Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization
Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and tr...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 10 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2020/6590765 |
Cover
| Abstract | Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and training parameter selection, a stochastic adaptive particle swarm optimization (RSAPSO) algorithm was proposed in this study to optimize the DBN. A stochastic criterion was proposed in this method to make the particles jump out of the original position search with a certain probability and reduce the probability of falling into the local optimum. The RSAPSO-DBN method used sample data to train the DBN and used the final diagnostic error rate to construct the fitness value function of the particle swarm algorithm. By comparing the minimum fitness value of each particle to determine the advantages and disadvantages of the model, the corresponding minimum fitness value was selected. Using the number of network nodes, learning rate, and momentum parameters, the optimal DBN classifier was generated for fault diagnosis. Finally, the validity of the method was verified by bearing data from Case Western Reserve University in the United States and data collected in the laboratory. Comparing BP (BP neural network), support vector machine, and heterogeneous particle swarm optimization DBN methods, the proposed method demonstrated the highest recognition rates of 87.75% and 93.75%. This proves that the proposed method possesses universality in fault diagnosis and provides new ideas for data identification with different fault depth attributes. |
|---|---|
| AbstractList | Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and training parameter selection, a stochastic adaptive particle swarm optimization (RSAPSO) algorithm was proposed in this study to optimize the DBN. A stochastic criterion was proposed in this method to make the particles jump out of the original position search with a certain probability and reduce the probability of falling into the local optimum. The RSAPSO-DBN method used sample data to train the DBN and used the final diagnostic error rate to construct the fitness value function of the particle swarm algorithm. By comparing the minimum fitness value of each particle to determine the advantages and disadvantages of the model, the corresponding minimum fitness value was selected. Using the number of network nodes, learning rate, and momentum parameters, the optimal DBN classifier was generated for fault diagnosis. Finally, the validity of the method was verified by bearing data from Case Western Reserve University in the United States and data collected in the laboratory. Comparing BP (BP neural network), support vector machine, and heterogeneous particle swarm optimization DBN methods, the proposed method demonstrated the highest recognition rates of 87.75% and 93.75%. This proves that the proposed method possesses universality in fault diagnosis and provides new ideas for data identification with different fault depth attributes. |
| Author | Wu, Miao Wang, Chao Chang, Boshen Wang, Xiaolin Zhang, Qiang Wang, Fan Yang, Jianjian |
| Author_xml | – sequence: 1 fullname: Wu, Miao – sequence: 2 fullname: Wang, Chao – sequence: 3 fullname: Zhang, Qiang – sequence: 4 fullname: Wang, Xiaolin – sequence: 5 fullname: Chang, Boshen – sequence: 6 fullname: Yang, Jianjian – sequence: 7 fullname: Wang, Fan |
| BookMark | eNqFkMtr3DAQxkVJoHn0lnMR9Ng60cOyV8fNqyksSSEJ5GZmpVFXqdd2JW2W5K-vsl4oFEJO8_rNN8O3T3a6vkNCjjg75lypE8EEO6mUZnWlPpA9ripZKF7WOzlnoiy4kA8fyX6Mj4wJrvhkj7hzjP5XR6GzdDoMrTeQfN_R3tFzxIGeYuvR0WtM6z78pqcQ0dI8v029WUBM3tCphSH5J6Q_IeS6RXq7hrCkN7m79C8bvUOy66CN-GkbD8j95cXd2VUxu_n-42w6K4ysWCqsZsoI41Rpy5xbraGqEJxEXho7mYPCiZ4LlMIKPa8d1mCsqpSsa-4MgDwgxai76gZ4XkPbNkPwSwjPDWfNq0nNq0nN1qTMfxn5IfR_VhhT89ivQpdfbERZslJqrXimvo2UCX2MAd17ouI_3Pi0sSEF8O1bS1_HpYXvLKz9eyc-jzRmBh38o7muNJvIv14CndA |
| CitedBy_id | crossref_primary_10_1007_s11277_022_10079_4 crossref_primary_10_1109_TIM_2021_3085940 crossref_primary_10_54097_jceim_v10i3_8760 |
| Cites_doi | 10.1016/j.engappai.2016.10.017 10.3901/JME.2015.21.049 10.1515/teme-2014-1006 10.1162/neco.2006.18.7.1527 10.21629/JSEE.2018.06.19 10.1002/cjce.23750 10.1016/j.apacoust.2019.05.006 10.1088/1757-899x/274/1/012133 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Jianjian Yang et al. Copyright © 2020 Jianjian Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2020 Jianjian Yang et al. – notice: Copyright © 2020 Jianjian Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.1155/2020/6590765 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1563-5147 |
| Editor | Zhang, Kai |
| Editor_xml | – sequence: 1 givenname: Kai surname: Zhang fullname: Zhang, Kai |
| EndPage | 10 |
| ExternalDocumentID | 10.1155/2020/6590765 10_1155_2020_6590765 1196908 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 2018101030061; 2018101060080 – fundername: Shanxi Special Fund for Science and Technology grantid: 20181102027 |
| GroupedDBID | -~9 0R~ 188 24P 29M 2UF 2WC 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAMMB ABJCF ABUWG ACCMX ACIPV ACIWK ADBBV ADJCN AEFGJ AENEX AFFNX AFKRA AGXDD AHFXO AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ C1A CAG CCPQU COF CS3 CWDGH E3Z EBS EJD H13 HCIFZ IL9 IPNFZ K6V K7- KQ8 L6V M7S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO Q2X REM RHU RIG RNS TR2 UGNYK XSB YQT 3V. AAJEY ABDBF AINHJ ESX GROUPED_DOAJ I-F IAO IEA IOF ISR ITC MK~ M~E RHW RHX TUS ~8M AAYXX CITATION 7TB 8FD AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c360t-d905c2cf54d4d90d99a66eaf3e14cd8ba5e89b2e32d29b7fe7acd5653771fcaa3 |
| IEDL.DBID | BENPR |
| ISSN | 1024-123X 1026-7077 1563-5147 |
| IngestDate | Tue Aug 19 21:01:56 EDT 2025 Fri Jul 25 10:11:14 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 Wed Oct 01 02:56:17 EDT 2025 Sun Jun 02 18:51:00 EDT 2024 Thu Sep 25 15:24:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2020 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-d905c2cf54d4d90d99a66eaf3e14cd8ba5e89b2e32d29b7fe7acd5653771fcaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6202-3617 |
| OpenAccessLink | https://www.proquest.com/docview/2440439951?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2440439951 |
| PQPubID | 237775 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1155_2020_6590765 proquest_journals_2440439951 crossref_primary_10_1155_2020_6590765 crossref_citationtrail_10_1155_2020_6590765 hindawi_primary_10_1155_2020_6590765 emarefa_primary_1196908 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
| PublicationTitle | Mathematical problems in engineering |
| PublicationYear | 2020 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 14 (17) 2015; 26 (12) 2013; 115 (2) 2020; 157 (19) 2017; 25 1 (16) 2016; 24 (18) 2018; 29 (7) 2019; 154 (10) 2015; 51 5 (4) 2018; 99 8 (9) 2016; 42 (6) 2017; 45 (3) 2018; 99 (11) 2006; 18 (15) 2014; 81 |
| References_xml | – ident: 8 doi: 10.1016/j.engappai.2016.10.017 – volume: 51 start-page: 49 issue: 21 year: 2015 ident: 10 publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2015.21.049 – volume: 81 start-page: 255 issue: 5 year: 2014 ident: 15 publication-title: tm-Technisches Messen doi: 10.1515/teme-2014-1006 – volume: 42 start-page: 1285 issue: 9 year: 2016 ident: 9 publication-title: Acta Automatica Sinica – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 11 publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 24 start-page: 67 issue: 4 year: 2016 ident: 16 publication-title: Electronic Design Engineering – volume: 26 issue: 11 year: 2015 ident: 17 publication-title: Measurement Science & Technology – volume: 99 start-page: 1 year: 2018 ident: 4 publication-title: IEEE Transactions on Medical Imaging – volume: 45 start-page: 129 issue: 10 year: 2017 ident: 6 publication-title: Coal Science and Technology – volume: 29 start-page: 1317 issue: 6 year: 2018 ident: 18 publication-title: Journal of Systems Engineering and Electronics doi: 10.21629/JSEE.2018.06.19 – volume: 115 start-page: 124 issue: 3 year: 2013 ident: 12 publication-title: Reliability Engineering and System Safety – ident: 14 doi: 10.1002/cjce.23750 – ident: 1 doi: 10.1016/j.apacoust.2019.05.006 – volume: 157 year: 2020 ident: 2 publication-title: Applied Acoustics – ident: 5 doi: 10.1088/1757-899x/274/1/012133 – volume: 25 start-page: 303 issue: 2 year: 2017 ident: 19 publication-title: Ieee Transactions on Neural Networks & Learning Systems – volume: 154 start-page: 176 year: 2019 ident: 7 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2019.05.006 – volume: 99 start-page: 1 year: 2018 ident: 3 publication-title: IEEE Access |
| SSID | ssj0021518 |
| Score | 2.2418659 |
| Snippet | Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling,... |
| SourceID | unpaywall proquest crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptive algorithms Algorithms Artificial intelligence Belief networks Deep learning Diagnostic systems Fault detection Fault diagnosis Fitness Machine learning Mathematical problems Neural networks Optimization Parameters Particle swarm optimization Pattern recognition Probability theory Recognition Signal processing Support vector machines |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUoEoIL-1I2-VC4oAg3iR3nWJaq4gCIReotmthjgdSmFS2q-Hvsxi0UxHJzEtuR8mzPm3jmmZAaA8YwSnQgY8OCWAML8lyagKHWdkGUSsA4QPZatB7jqzZve5GkwfctfGvtnHvOTgW3XpzgFVKRwkVu3bXaU7_KGq0y4y10EnxRexLf_qXtjOVZwC7YgjVHC0_O-R09z1DMxdeiD28j6HQ-WZvmKln2NJE2SlzXyBwW62TFU0bqJ-Rgg5iLcQQGhULTxsdeNO0ZeoHYp2doGxh6XQZ70zNrszS1z--HPfUETqOZNjT03ZpHb_0oovcjeOnSG3u367M0N8lj8_LhvBX4oxMCFQk2DHTKuAqV4bGObVmnKQiBYCKsx0rLHDjKNA8xCnWY5onBBJS23C5KkrpRANEWmS96Be4QGpu6kE42DxJluRPkkhu0nUlLvlCgqJKTyWfNlNcVd8dbdLKxf8F55kDIPAhVcjSt3S_1NH6ot-0R-qjmlHyYrJKaR-yPDvYncGZ-Wg6y0KkhumTeepUcTyH-tZ_d_71ujyy5y_LnzD6ZH7684oGlK8P8cDxY3wEfzN-u priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NThO8bHyNFQbyw-AFuXOT2HHEU8eYJh7KpFGpSEjRxR8aok2jNVUFfz124mwUiQ_xZicXK7Yvd7-Lzz8DHDFkzMSppjKxjCYaGS0KaSkzWjuDKJXAJkF2LM4nyfspn27Bm24vjPYU8QvUy8GVj0nXXxprHcZ1eeygpA_X2bHgLqoTfFBpewe2XU2wHmxPxhejT836ZuTZ-OJpWxY0Zc0ZjC5YiamDCGmXAs_5RnMbzmnHzNEVnMfaCe-ygULvrsoKv61xNvvJIZ3tweeuK20eytfBqi4G6vsvLI__2df7sBuAKhm1mvUAtkz5EPYCaCXBJCwfgT1tckAIlpqMblfDycKSU2MqcmLcA5aM23RzcuK8pibu_mW9UFfoWaLJSGPlrS65CHpMLtd4PScf3NV52Cf6GCZn7z6-Pafh8AaqYsFqqjPGVaQsT3TiyjrLUAiDNjbDRGlZIDcyKyITRzrKitSaFJV26DJO06FViPE-9MpFaQ6AJHYopCfuw1Q59IaF5Na4xqSDf0YY0YfX3azlKjCb-wM2ZnkT4XCe-2HMwzD24eWNdNUyevxG7klQgFsxzyXEZB-OwoT9pYHDTlvyblLzyPMx-u3Ewz68utGgP7bz9F8Fn8E9X21_EB1Cr75emecOMtXFi_Bp_ACC3Q2s priority: 102 providerName: Unpaywall |
| Title | Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization |
| URI | https://search.emarefa.net/detail/BIM-1196908 https://dx.doi.org/10.1155/2020/6590765 https://www.proquest.com/docview/2440439951 https://downloads.hindawi.com/journals/mpe/2020/6590765.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1563-5147 dateEnd: 20240530 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1563-5147 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 24P dateStart: 19950101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9tnSZ4YXwNCtvkh8ELiuYmseM8INRuKxVIoWxUKk_RxR8aUpuGrVPFf4-dOO32wHiJHOdyD7mL786--x3AMUVKdZSoQMSGBrFCGhSFMAHVStkFUUiOdYJsxkeT-MuUTbcga2thXFpluybWC7VaSLdHfhI6IDtXh9n7VP0OXNcod7rattBA31pBfawhxrZhJ3TIWB3YGZxn44t1CGbtW1McFzq0vmjapsIz5nYB6AlnNlh0huaOkdrVc7QDa7l2r1ycvPp1zxt9dFtW-GeFs9kdwzR8Ck-8R0n6jQo8gy1dPoc9710S_-_evABzVidrECwV6W-OrcnCkDOtKzLQ9gVDsiYvnAyseVPEPr9cLuQVOjhn0ldYueWRjL3CkcsVXs_JNzs79wWdL2EyPP9xOgp8l4VARpwuA5VSJkNpWKxiO1ZpipxrNJHuxVKJApkWaRHqKFRhWiRGJyiVdQOjJOkZiRjtQ6dclPo1kNj0uHAIe5hI62ZhIZjRlpmwfprmmnfhQ_tZc-khyF0njFlehyKM5U4IuRdCF96tqasGeuMfdK-8hDZkDvSHii4ce4n9h8FBK87c_8E3-UbfuvB-LeIH-bx5mM9beOyom_2bA-gsr2_1ofVolsURbIvh5yOvrPbu63dhrxejqZ2bZOP-z79KS_UG |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RIEQv0BeQlrZ7AC6VYf1YPw49BFIaCk0rAWpu7nofoiJxDHEU0R_Vv9K_1Nl4ndBKpScOvVn27hzW385jd-YbgC3KKVV-JJ040NQJJKdOlsXaoUpKVIixCPk0QbYbds6DDz3WW4AfdS2MSausdeJUUcuhMGfke54hsjN1mK7NoDxWNxOMz0Zvj9r4M7c97_Dd2UHHsS0EHOGHtHRkQpnwhGaBDPBZJgkPQ8W1r9xAyDjjTMVJ5infk16SRVpFXEj0cfwocrXg3Ee5O8WVY7pUmdtc27LjASwizl2vAYsHX9rvO7MQD-1nVXznGTZAv1en2jNmThnoXsgwGDWG7JYRXFIDjg9oGZcuTBw--fabt7s8zgt-M-H9_i3Dd7gKP-slq_JdLnfHZbYrvv_BJvn_rOkjWLE-OGlVm-YxLKj8Caxaf5xYbTd6Cro9TW8hPJekNb_oJ0NN2koVZF_hBE26VSY92UeHQBL8floOxQU3BNikJXlhDAr5bLcoOZ3w6wH5hG8HtgT2GZzfywKsQSMf5moDSKDdMDachDwS6JjyLGZaobAYPVsVqrAJb2qgpMKStpveIf10GrwxlhpYpRZWTdiejS4qspK_jFu3mJsPMzRJNG7ClsXgPwRs1oBKrc4bpXM0NWFnBto75Ty_W85rWO6cfTxJT466xy_goZlZnX5tQqO8HquX6A-W2Su7CQl8vW_Y_gJ3YW5A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgUulDeBFvbQckFuNrZ3bR8QSpuGlKJQqVTkZtb7UBGJYxpHUflp_BX-DLPxOilIlFMP3Cx7dySvv535Zj0PgG0qKNVBpLw4NNQLlaBelsXGo1opVIix5GIeINvnvdPw3YANVuBHnQtjwyprnThX1Gos7Rl507eF7GweZqtpXFjEcaf7pvjm2Q5S9k9r3U6jgsiRvpih-zZ5fdjBb73j-92Dj_s9z3UY8GTAaemphDLpS8NCFeK1ShLBuRYm0K1QqjgTTMdJ5uvAV36SRUZHQiqkQEEUtYwUIkC5N2At5hFHpbC2_6nztrdw99CWVol4vq0MGAzqsHvG7IkDbXKGjqk1apcM4roeCbxAK7l-Zn3y2ZffmO-taV6Ii5kYDi8Zwe4G_KyXr4p9-bo7LbNd-f2PypL_5_rehTuOm5N2tZnuwYrO78OG4-nEacHJAzCdedgLEbki7WUAABkb0tG6IHsaJxjSryLsyR4SBUXw-Uk5lmfCFsYmbSUKa2jIsdu65GQmzkfkA94dudTYh3B6LW_7CFbzca6fAAlNi8e2VqGIJBJWkcXMaBQWI-PVXPMGvKpBk0pXzN32FBmmc6eOsdRCLHUQa8DOYnRRFTH5y7jHDn_LYbZ8Eo0bsO3w-A8BmzW4UqcLJ-kSWQ14uQDwlXKeXi3nBdxEbKbvD_tHz-C2nVgdim3Cank-1VtIE8vsuduPBD5fN0R_AS0Cdwg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NThO8bHyNFQbyw-AFuXOT2HHEU8eYJh7KpFGpSEjRxR8aok2jNVUFfz124mwUiQ_xZicXK7Yvd7-Lzz8DHDFkzMSppjKxjCYaGS0KaSkzWjuDKJXAJkF2LM4nyfspn27Bm24vjPYU8QvUy8GVj0nXXxprHcZ1eeygpA_X2bHgLqoTfFBpewe2XU2wHmxPxhejT836ZuTZ-OJpWxY0Zc0ZjC5YiamDCGmXAs_5RnMbzmnHzNEVnMfaCe-ygULvrsoKv61xNvvJIZ3tweeuK20eytfBqi4G6vsvLI__2df7sBuAKhm1mvUAtkz5EPYCaCXBJCwfgT1tckAIlpqMblfDycKSU2MqcmLcA5aM23RzcuK8pibu_mW9UFfoWaLJSGPlrS65CHpMLtd4PScf3NV52Cf6GCZn7z6-Pafh8AaqYsFqqjPGVaQsT3TiyjrLUAiDNjbDRGlZIDcyKyITRzrKitSaFJV26DJO06FViPE-9MpFaQ6AJHYopCfuw1Q59IaF5Na4xqSDf0YY0YfX3azlKjCb-wM2ZnkT4XCe-2HMwzD24eWNdNUyevxG7klQgFsxzyXEZB-OwoT9pYHDTlvyblLzyPMx-u3Ewz68utGgP7bz9F8Fn8E9X21_EB1Cr75emecOMtXFi_Bp_ACC3Q2s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Application+of+Deep+Belief+Network+Based+on+Stochastic+Adaptive+Particle+Swarm+Optimization&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Yang%2C+Jianjian&rft.au=Chang%2C+Boshen&rft.au=Wang%2C+Xiaolin&rft.au=Zhang%2C+Qiang&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6590765&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |