Using Evolving ANN-Based Algorithm Models for Accurate Meteorological Forecasting Applications in Vietnam

The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coeffic...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 8
Main Authors Chen, Tim, Chen, J. C.-Y., Kapron, N.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2020/8179652

Cover

Abstract The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a backpropagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modelling and forecasting the maximum peak and variation with time of meteorological tsunamis in the Mekong estuary in Vietnam. The parameters, including both the nearby climatic weights and the wind field factors, for finding the most extreme meteorological waves, are first examined, through the preparation of evolved neural systems. The time series of meteorological tsunamis were used for training and testing the models, and data for three cyclones were used for model prediction. Given the 22 selected meteorological tidal waves, the exact constants for the Mekong estuary, acquired through relapse investigation, are A = 9.5 × 10−3 and B = 31 × 10−3. Results showed that both the Multilayer Perceptron Network (MLP) and evolved radial basis function (ERBF) methods are capable of predicting the time variation of meteorological tsunamis, and the best topologies of the MLP and ERBF are I3H8O1 and I3H10O1, respectively. The proposed advanced ANN time series model is anything but difficult to use, utilizing display and prediction tools for simulating the time variation of meteorological tsunamis.
AbstractList The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a backpropagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modelling and forecasting the maximum peak and variation with time of meteorological tsunamis in the Mekong estuary in Vietnam. The parameters, including both the nearby climatic weights and the wind field factors, for finding the most extreme meteorological waves, are first examined, through the preparation of evolved neural systems. The time series of meteorological tsunamis were used for training and testing the models, and data for three cyclones were used for model prediction. Given the 22 selected meteorological tidal waves, the exact constants for the Mekong estuary, acquired through relapse investigation, are A  = 9.5 × 10 −3 and B  = 31 × 10 −3 . Results showed that both the Multilayer Perceptron Network (MLP) and evolved radial basis function (ERBF) methods are capable of predicting the time variation of meteorological tsunamis, and the best topologies of the MLP and ERBF are I 3 H 8 O 1 and I 3 H 10 O 1 , respectively. The proposed advanced ANN time series model is anything but difficult to use, utilizing display and prediction tools for simulating the time variation of meteorological tsunamis.
The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a backpropagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modelling and forecasting the maximum peak and variation with time of meteorological tsunamis in the Mekong estuary in Vietnam. The parameters, including both the nearby climatic weights and the wind field factors, for finding the most extreme meteorological waves, are first examined, through the preparation of evolved neural systems. The time series of meteorological tsunamis were used for training and testing the models, and data for three cyclones were used for model prediction. Given the 22 selected meteorological tidal waves, the exact constants for the Mekong estuary, acquired through relapse investigation, are A = 9.5 × 10−3 and B = 31 × 10−3. Results showed that both the Multilayer Perceptron Network (MLP) and evolved radial basis function (ERBF) methods are capable of predicting the time variation of meteorological tsunamis, and the best topologies of the MLP and ERBF are I3H8O1 and I3H10O1, respectively. The proposed advanced ANN time series model is anything but difficult to use, utilizing display and prediction tools for simulating the time variation of meteorological tsunamis.
Author Chen, J. C.-Y.
Kapron, N.
Chen, Tim
Author_xml – sequence: 1
  fullname: Chen, Tim
– sequence: 2
  fullname: Chen, J. C.-Y.
– sequence: 3
  fullname: Kapron, N.
BookMark eNqFkM1LxDAQxYMouH7cPEvAo1aT6aZpj6v4BateVLyVNE3WSDapSdbF_96uXRAE8TSP4ffeDG8HbTrvFEIHlJxSytgZECBnJeVVwWADjSgr8ozRMd_sNYFxRiF_2UY7Mb4RApTRcoTMUzRuhi8_vP1Yicn9fXYuomrxxM58MOl1ju98q2zE2gc8kXIRRFL4TiXlg7d-ZqSw-MoHJUVM3xFdZ_tlMt5FbBx-Nio5Md9DW1rYqPbXcxc9XV0-Xtxk04fr24vJNJN5QVKmOCu5Bl1IBZI1mpcUdNuMmWgbaCVUSoJgEkpatS3nmpZaF1TwvOG0If3cRdmQu3Cd-FwKa-sumLkInzUl9aqnetVTve6p548Gvgv-faFiqt_8Irj-xRrG0CO0IkVPnQyUDD7GoPR_ofALlyZ9V5KCMPYv0_FgejWuFUvz34nDgVY9o7T4oYGQKof8C-TcnvY
CitedBy_id crossref_primary_10_55977_etsjournal_v01i01_e024004
crossref_primary_10_3390_app11114757
crossref_primary_10_1108_AEAT_06_2020_0109
crossref_primary_10_1155_2021_9968275
crossref_primary_10_1109_ACCESS_2022_3204752
Cites_doi 10.1016/j.amc.2007.09.067
10.1007/s40710-019-00363-0
10.1016/j.scitotenv.2019.136134
10.1016/j.engappai.2009.04.002
10.2166/ws.2019.044
10.1007/s11071-013-0841-8
10.1016/j.neucom.2010.06.005
10.1016/j.neucom.2010.06.004
10.1016/j.neucom.2008.01.030
10.1007/s00521-012-1210-0
10.1016/j.coastaleng.2006.12.001
10.1002/joc.2419
10.1016/j.margeo.2013.11.003
10.1016/s0025-3227(00)00168-7
10.2112/1551-5036(2007)23[658:tposdm]2.0.co;2
10.14311/nnw.2011.21.012
10.1016/j.ecss.2006.08.021
10.1016/j.scitotenv.2019.04.069
10.2112/jcoastres-d-10-00149.1
10.5194/nhess-19-2513-2019
10.1007/s11071-013-0869-9
10.1142/s0218126620500152
10.1016/j.margeo.2015.12.015
ContentType Journal Article
Copyright Copyright © 2020 Tim Chen et al.
Copyright © 2020 Tim Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Tim Chen et al.
– notice: Copyright © 2020 Tim Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1155/2020/8179652
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Gaggero, Mauro
Editor_xml – sequence: 1
  givenname: Mauro
  surname: Gaggero
  fullname: Gaggero, Mauro
EndPage 8
ExternalDocumentID 10.1155/2020/8179652
10_1155_2020_8179652
1200932
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GrantInformation_xml – fundername: Ho Chi Minh City University
GroupedDBID -~9
0R~
188
24P
29M
2UF
2WC
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAMMB
ABJCF
ABUWG
ACCMX
ACIPV
ACIWK
ADBBV
ADJCN
AEFGJ
AENEX
AFFNX
AFKRA
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CAG
CCPQU
COF
CS3
CWDGH
E3Z
EBS
EJD
H13
HCIFZ
IL9
IPNFZ
K6V
K7-
KQ8
L6V
M7S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
REM
RHU
RIG
RNS
TR2
UGNYK
XSB
YQT
3V.
AAJEY
ABDBF
AINHJ
ESX
GROUPED_DOAJ
I-F
IAO
IEA
IOF
ISR
ITC
MK~
M~E
RHW
RHX
TUS
~8M
AAYXX
CITATION
7TB
8FD
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c360t-e7587f2f6ce2c5bf7812fdb45adb2dc29ec2a5c2819dd77f18ff61a73b71b0a73
IEDL.DBID BENPR
ISSN 1024-123X
1026-7077
1563-5147
IngestDate Sun Oct 26 03:25:16 EDT 2025
Fri Jul 25 10:12:27 EDT 2025
Wed Oct 01 02:56:16 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Sun Jun 02 18:50:56 EDT 2024
Thu Sep 25 15:08:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-e7587f2f6ce2c5bf7812fdb45adb2dc29ec2a5c2819dd77f18ff61a73b71b0a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3661-2469
0000-0003-3766-4612
OpenAccessLink https://www.proquest.com/docview/2429651906?pq-origsite=%requestingapplication%&accountid=15518
PQID 2429651906
PQPubID 237775
PageCount 8
ParticipantIDs unpaywall_primary_10_1155_2020_8179652
proquest_journals_2429651906
crossref_primary_10_1155_2020_8179652
crossref_citationtrail_10_1155_2020_8179652
hindawi_primary_10_1155_2020_8179652
emarefa_primary_1200932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
(25) 2019; 17
26
27
10
12
13
14
15
16
17
18
19
1
2
3
4
5
(8) 2003
6
7
9
(11) 2004; 26
20
References_xml – ident: 12
  doi: 10.1016/j.amc.2007.09.067
– ident: 15
  doi: 10.1007/s40710-019-00363-0
– ident: 1
  doi: 10.1016/j.scitotenv.2019.136134
– ident: 19
  doi: 10.1016/j.engappai.2009.04.002
– ident: 2
  doi: 10.2166/ws.2019.044
– ident: 24
  doi: 10.1007/s11071-013-0841-8
– year: 2003
  ident: 8
– ident: 20
  doi: 10.1016/j.neucom.2010.06.005
– ident: 16
  doi: 10.1016/j.neucom.2010.06.004
– ident: 18
  doi: 10.1016/j.neucom.2008.01.030
– ident: 17
  doi: 10.1007/s00521-012-1210-0
– ident: 13
  doi: 10.1016/j.coastaleng.2006.12.001
– ident: 22
  doi: 10.1002/joc.2419
– ident: 6
  doi: 10.1016/j.margeo.2013.11.003
– ident: 5
  doi: 10.1016/s0025-3227(00)00168-7
– ident: 9
  doi: 10.2112/1551-5036(2007)23[658:tposdm]2.0.co;2
– ident: 10
  doi: 10.14311/nnw.2011.21.012
– ident: 14
  doi: 10.1016/j.ecss.2006.08.021
– ident: 3
  doi: 10.1016/j.scitotenv.2019.04.069
– ident: 7
  doi: 10.2112/jcoastres-d-10-00149.1
– volume: 17
  start-page: 307
  issue: 3
  year: 2019
  ident: 25
  publication-title: Earthquakes and Structures
– ident: 27
  doi: 10.5194/nhess-19-2513-2019
– ident: 23
  doi: 10.1007/s11071-013-0869-9
– ident: 26
  doi: 10.1142/s0218126620500152
– volume: 26
  start-page: 133
  issue: 4
  year: 2004
  ident: 11
  publication-title: Haiyang Xuebao
– ident: 4
  doi: 10.1016/j.margeo.2015.12.015
SSID ssj0021518
Score 2.2980313
Snippet The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts...
SourceID unpaywall
proquest
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Atmospheric models
Back propagation
Back propagation networks
Computer simulation
Cyclones
Estuaries
Floods
Hydrology
Mathematical models
Multilayer perceptrons
Neural networks
Radial basis function
Sea level
Tidal waves
Time series
Topology
Tsunamis
Weather forecasting
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4qiL54v0yn5GH6IsXekq6PUzaG4B7Eyd5Krq7QdWPtEP-9J1s2N8XLU1uSnpacJN93cpJzEKpJzaVbD0NHaY86ofa0w4EHOCIgsRCurz1lDMXHDm13w4ce6dkgScV3Fz6gnTHP3ds6dBxKYK5dr1Ozc-up3VvYVQBasxNvvgnBF_Tm-9u_vLuCPJtqwOAG4Gizb4zft3SFYm5N8hF7f2NZtoQ2rT20Y2kibsz0uo_WVH6Adi1lxHZAFoconbr8cRMmGbMygBudjnMHwCRxI3sdguHfH2CT7iwrMLBT3BBiYmJD4EfgysPxfOLDJkGnYEU5FbHk0sZpjl9SVeZscIS6rebzfdux2ROgnalbOgosgUj72qT8EoTrCKBcSx4SJrkvhR8r4TMijCNNyijSXl1r6rEo4JHHXbgeo418mKtThFUcs0jIEITJUAaaExpoFQSc-rE5XlJBN_OWTYQNLW4yXGTJ1MQgJDF6SKweKuhqUXs0C6nxQ70Tq6TPasaXE0BJzSrtDwHVuUYTOzKLBP4XyoAG0Qq6Xmj5Vzln__vcOdo2j7P1mSraKMcTdQGMpeSX0_76AQ2t4TM
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_qlaIv1m9Pq-xD9UX2mq_dXPApSksRevjgyQlC2E8bzOXKJUfRv97ZZFN7gh_4lA07DNmdyexvdnZnAA61lTqYJgk1NuQ0saGlEnEAVTHLlAoiGxrnKJ7N-Ok8ebdgix14PdyF0S5F_EroZnLufNLLsrPWfl6bI4SSzl0PjqaoSJyhU6jtDdjlDIH4CHbns_f5py6-GblsfPGib3OaBl0NRnRWYooQIR2OwDO2xW5rcdozS4ENXLH2_LdsodCbm_pCfLsUVXVtQTrZh8_DUPpzKF8nm1ZO1Pdfsjz-51jvwG0PVEnea9Zd2DH1Pdj3oJV4k9Dch7I7dECO0cy5vQmSz2b0DS6NmuTVl9W6bM-XxBVcqxqC-JjkSm1cdgpyhmh9tR5ML3ElQpVo2o7FtaA6KWvysTRtLZYPYH5y_OHtKfX1G1DSPGipQV8ktZF1RccUkzZFMGG1TJjQMtIqyoyKBFMulKd1mtpwai0PRRrLNJQBPh_CqF7V5jEQk2UiVTpBZjrRsZUoSGviWPIocxdcxvBqEFyhfHJzV2OjKjonh7HCzWThZ3IML66oL_qkHr-he-R14CeZiybF2HPoZfYXBgeDwhSDXAv8XuxDIMbH8PJKif7I58m_Ej6FW-613yM6gFG73phniJpa-dz_HT8AAIAPMQ
  priority: 102
  providerName: Unpaywall
Title Using Evolving ANN-Based Algorithm Models for Accurate Meteorological Forecasting Applications in Vietnam
URI https://search.emarefa.net/detail/BIM-1200932
https://dx.doi.org/10.1155/2020/8179652
https://www.proquest.com/docview/2429651906
https://downloads.hindawi.com/journals/mpe/2020/8179652.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20240530
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 24P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEF5BEGovfT_SAtoD7aWysNdePw4IGZQ0aoVFUVOlJ2ufJZLjpMQR6r_vjLMOcCi9-LkayZ7Zee7OR8ihtlL7aRR5xgaxF9nAehL8AE-FPFPKZzYwGCieF_FoHH2Z8MkWKbq9MLisstOJraLWc4U58iMwJVkM7oYfnyx-e4gahdXVDkJDOGgFfdy2GNsmOww7Y_XIzumguLjchGBg39ab4xh26wsn3VJ4zjEL4B-lIJ8xZ_eM1K6ZCbgAy7V7hXHyzfSeN_poVS_EnxtRVXcM0_AZeeI8SpqvReA52TL1C_LUeZfUzd3lSzJtVwfQAegjTCLQvCi8U7BhmubVL_jS5mpGERmtWlJwZGmu1ArbSNBzcKvn152OpIjlqcSyaUncqX7TaU1_TE1Ti9krMh4Ovp-NPAe0ACyJ_cYzEDQklllEB1Nc2gSsvtUy4kJLphXLjGKCK6y5aZ0kNkitjQORhDIJpA_n16RXz2vzllCTZSJROgJiOtKhlTwOrQlDGbMMd6L0yafuz5bKdSFHMIyqbKMRzkvkQ-n40CcfNqMX6-4b_xj3xjHpdhiWfUJ4c-iY9h8Cex1HSzeJl-WtyPXJxw2XH6Tz7mE678ljHL1O4eyRXnO9Mvvg1DTygGynw88HTl7h7uu3FI6Xowk8GxcX-c-_luP2kQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RIEQvpe-mpe0egEtlsNdeOz5wSHk0FJITtLkZ76tEdZwUO4rgR_FX-EudjdcBKpWeOPRkS16PpfW3M9_Mzs4ArEnNpdsKAkdpL3QC7WmHIw9whM9iIVyqPWUcxW4v7JwEX_usvwBX9VkYk1ZZ68SZopYjYWLkW2hK4hDphhvaDMpDdTFF_6zYPtjFn7lO6f7e8U7HsS0E8GOhWzoK6XCkqTZ9rwTjOkJ7piUPWCo5lYLGStCUCbObJGUUaa-ldeilkc8jj7t4Rbkb41-O6VJldnNty45HsIg492gDFne-737pzF08tJ_V4TtqqgH6_TrVnjETZXC3Woj_kNE7RnBJDVO8Qcu4dGb88OngDttdnuTj9GKaZtktw7e_Atf1lFX5Lj83JyXfFJd_VJP8f-b0KTyxHJy0q0XzDBZU_hxWLB8nVtsVL2Awy6cge6jBTdiFtHs95zNafUna2Q-UW54NiekllxUEqT9pCzExhTdIFx2R0XltVYjpfirSopyJuJUvQAY5-TZQZZ4OX8LJg8zBK2jko1y9AaLiOI2EDFCYDKSvOQt9rXyfhzQ2Z3ea8KnGSiJs3XbTPiRLZv4bY4lBVmKR1YT1-ehxVa_kL-NeW9jdDDMbZT4-WbMw_IeA1RpTiVV7RXIDqCZszHF7r5y398v5CMud4-5RcnTQO3wHj82bVQBsFRrl-US9R0pY8g92HRI4fWjk_gYf728s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVgUulH8CBfbQckFu7LV3HR8QCk1DSmnEgUJuxvtHIxwnNI6i8mi8Ci_DbLxOWyTKqQdOtuT1yLv-duab3dkZgC1lhPJbUeRpE3AvMoHxBPIAT4YskdKnJtDWUTzs895R9G7ABivwsz4LY8Mqa524UNRqLO0aeRNNScKRbvi8aVxYxIdO9_Xku2crSNmd1rqcRgWRA306R_dt-mq_g_96m9Lu3sfdnucqDOC3cL_0NLLl2FBjy2JJJkyM5s4oEbFMCaokTbSkGZN2s0mpODZByxgeZHEo4kD4eEW512CtxWOOSmFt93PnbW_p7qEtrQ7iUZsZMBzUYfeM2RUHv9nCucAZvWAQ1_Uowxu0kuvH1iefDy8w3xuzYpKdzrM8P2cEuxvwqx6-Kvbl286sFDvyxx-ZJf_P8b0Ntxw3J-1qMt2BFV3chQ3H04nTgtN7MFzEWZA91Ox2OYa0-33vDbIBRdr5V-xHeTwitsZcPiXoEpC2lDObkIMcooMyPqmtDbFVUWU2LRcizsURkGFBPg11WWSj-3B0JR1-AKvFuNCPgOgkyWKpIhSmIhUawXhodBgKThN7pqcBL2vcpNLlc7dlRfJ04dcxllqUpQ5lDdhetp5UeUz-0u6hg-BZM7uBFuKTLQfJfwjYrPGVOnU4Tc_A1YAXSwxfKufx5XKew3WEZ_p-v3_wBG7aF6t1sU1YLU9m-ikyxVI8c1OSwJerRulv9ot39A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_qlaIv1m9Pq-xD9UX2mq_dXPApSksRevjgyQlC2E8bzOXKJUfRv97ZZFN7gh_4lA07DNmdyexvdnZnAA61lTqYJgk1NuQ0saGlEnEAVTHLlAoiGxrnKJ7N-Ok8ebdgix14PdyF0S5F_EroZnLufNLLsrPWfl6bI4SSzl0PjqaoSJyhU6jtDdjlDIH4CHbns_f5py6-GblsfPGib3OaBl0NRnRWYooQIR2OwDO2xW5rcdozS4ENXLH2_LdsodCbm_pCfLsUVXVtQTrZh8_DUPpzKF8nm1ZO1Pdfsjz-51jvwG0PVEnea9Zd2DH1Pdj3oJV4k9Dch7I7dECO0cy5vQmSz2b0DS6NmuTVl9W6bM-XxBVcqxqC-JjkSm1cdgpyhmh9tR5ML3ElQpVo2o7FtaA6KWvysTRtLZYPYH5y_OHtKfX1G1DSPGipQV8ktZF1RccUkzZFMGG1TJjQMtIqyoyKBFMulKd1mtpwai0PRRrLNJQBPh_CqF7V5jEQk2UiVTpBZjrRsZUoSGviWPIocxdcxvBqEFyhfHJzV2OjKjonh7HCzWThZ3IML66oL_qkHr-he-R14CeZiybF2HPoZfYXBgeDwhSDXAv8XuxDIMbH8PJKif7I58m_Ej6FW-613yM6gFG73phniJpa-dz_HT8AAIAPMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Evolving+ANN-Based+Algorithm+Models+for+Accurate+Meteorological+Forecasting+Applications+in+Vietnam&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Chen%2C+Tim&rft.au=Kapron%2C+N&rft.au=Chen%2C+J+C-Y&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8179652&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon