostic imaging Aorta - physiology Aorta, Abdominal - diagnostic imaging Aorta, Abdominal - physiology Aorta, Thoracic - diagnostic imaging Aorta, Thoracic - physiology Aortic Aneurysm, Thoracic - diagnostic imaging Aortic Aneurysm, Thoracic - pathology Blood Pressure Computer Simulation Elasticity Endothelium, Vascular - pathology Finite Element Analysis Humans Models, Cardiovascular Principal Component Analysis Software Stress, Mechanical Tomography, X-Ray Computed Ultrasonography |
| Title | Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29101897 https://www.proquest.com/docview/1960927471 https://pubmed.ncbi.nlm.nih.gov/PMC5696095 |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: ACRLP dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: .~1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: AIKHN dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: AKRWK dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAyrMLBRmJW8gqcV52b1VVVCHgQit6i-IXZLWbrMpukTjw2_HYcZLdpQi4RKuxdxL5m0wmk5nPCL3mRBjUswgy9zRMmU5CpokKOeWJ4IWMowr6nT98zM8u0neX2eVQEmS7S1Z8Kn78tq_kf1A1MoMrdMn-A7K9UiMwvw2-5mgQNse_wvjU3J-LPuarm-C6vm6DhYJuXrv4S0i1XwFnqq8FqFpQE3yv5nPXlG4rCkPz0t1daeAeckGXDvGc4zcEsaBydD7f9A9DrrHfis01uuXoy3_qtavZbyDL8mUQd9nr92Ppp7X1jJ9VPU5RxHSUolDOrVLg8Y3dnk3e73bbtzjHmTvi0h2H7nILs-lswTkQB8TFFIrxXC_zCOLlwmJMGDCQuYrfLR5tP3Qb3SHmCQDbfEx_9uVAJu6j1LNS2fq_nTMCb3SnYzOI2Xkz2S6wHUUs5_vofocSPnZ28wDdUs1DdG9EQPkI1YMF4VbjusFgQXhAFA8WBBMM3NhZEAYLOsLHeNt-sLMf7OwHe_t5jC7enp6fnIXd5huhSPJoFSqaylTqnDDOCyIhd8FTQoQgQjNG4opkqcwSGZOCZyyShGeiEiLShKcZS3XyBO01baMOEBZKS50oySw_X8w5o0nFtaYk5UWS6QkifjVL0THTwwYp89KXIM5Ki0YJaIDQoDFBb_o_LR0xy5-nv_IwlcaBwlexqlHt-lsZA-eizc1M0FMHW6_Q4z1BxQag_QQgZ98caeqvlqQ9yy2X47MbdT5Hd4d75RDtra7W6oUJcFf8pbXMX33uq_0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+in+vivo+mechanical+properties+of+the+aortic+wall%3A+A+multi-resolution+direct+search+approach&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Liu%2C+Minliang&rft.au=Liang%2C+Liang&rft.au=Sun%2C+Wei&rft.date=2018-01-01&rft.eissn=1878-0180&rft.volume=77&rft.spage=649&rft_id=info:doi/10.1016%2Fj.jmbbm.2017.10.022&rft_id=info%3Apmid%2F29101897&rft.externalDocID=29101897 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |