Computational study of the ro-vibrational spectrum of CO–CO2

An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO–CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 151; no. 8; pp. 084307 - 84317
Main Authors Castro-Juárez, Eduardo, Wang, Xiao-Gang, Carrington, Tucker, Quintas-Sánchez, Ernesto, Dawes, Richard
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.08.2019
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.5119762

Cover

Abstract An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO–CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO–CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.
AbstractList An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO–CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO–CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.
An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO-CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO-CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO-CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO-CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.
Author Dawes, Richard
Wang, Xiao-Gang
Castro-Juárez, Eduardo
Carrington, Tucker
Quintas-Sánchez, Ernesto
Author_xml – sequence: 1
  givenname: Eduardo
  surname: Castro-Juárez
  fullname: Castro-Juárez, Eduardo
  organization: Chemistry Department, Queen’s University
– sequence: 2
  givenname: Xiao-Gang
  surname: Wang
  fullname: Wang, Xiao-Gang
  organization: Chemistry Department, Queen’s University
– sequence: 3
  givenname: Tucker
  surname: Carrington
  fullname: Carrington, Tucker
  email: Tucker.Carrington@queensu.ca
  organization: Chemistry Department, Queen’s University
– sequence: 4
  givenname: Ernesto
  surname: Quintas-Sánchez
  fullname: Quintas-Sánchez, Ernesto
  organization: Department of Chemistry, Missouri University of Science and Technology
– sequence: 5
  givenname: Richard
  surname: Dawes
  fullname: Dawes, Richard
  organization: Department of Chemistry, Missouri University of Science and Technology
BookMark eNp90MtKw0AUBuBBKthWF75BwI0KqTOTZJLZCBK8QaEbXQ-TuWBKkokzk0J3voNv6JOYmlqhiquzON__wzkTMGpMowA4RXCGIImu0CxBiKYEH4AxghkNU0LhCIwhxCikBJIjMHFuCSFEKY7H4Do3ddt57kvT8CpwvpPrwOjAv6jAmnBVFna3a5Xwtqs363zx8faeL_AxONS8cupkO6fg-e72KX8I54v7x_xmHoqIQB-KRKOUc0wxj0RcIElIliAhVJTxrJCc4EhCoQRNKEwziWVaaElimkrBsdYqmoLzobe15rVTzrO6dEJVFW-U6RzDOIs29_djCs726NJ0tj_gS8EsRhjRXl0NSljjnFWaiXL4gre8rBiCbNPHENv-s09c7CVaW9bcrv-0l4N13607vDL2B7JW6v_w7-ZPYKKSxw
CODEN JCPSA6
CitedBy_id crossref_primary_10_1016_j_chemphys_2024_112272
crossref_primary_10_1063_5_0007225
crossref_primary_10_1063_5_0115654
crossref_primary_10_1039_D3CP05369E
crossref_primary_10_1093_mnras_stab2563
crossref_primary_10_1063_5_0063006
crossref_primary_10_1093_mnras_staa3821
crossref_primary_10_1063_5_0100613
crossref_primary_10_1039_D0CP04186F
crossref_primary_10_1021_acs_jpca_0c08805
crossref_primary_10_1080_00268976_2021_1936251
crossref_primary_10_1063_5_0176612
crossref_primary_10_1063_5_0039145
crossref_primary_10_1063_5_0020566
crossref_primary_10_1080_00268976_2021_1980234
crossref_primary_10_1039_D2CP04101D
crossref_primary_10_1146_annurev_physchem_090519_051837
crossref_primary_10_1021_acs_jpca_4c00055
crossref_primary_10_1063_5_0012531
crossref_primary_10_1063_5_0148119
crossref_primary_10_1039_D2CP00263A
Cites_doi 10.1002/9780470141731.ch4
10.1021/cr00088a003
10.1063/1.463044
10.1063/1.478960
10.1063/1.4923339
10.1063/1.468719
10.1016/s0009-2614(00)00163-9
10.1039/ft9908601943
10.1063/1.3526956
10.1063/1.2831537
10.1063/1.460317
10.1063/1.1331356
10.1063/1.456780
10.1063/1.473908
10.1080/00268976.2010.526641
10.1021/jp404888d
10.1063/1.3697679
10.1021/jp960574j
10.1063/1.467273
10.1002/wcms.82
10.1016/s0022-2860(01)00464-1
10.1063/1.4867792
10.1039/c8cp02282h
10.1063/1.1331357
10.1063/1.3494542
10.1063/1.4932043
10.1021/jp0743471
10.1063/1.1602065
10.1016/j.jms.2016.06.012
10.1103/physreva.45.6217
10.1016/j.jms.2011.03.017
10.1063/1.1767093
10.1364/JOSAB.4.000357
10.1039/c8cp01373j
10.1063/1.3428619
10.1021/ct400863t
10.1063/1.1554735
10.1080/00268978300102831
10.1016/j.jms.2016.06.002
10.1063/1.4985183
10.1016/0022-2852(80)90293-3
10.1063/1.1407277
10.1021/acs.jcim.8b00784
10.1016/j.jms.2016.08.006
10.1016/j.cplett.2016.03.019
10.1063/1.1835262
10.1063/1.1924408
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/1.5119762
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_1_5119762
jcp
GrantInformation_xml – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100002790
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c360t-c5f17aa292a3c4b1d66851cce38a8bda623d0cec959078d2d7bfd6497dca2ffe3
ISSN 0021-9606
1089-7690
IngestDate Thu Oct 02 09:06:00 EDT 2025
Sun Jun 29 12:40:02 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Jul 01 00:27:35 EDT 2025
Fri Jun 21 00:15:26 EDT 2024
Wed Nov 11 00:04:54 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 0021-9606/2019/151(8)/084307/11/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-c5f17aa292a3c4b1d66851cce38a8bda623d0cec959078d2d7bfd6497dca2ffe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0070-4836
0000-0002-7929-5889
0000-0002-2493-4671
0000-0002-5200-2353
0000-0002-4378-8745
PQID 2280841219
PQPubID 2050685
PageCount 11
ParticipantIDs proquest_journals_2280841219
scitation_primary_10_1063_1_5119762
crossref_citationtrail_10_1063_1_5119762
proquest_miscellaneous_2283106328
crossref_primary_10_1063_1_5119762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190828
2019-08-28
PublicationDateYYYYMMDD 2019-08-28
PublicationDate_xml – month: 08
  year: 2019
  text: 20190828
  day: 28
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Dawes, Wang, Jasper, Carrington (c33) 2010; 133
Dawes, Wang, Carrington (c15) 2013; 117
Wang, Carrington (c45) 2001; 115
Surin, Fourzikov, Giesen, Schlemmer, Winnewisser, Panfilov, Dumesh, Vissers, van der Avoird (c17) 2007; 111
Werner, Knowles, Knizia, Manby, Schütz (c20) 2012; 2
Yu, Song, Yang (c37) 2017; 146
Brown, Wang, Dawes, Carrington (c28) 2012; 136
Zhang, Wu, Zhang, Von Dirke, Bačić (c10) 1995; 102
Leforestier (c32) 1991; 94
Chen, Guo (c47) 2001; 114
Wang, Carrington (c43) 2003; 118
Cybulski, Henriksen, Dawes, Wang, Bora, Avila, Carrington, Fernández (c13) 2018; 20
Bačić, Miller (c9) 1996; 100
Vissers, Hebelmann, Jansen, Wormer, van der Avoird (c16) 2005; 122
Sheybani-Deloui, Barclay, Michaelian, McKellar, Moazzen-Ahmadi (c2) 2015; 143
Wang, Carrington (c42) 2004; 121
Kellö, Lawley, Diercksen (c5) 2000; 319
Babin, Leforestier, Paesani (c30) 2013; 9
Light, Carrington (c41) 2000; 114
Toth (c40) 1987; 4
Wang, Carrington (c46) 2001; 114
Lin, Guo (c36) 2003; 119
Guelachvili (c19) 1980; 79
Wang, Carrington, Tang, McKellar (c35) 2005; 123
Barclay, McKellar, Moazzen-Ahmadi, Dawes, Wang, Carrington (c14) 2018; 20
de Lange, Lane (c7) 2011; 134
Wang, Carrington (c12) 2015; 143
Sarkar, Poulin, Carrington (c34) 1999; 110
Brocks, van der Avoird, Sutcliffe, Tennyson (c38) 1983; 50
Nesbitt (c8) 1988; 88
Donoghue, Wang, Dawes, Carrington (c23) 2016; 330
Wang, Carrington, Dawes, Jasper (c29) 2011; 268
Randall, Summersgill, Howard (c4) 1990; 86
Peterson, Adler, Werner (c22) 2008; 128
Venayagamoorthy, Ford (c6) 2001; 565-566
Dehghany, Rezaei, Moazzen-Ahmadi, McKellar, Brown, Wang, Carrington (c11) 2016; 330
Quintas-Sánchez, Dawes (c27) 2019; 59
Chapuisat, Iung (c39) 1992; 45
Bramley, Tromp, Carrington, Corey (c49) 1994; 100
Leforestier, Braly, Liu, Elrod, Saykally (c31) 1997; 106
Barclay, Sheybani-Deloui, Michaelian, McKellar, Moazzen-Ahmadi (c3) 2016; 651
Brown, Wang, Carrington, Grubbs, Dawes (c25) 2014; 140
Werner, Knizia, Manby (c21) 2011; 109
Wei, Carrington (c44) 1992; 97
Legon, Suckley (c1) 1989; 91
Li, Roy, Le Roy (c18) 2010; 132
Wang, Carrington, Dawes (c24) 2016; 330
(2023070121095729000_c10) 1995; 102
(2023070121095729000_c31) 1997; 106
(2023070121095729000_c21) 2011; 109
(2023070121095729000_c28) 2012; 136
(2023070121095729000_c3) 2016; 651
(2023070121095729000_c22) 2008; 128
(2023070121095729000_c37) 2017; 146
(2023070121095729000_c36) 2003; 119
(2023070121095729000_c48) 1998
(2023070121095729000_c1) 1989; 91
(2023070121095729000_c45) 2001; 115
(2023070121095729000_c19) 1980; 79
(2023070121095729000_c32) 1991; 94
(2023070121095729000_c43) 2003; 118
(2023070121095729000_c2) 2015; 143
(2023070121095729000_c46) 2001; 114
(2023070121095729000_c7) 2011; 134
(2023070121095729000_c38) 1983; 50
(2023070121095729000_c29) 2011; 268
(2023070121095729000_c30) 2013; 9
(2023070121095729000_c18) 2010; 132
(2023070121095729000_c47) 2001; 114
(2023070121095729000_c11) 2016; 330
(2023070121095729000_c4) 1990; 86
(2023070121095729000_c23) 2016; 330
(2023070121095729000_c13) 2018; 20
(2023070121095729000_c17) 2007; 111
(2023070121095729000_c15) 2013; 117
(2023070121095729000_c12) 2015; 143
(2023070121095729000_c20) 2012; 2
(2023070121095729000_c39) 1992; 45
(2023070121095729000_c9) 1996; 100
(2023070121095729000_c6) 2001; 565-566
(2023070121095729000_c49) 1994; 100
(2023070121095729000_c14) 2018; 20
(2023070121095729000_c5) 2000; 319
(2023070121095729000_c8) 1988; 88
(2023070121095729000_c27) 2019; 59
(2023070121095729000_c44) 1992; 97
(2023070121095729000_c16) 2005; 122
(2023070121095729000_c25) 2014; 140
(2023070121095729000_c34) 1999; 110
(2023070121095729000_c26) 2018
(2023070121095729000_c42) 2004; 121
(2023070121095729000_c24) 2016; 330
(2023070121095729000_c35) 2005; 123
(2023070121095729000_c41) 2000; 114
(2023070121095729000_c40) 1987; 4
(2023070121095729000_c33) 2010; 133
References_xml – volume: 94
  start-page: 6388
  year: 1991
  ident: c32
  publication-title: J. Chem. Phys.
– volume: 134
  start-page: 034301
  year: 2011
  ident: c7
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 034301
  year: 2005
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 242
  year: 2012
  ident: c20
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 143
  start-page: 121101
  year: 2015
  ident: c2
  publication-title: J. Chem. Phys.
– volume: 20
  start-page: 12624
  year: 2018
  ident: c13
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 8527
  year: 1997
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 319
  start-page: 231
  year: 2000
  ident: c5
  publication-title: Chem. Phys. Lett.
– volume: 268
  start-page: 53
  year: 2011
  ident: c29
  publication-title: J. Mol. Spectrosc.
– volume: 109
  start-page: 407
  year: 2011
  ident: c21
  publication-title: Mol. Phys.
– volume: 330
  start-page: 170
  year: 2016
  ident: c23
  publication-title: J. Mol. Spectrosc.
– volume: 119
  start-page: 5867
  year: 2003
  ident: c36
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 214309
  year: 2010
  ident: c18
  publication-title: J. Chem. Phys.
– volume: 88
  start-page: 843
  year: 1988
  ident: c8
  publication-title: Chem. Rev.
– volume: 140
  start-page: 114303
  year: 2014
  ident: c25
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 5395
  year: 2013
  ident: c30
  publication-title: J. Chem. Theory Comput.
– volume: 110
  start-page: 10269
  year: 1999
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 79
  start-page: 72
  year: 1980
  ident: c19
  publication-title: J. Mol. Spectrosc.
– volume: 330
  start-page: 179
  year: 2016
  ident: c24
  publication-title: J. Mol. Spectrosc.
– volume: 97
  start-page: 3029
  year: 1992
  ident: c44
  publication-title: J. Chem. Phys.
– volume: 128
  start-page: 084102
  year: 2008
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 330
  start-page: 188
  year: 2016
  ident: c11
  publication-title: J. Mol. Spectrosc.
– volume: 115
  start-page: 9781
  year: 2001
  ident: c45
  publication-title: J. Chem. Phys.
– volume: 91
  start-page: 4440
  year: 1989
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 134304
  year: 2010
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 6946
  year: 2003
  ident: c43
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 1467
  year: 2001
  ident: c47
  publication-title: J. Chem. Phys.
– volume: 146
  start-page: 224307
  year: 2017
  ident: c37
  publication-title: J. Chem. Phys.
– volume: 565-566
  start-page: 399
  year: 2001
  ident: c6
  publication-title: J. Mol. Struct.
– volume: 122
  start-page: 054306
  year: 2005
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 357
  year: 1987
  ident: c40
  publication-title: J. Opt. Soc. Am. B
– volume: 651
  start-page: 62
  year: 2016
  ident: c3
  publication-title: Chem. Phys. Lett.
– volume: 121
  start-page: 2937
  year: 2004
  ident: c42
  publication-title: J. Chem. Phys.
– volume: 20
  start-page: 14431
  year: 2018
  ident: c14
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59
  start-page: 262
  year: 2019
  ident: c27
  publication-title: J. Chem. Inf. Model.
– volume: 117
  start-page: 7612
  year: 2013
  ident: c15
  publication-title: J. Phys. Chem. A
– volume: 114
  start-page: 1473
  year: 2001
  ident: c46
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 2315
  year: 1995
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 50
  start-page: 1025
  year: 1983
  ident: c38
  publication-title: Mol. Phys.
– volume: 111
  start-page: 12238
  year: 2007
  ident: c17
  publication-title: J. Phys. Chem. A
– volume: 114
  start-page: 263
  year: 2000
  ident: c41
  publication-title: Adv. Chem. Phys.
– volume: 143
  start-page: 024303
  year: 2015
  ident: c12
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 12945
  year: 1996
  ident: c9
  publication-title: J. Phys. Chem.
– volume: 136
  start-page: 134306
  year: 2012
  ident: c28
  publication-title: J. Chem. Phys.
– volume: 86
  start-page: 1943
  year: 1990
  ident: c4
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 45
  start-page: 6217
  year: 1992
  ident: c39
  publication-title: Phys. Rev. A
– volume: 100
  start-page: 6175
  year: 1994
  ident: c49
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 263
  year: 2000
  ident: 2023070121095729000_c41
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470141731.ch4
– volume: 88
  start-page: 843
  year: 1988
  ident: 2023070121095729000_c8
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a003
– volume: 97
  start-page: 3029
  year: 1992
  ident: 2023070121095729000_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463044
– volume: 110
  start-page: 10269
  year: 1999
  ident: 2023070121095729000_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478960
– volume: 143
  start-page: 024303
  year: 2015
  ident: 2023070121095729000_c12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4923339
– volume: 102
  start-page: 2315
  year: 1995
  ident: 2023070121095729000_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468719
– volume: 319
  start-page: 231
  year: 2000
  ident: 2023070121095729000_c5
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(00)00163-9
– volume: 86
  start-page: 1943
  year: 1990
  ident: 2023070121095729000_c4
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9908601943
– volume: 134
  start-page: 034301
  year: 2011
  ident: 2023070121095729000_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3526956
– volume: 128
  start-page: 084102
  year: 2008
  ident: 2023070121095729000_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2831537
– volume: 94
  start-page: 6388
  year: 1991
  ident: 2023070121095729000_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460317
– volume: 114
  start-page: 1467
  year: 2001
  ident: 2023070121095729000_c47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1331356
– volume: 91
  start-page: 4440
  year: 1989
  ident: 2023070121095729000_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456780
– volume: 106
  start-page: 8527
  year: 1997
  ident: 2023070121095729000_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473908
– volume: 109
  start-page: 407
  year: 2011
  ident: 2023070121095729000_c21
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2010.526641
– volume: 117
  start-page: 7612
  year: 2013
  ident: 2023070121095729000_c15
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp404888d
– volume: 136
  start-page: 134306
  year: 2012
  ident: 2023070121095729000_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3697679
– volume: 100
  start-page: 12945
  year: 1996
  ident: 2023070121095729000_c9
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960574j
– volume: 100
  start-page: 6175
  year: 1994
  ident: 2023070121095729000_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467273
– volume: 2
  start-page: 242
  year: 2012
  ident: 2023070121095729000_c20
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.82
– volume: 565-566
  start-page: 399
  year: 2001
  ident: 2023070121095729000_c6
  publication-title: J. Mol. Struct.
  doi: 10.1016/s0022-2860(01)00464-1
– volume: 140
  start-page: 114303
  year: 2014
  ident: 2023070121095729000_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4867792
– volume: 20
  start-page: 14431
  year: 2018
  ident: 2023070121095729000_c14
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c8cp02282h
– volume: 114
  start-page: 1473
  year: 2001
  ident: 2023070121095729000_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1331357
– volume: 133
  start-page: 134304
  year: 2010
  ident: 2023070121095729000_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3494542
– volume: 143
  start-page: 121101
  year: 2015
  ident: 2023070121095729000_c2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4932043
– volume: 111
  start-page: 12238
  year: 2007
  ident: 2023070121095729000_c17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0743471
– volume: 119
  start-page: 5867
  year: 2003
  ident: 2023070121095729000_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1602065
– volume: 330
  start-page: 170
  year: 2016
  ident: 2023070121095729000_c23
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.06.012
– volume: 45
  start-page: 6217
  year: 1992
  ident: 2023070121095729000_c39
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.45.6217
– volume: 268
  start-page: 53
  year: 2011
  ident: 2023070121095729000_c29
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2011.03.017
– volume: 121
  start-page: 2937
  year: 2004
  ident: 2023070121095729000_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1767093
– volume: 4
  start-page: 357
  year: 1987
  ident: 2023070121095729000_c40
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.4.000357
– volume: 20
  start-page: 12624
  year: 2018
  ident: 2023070121095729000_c13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c8cp01373j
– volume: 132
  start-page: 214309
  year: 2010
  ident: 2023070121095729000_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3428619
– volume: 9
  start-page: 5395
  year: 2013
  ident: 2023070121095729000_c30
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400863t
– volume: 118
  start-page: 6946
  year: 2003
  ident: 2023070121095729000_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1554735
– volume: 50
  start-page: 1025
  year: 1983
  ident: 2023070121095729000_c38
  publication-title: Mol. Phys.
  doi: 10.1080/00268978300102831
– volume-title: Molecular Symmetry and Spectroscopy
  year: 1998
  ident: 2023070121095729000_c48
– volume: 330
  start-page: 188
  year: 2016
  ident: 2023070121095729000_c11
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.06.002
– volume: 146
  start-page: 224307
  year: 2017
  ident: 2023070121095729000_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4985183
– volume: 79
  start-page: 72
  year: 1980
  ident: 2023070121095729000_c19
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(80)90293-3
– volume: 115
  start-page: 9781
  year: 2001
  ident: 2023070121095729000_c45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1407277
– start-page: 199
  volume-title: Reviews in Computational Chemistry
  year: 2018
  ident: 2023070121095729000_c26
– volume: 59
  start-page: 262
  year: 2019
  ident: 2023070121095729000_c27
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00784
– volume: 330
  start-page: 179
  year: 2016
  ident: 2023070121095729000_c24
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.08.006
– volume: 651
  start-page: 62
  year: 2016
  ident: 2023070121095729000_c3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.03.019
– volume: 122
  start-page: 054306
  year: 2005
  ident: 2023070121095729000_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1835262
– volume: 123
  start-page: 034301
  year: 2005
  ident: 2023070121095729000_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1924408
SSID ssj0001724
Score 2.4367223
Snippet An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO–CO2 van der Waals dimer. The Lanczos algorithm was...
An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO-CO2 van der Waals dimer. The Lanczos algorithm was...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 084307
SubjectTerms Algorithms
Carbon dioxide
Carbon monoxide
Dimers
Energy levels
Isomers
Potential energy
Rotational states
T shape
Vibrational states
Wave functions
Title Computational study of the ro-vibrational spectrum of CO–CO2
URI http://dx.doi.org/10.1063/1.5119762
https://www.proquest.com/docview/2280841219
https://www.proquest.com/docview/2283106328
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExovCAaIwkDhQ4gXd0mcOInEy1Q6pqlbkdZKfYv8FWkSJCVN98Bfz9mOk1ZUaPASRbFjR_6dz7-cfXcIfQAWnxShjHHMlcSRCilOeQbzSvqJIoTR1MTSu7yi54voYhkve6uS8S5p-Ej82utX8j-owjPAVXvJ_gOyXaPwAO4BX7gCwnC9E8Y2JYMz561dfGh7ahDf6j9hV6YdKuvND3P6YobHs3Cblfb-YYaZChdEwJo9OtY9ZusG2r3YmN31oLbG54nUUlb1lnmrPZY3rMJfWbswmrfruj-ub89z9GbXm7Jha3xtWy7hC2zbdakz32ybJrQ3VOpcva029dMMJ9TmAx2pPc-cCm6DzlpZS7cUqp9GxKbF_UPXA7nSZoeR2QltVfpOPO2rWX62mE7z-WQ5_7j6iXWqMb0l3-ZduY8OQnjPH6CD0y-X0-tuAQdOF1m_DPulLiAVJSddb7s0pv83OQTiYnHfoinzx-hRi6J3aoXlCbqnyiN0OHZp_Y7Qg28W1Kfo8474eEZ8vKrwQHy8XfHxnPjoYis-z9DibDIfn-M2mQYWhPoNFnERJIyFWciIiHggKQWyLYQiKUu5ZECDpS-UyOIMWKMMZcILSaMskYKFRaHIczQoq1K9QB4HpQ00v0iUVBHNYOlOCq4yyjkvYin9IfrkxiZ3o6ETnnzPzYkHSvIgb4dxiN51VVc2vMq-SsdugPN29q1zHcYpjQJYcIfobVcMY6k3vFipqo2pQ3RTYTpE7ztg_tbRnlq3Vd3XyFeyeHmH_l6hh_2EOEYDgEi9Bvba8DettP0G8C-bDw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+study+of+the+ro-vibrational+spectrum+of+CO-CO2&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Castro-Ju%C3%A1rez%2C+Eduardo&rft.au=Wang%2C+Xiao-Gang&rft.au=Carrington%2C+Tucker&rft.au=Quintas-S%C3%A1nchez%2C+Ernesto&rft.date=2019-08-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=151&rft.issue=8&rft.spage=084307&rft_id=info:doi/10.1063%2F1.5119762&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon