Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization

Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and tr...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Wu, Miao, Wang, Chao, Zhang, Qiang, Wang, Xiaolin, Chang, Boshen, Yang, Jianjian, Wang, Fan
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2020/6590765

Cover

Abstract Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and training parameter selection, a stochastic adaptive particle swarm optimization (RSAPSO) algorithm was proposed in this study to optimize the DBN. A stochastic criterion was proposed in this method to make the particles jump out of the original position search with a certain probability and reduce the probability of falling into the local optimum. The RSAPSO-DBN method used sample data to train the DBN and used the final diagnostic error rate to construct the fitness value function of the particle swarm algorithm. By comparing the minimum fitness value of each particle to determine the advantages and disadvantages of the model, the corresponding minimum fitness value was selected. Using the number of network nodes, learning rate, and momentum parameters, the optimal DBN classifier was generated for fault diagnosis. Finally, the validity of the method was verified by bearing data from Case Western Reserve University in the United States and data collected in the laboratory. Comparing BP (BP neural network), support vector machine, and heterogeneous particle swarm optimization DBN methods, the proposed method demonstrated the highest recognition rates of 87.75% and 93.75%. This proves that the proposed method possesses universality in fault diagnosis and provides new ideas for data identification with different fault depth attributes.
AbstractList Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling, a deep belief network (DBN) was proposed for deep fault detection. Due to the problems of deep belief network (DBN) network structure and training parameter selection, a stochastic adaptive particle swarm optimization (RSAPSO) algorithm was proposed in this study to optimize the DBN. A stochastic criterion was proposed in this method to make the particles jump out of the original position search with a certain probability and reduce the probability of falling into the local optimum. The RSAPSO-DBN method used sample data to train the DBN and used the final diagnostic error rate to construct the fitness value function of the particle swarm algorithm. By comparing the minimum fitness value of each particle to determine the advantages and disadvantages of the model, the corresponding minimum fitness value was selected. Using the number of network nodes, learning rate, and momentum parameters, the optimal DBN classifier was generated for fault diagnosis. Finally, the validity of the method was verified by bearing data from Case Western Reserve University in the United States and data collected in the laboratory. Comparing BP (BP neural network), support vector machine, and heterogeneous particle swarm optimization DBN methods, the proposed method demonstrated the highest recognition rates of 87.75% and 93.75%. This proves that the proposed method possesses universality in fault diagnosis and provides new ideas for data identification with different fault depth attributes.
Author Wu, Miao
Wang, Chao
Chang, Boshen
Wang, Xiaolin
Zhang, Qiang
Wang, Fan
Yang, Jianjian
Author_xml – sequence: 1
  fullname: Wu, Miao
– sequence: 2
  fullname: Wang, Chao
– sequence: 3
  fullname: Zhang, Qiang
– sequence: 4
  fullname: Wang, Xiaolin
– sequence: 5
  fullname: Chang, Boshen
– sequence: 6
  fullname: Yang, Jianjian
– sequence: 7
  fullname: Wang, Fan
BookMark eNqFkMtr3DAQxkVJoHn0lnMR9Ng60cOyV8fNqyksSSEJ5GZmpVFXqdd2JW2W5K-vsl4oFEJO8_rNN8O3T3a6vkNCjjg75lypE8EEO6mUZnWlPpA9ripZKF7WOzlnoiy4kA8fyX6Mj4wJrvhkj7hzjP5XR6GzdDoMrTeQfN_R3tFzxIGeYuvR0WtM6z78pqcQ0dI8v029WUBM3tCphSH5J6Q_IeS6RXq7hrCkN7m79C8bvUOy66CN-GkbD8j95cXd2VUxu_n-42w6K4ysWCqsZsoI41Rpy5xbraGqEJxEXho7mYPCiZ4LlMIKPa8d1mCsqpSsa-4MgDwgxai76gZ4XkPbNkPwSwjPDWfNq0nNq0nN1qTMfxn5IfR_VhhT89ivQpdfbERZslJqrXimvo2UCX2MAd17ouI_3Pi0sSEF8O1bS1_HpYXvLKz9eyc-jzRmBh38o7muNJvIv14CndA
CitedBy_id crossref_primary_10_1007_s11277_022_10079_4
crossref_primary_10_1109_TIM_2021_3085940
crossref_primary_10_54097_jceim_v10i3_8760
Cites_doi 10.1016/j.engappai.2016.10.017
10.3901/JME.2015.21.049
10.1515/teme-2014-1006
10.1162/neco.2006.18.7.1527
10.21629/JSEE.2018.06.19
10.1002/cjce.23750
10.1016/j.apacoust.2019.05.006
10.1088/1757-899x/274/1/012133
ContentType Journal Article
Copyright Copyright © 2020 Jianjian Yang et al.
Copyright © 2020 Jianjian Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Jianjian Yang et al.
– notice: Copyright © 2020 Jianjian Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1155/2020/6590765
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Zhang, Kai
Editor_xml – sequence: 1
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
EndPage 10
ExternalDocumentID 10.1155/2020/6590765
10_1155_2020_6590765
1196908
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2018101030061; 2018101060080
– fundername: Shanxi Special Fund for Science and Technology
  grantid: 20181102027
GroupedDBID -~9
0R~
188
24P
29M
2UF
2WC
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAMMB
ABJCF
ABUWG
ACCMX
ACIPV
ACIWK
ADBBV
ADJCN
AEFGJ
AENEX
AFFNX
AFKRA
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CAG
CCPQU
COF
CS3
CWDGH
E3Z
EBS
EJD
H13
HCIFZ
IL9
IPNFZ
K6V
K7-
KQ8
L6V
M7S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
REM
RHU
RIG
RNS
TR2
UGNYK
XSB
YQT
3V.
AAJEY
ABDBF
AINHJ
ESX
GROUPED_DOAJ
I-F
IAO
IEA
IOF
ISR
ITC
MK~
M~E
RHW
RHX
TUS
~8M
AAYXX
CITATION
7TB
8FD
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c360t-d905c2cf54d4d90d99a66eaf3e14cd8ba5e89b2e32d29b7fe7acd5653771fcaa3
IEDL.DBID BENPR
ISSN 1024-123X
1026-7077
1563-5147
IngestDate Tue Aug 19 21:01:56 EDT 2025
Fri Jul 25 10:11:14 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
Wed Oct 01 02:56:17 EDT 2025
Sun Jun 02 18:51:00 EDT 2024
Thu Sep 25 15:24:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-d905c2cf54d4d90d99a66eaf3e14cd8ba5e89b2e32d29b7fe7acd5653771fcaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6202-3617
OpenAccessLink https://www.proquest.com/docview/2440439951?pq-origsite=%requestingapplication%&accountid=15518
PQID 2440439951
PQPubID 237775
PageCount 10
ParticipantIDs unpaywall_primary_10_1155_2020_6590765
proquest_journals_2440439951
crossref_primary_10_1155_2020_6590765
crossref_citationtrail_10_1155_2020_6590765
hindawi_primary_10_1155_2020_6590765
emarefa_primary_1196908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 14
(17) 2015; 26
(12) 2013; 115
(2) 2020; 157
(19) 2017; 25
1
(16) 2016; 24
(18) 2018; 29
(7) 2019; 154
(10) 2015; 51
5
(4) 2018; 99
8
(9) 2016; 42
(6) 2017; 45
(3) 2018; 99
(11) 2006; 18
(15) 2014; 81
References_xml – ident: 8
  doi: 10.1016/j.engappai.2016.10.017
– volume: 51
  start-page: 49
  issue: 21
  year: 2015
  ident: 10
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2015.21.049
– volume: 81
  start-page: 255
  issue: 5
  year: 2014
  ident: 15
  publication-title: tm-Technisches Messen
  doi: 10.1515/teme-2014-1006
– volume: 42
  start-page: 1285
  issue: 9
  year: 2016
  ident: 9
  publication-title: Acta Automatica Sinica
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 11
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 24
  start-page: 67
  issue: 4
  year: 2016
  ident: 16
  publication-title: Electronic Design Engineering
– volume: 26
  issue: 11
  year: 2015
  ident: 17
  publication-title: Measurement Science & Technology
– volume: 99
  start-page: 1
  year: 2018
  ident: 4
  publication-title: IEEE Transactions on Medical Imaging
– volume: 45
  start-page: 129
  issue: 10
  year: 2017
  ident: 6
  publication-title: Coal Science and Technology
– volume: 29
  start-page: 1317
  issue: 6
  year: 2018
  ident: 18
  publication-title: Journal of Systems Engineering and Electronics
  doi: 10.21629/JSEE.2018.06.19
– volume: 115
  start-page: 124
  issue: 3
  year: 2013
  ident: 12
  publication-title: Reliability Engineering and System Safety
– ident: 14
  doi: 10.1002/cjce.23750
– ident: 1
  doi: 10.1016/j.apacoust.2019.05.006
– volume: 157
  year: 2020
  ident: 2
  publication-title: Applied Acoustics
– ident: 5
  doi: 10.1088/1757-899x/274/1/012133
– volume: 25
  start-page: 303
  issue: 2
  year: 2017
  ident: 19
  publication-title: Ieee Transactions on Neural Networks & Learning Systems
– volume: 154
  start-page: 176
  year: 2019
  ident: 7
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.05.006
– volume: 99
  start-page: 1
  year: 2018
  ident: 3
  publication-title: IEEE Access
SSID ssj0021518
Score 2.2418659
Snippet Due to the problem of poor recognition of data with deep fault attribute in the case of traditional superficial network under semisupervised and weak labeling,...
SourceID unpaywall
proquest
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Artificial intelligence
Belief networks
Deep learning
Diagnostic systems
Fault detection
Fault diagnosis
Fitness
Machine learning
Mathematical problems
Neural networks
Optimization
Parameters
Particle swarm optimization
Pattern recognition
Probability theory
Recognition
Signal processing
Support vector machines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUoEoIL-1I2-VC4oAg3iR3nWJaq4gCIReotmthjgdSmFS2q-Hvsxi0UxHJzEtuR8mzPm3jmmZAaA8YwSnQgY8OCWAML8lyagKHWdkGUSsA4QPZatB7jqzZve5GkwfctfGvtnHvOTgW3XpzgFVKRwkVu3bXaU7_KGq0y4y10EnxRexLf_qXtjOVZwC7YgjVHC0_O-R09z1DMxdeiD28j6HQ-WZvmKln2NJE2SlzXyBwW62TFU0bqJ-Rgg5iLcQQGhULTxsdeNO0ZeoHYp2doGxh6XQZ70zNrszS1z--HPfUETqOZNjT03ZpHb_0oovcjeOnSG3u367M0N8lj8_LhvBX4oxMCFQk2DHTKuAqV4bGObVmnKQiBYCKsx0rLHDjKNA8xCnWY5onBBJS23C5KkrpRANEWmS96Be4QGpu6kE42DxJluRPkkhu0nUlLvlCgqJKTyWfNlNcVd8dbdLKxf8F55kDIPAhVcjSt3S_1NH6ot-0R-qjmlHyYrJKaR-yPDvYncGZ-Wg6y0KkhumTeepUcTyH-tZ_d_71ujyy5y_LnzD6ZH7684oGlK8P8cDxY3wEfzN-u
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NThO8bHyNFQbyw-AFuXOT2HHEU8eYJh7KpFGpSEjRxR8aok2jNVUFfz124mwUiQ_xZicXK7Yvd7-Lzz8DHDFkzMSppjKxjCYaGS0KaSkzWjuDKJXAJkF2LM4nyfspn27Bm24vjPYU8QvUy8GVj0nXXxprHcZ1eeygpA_X2bHgLqoTfFBpewe2XU2wHmxPxhejT836ZuTZ-OJpWxY0Zc0ZjC5YiamDCGmXAs_5RnMbzmnHzNEVnMfaCe-ygULvrsoKv61xNvvJIZ3tweeuK20eytfBqi4G6vsvLI__2df7sBuAKhm1mvUAtkz5EPYCaCXBJCwfgT1tckAIlpqMblfDycKSU2MqcmLcA5aM23RzcuK8pibu_mW9UFfoWaLJSGPlrS65CHpMLtd4PScf3NV52Cf6GCZn7z6-Pafh8AaqYsFqqjPGVaQsT3TiyjrLUAiDNjbDRGlZIDcyKyITRzrKitSaFJV26DJO06FViPE-9MpFaQ6AJHYopCfuw1Q59IaF5Na4xqSDf0YY0YfX3azlKjCb-wM2ZnkT4XCe-2HMwzD24eWNdNUyevxG7klQgFsxzyXEZB-OwoT9pYHDTlvyblLzyPMx-u3Ewz68utGgP7bz9F8Fn8E9X21_EB1Cr75emecOMtXFi_Bp_ACC3Q2s
  priority: 102
  providerName: Unpaywall
Title Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization
URI https://search.emarefa.net/detail/BIM-1196908
https://dx.doi.org/10.1155/2020/6590765
https://www.proquest.com/docview/2440439951
https://downloads.hindawi.com/journals/mpe/2020/6590765.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20240530
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 24P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9tnSZ4YXwNCtvkh8ELiuYmseM8INRuKxVIoWxUKk_RxR8aUpuGrVPFf4-dOO32wHiJHOdyD7mL786--x3AMUVKdZSoQMSGBrFCGhSFMAHVStkFUUiOdYJsxkeT-MuUTbcga2thXFpluybWC7VaSLdHfhI6IDtXh9n7VP0OXNcod7rattBA31pBfawhxrZhJ3TIWB3YGZxn44t1CGbtW1McFzq0vmjapsIz5nYB6AlnNlh0huaOkdrVc7QDa7l2r1ycvPp1zxt9dFtW-GeFs9kdwzR8Ck-8R0n6jQo8gy1dPoc9710S_-_evABzVidrECwV6W-OrcnCkDOtKzLQ9gVDsiYvnAyseVPEPr9cLuQVOjhn0ldYueWRjL3CkcsVXs_JNzs79wWdL2EyPP9xOgp8l4VARpwuA5VSJkNpWKxiO1ZpipxrNJHuxVKJApkWaRHqKFRhWiRGJyiVdQOjJOkZiRjtQ6dclPo1kNj0uHAIe5hI62ZhIZjRlpmwfprmmnfhQ_tZc-khyF0njFlehyKM5U4IuRdCF96tqasGeuMfdK-8hDZkDvSHii4ce4n9h8FBK87c_8E3-UbfuvB-LeIH-bx5mM9beOyom_2bA-gsr2_1ofVolsURbIvh5yOvrPbu63dhrxejqZ2bZOP-z79KS_UG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RIEQv0BeQlrZ7AC6VYf1YPw49BFIaCk0rAWpu7nofoiJxDHEU0R_Vv9K_1Nl4ndBKpScOvVn27hzW385jd-YbgC3KKVV-JJ040NQJJKdOlsXaoUpKVIixCPk0QbYbds6DDz3WW4AfdS2MSausdeJUUcuhMGfke54hsjN1mK7NoDxWNxOMz0Zvj9r4M7c97_Dd2UHHsS0EHOGHtHRkQpnwhGaBDPBZJgkPQ8W1r9xAyDjjTMVJ5infk16SRVpFXEj0cfwocrXg3Ee5O8WVY7pUmdtc27LjASwizl2vAYsHX9rvO7MQD-1nVXznGTZAv1en2jNmThnoXsgwGDWG7JYRXFIDjg9oGZcuTBw--fabt7s8zgt-M-H9_i3Dd7gKP-slq_JdLnfHZbYrvv_BJvn_rOkjWLE-OGlVm-YxLKj8Caxaf5xYbTd6Cro9TW8hPJekNb_oJ0NN2koVZF_hBE26VSY92UeHQBL8floOxQU3BNikJXlhDAr5bLcoOZ3w6wH5hG8HtgT2GZzfywKsQSMf5moDSKDdMDachDwS6JjyLGZaobAYPVsVqrAJb2qgpMKStpveIf10GrwxlhpYpRZWTdiejS4qspK_jFu3mJsPMzRJNG7ClsXgPwRs1oBKrc4bpXM0NWFnBto75Ty_W85rWO6cfTxJT466xy_goZlZnX5tQqO8HquX6A-W2Su7CQl8vW_Y_gJ3YW5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgUulDeBFvbQckFuNrZ3bR8QSpuGlKJQqVTkZtb7UBGJYxpHUflp_BX-DLPxOilIlFMP3Cx7dySvv535Zj0PgG0qKNVBpLw4NNQLlaBelsXGo1opVIix5GIeINvnvdPw3YANVuBHnQtjwyprnThX1Gos7Rl507eF7GweZqtpXFjEcaf7pvjm2Q5S9k9r3U6jgsiRvpih-zZ5fdjBb73j-92Dj_s9z3UY8GTAaemphDLpS8NCFeK1ShLBuRYm0K1QqjgTTMdJ5uvAV36SRUZHQiqkQEEUtYwUIkC5N2At5hFHpbC2_6nztrdw99CWVol4vq0MGAzqsHvG7IkDbXKGjqk1apcM4roeCbxAK7l-Zn3y2ZffmO-taV6Ii5kYDi8Zwe4G_KyXr4p9-bo7LbNd-f2PypL_5_rehTuOm5N2tZnuwYrO78OG4-nEacHJAzCdedgLEbki7WUAABkb0tG6IHsaJxjSryLsyR4SBUXw-Uk5lmfCFsYmbSUKa2jIsdu65GQmzkfkA94dudTYh3B6LW_7CFbzca6fAAlNi8e2VqGIJBJWkcXMaBQWI-PVXPMGvKpBk0pXzN32FBmmc6eOsdRCLHUQa8DOYnRRFTH5y7jHDn_LYbZ8Eo0bsO3w-A8BmzW4UqcLJ-kSWQ14uQDwlXKeXi3nBdxEbKbvD_tHz-C2nVgdim3Cank-1VtIE8vsuduPBD5fN0R_AS0Cdwg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NThO8bHyNFQbyw-AFuXOT2HHEU8eYJh7KpFGpSEjRxR8aok2jNVUFfz124mwUiQ_xZicXK7Yvd7-Lzz8DHDFkzMSppjKxjCYaGS0KaSkzWjuDKJXAJkF2LM4nyfspn27Bm24vjPYU8QvUy8GVj0nXXxprHcZ1eeygpA_X2bHgLqoTfFBpewe2XU2wHmxPxhejT836ZuTZ-OJpWxY0Zc0ZjC5YiamDCGmXAs_5RnMbzmnHzNEVnMfaCe-ygULvrsoKv61xNvvJIZ3tweeuK20eytfBqi4G6vsvLI__2df7sBuAKhm1mvUAtkz5EPYCaCXBJCwfgT1tckAIlpqMblfDycKSU2MqcmLcA5aM23RzcuK8pibu_mW9UFfoWaLJSGPlrS65CHpMLtd4PScf3NV52Cf6GCZn7z6-Pafh8AaqYsFqqjPGVaQsT3TiyjrLUAiDNjbDRGlZIDcyKyITRzrKitSaFJV26DJO06FViPE-9MpFaQ6AJHYopCfuw1Q59IaF5Na4xqSDf0YY0YfX3azlKjCb-wM2ZnkT4XCe-2HMwzD24eWNdNUyevxG7klQgFsxzyXEZB-OwoT9pYHDTlvyblLzyPMx-u3Ewz68utGgP7bz9F8Fn8E9X21_EB1Cr75emecOMtXFi_Bp_ACC3Q2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Application+of+Deep+Belief+Network+Based+on+Stochastic+Adaptive+Particle+Swarm+Optimization&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Yang%2C+Jianjian&rft.au=Chang%2C+Boshen&rft.au=Wang%2C+Xiaolin&rft.au=Zhang%2C+Qiang&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6590765&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon