Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification

The hybrid algorithm that combined particle swarm optimization with simulated annealing behavior (SA-PSO) is proposed in this paper. The SA-PSO algorithm takes both of the advantages of good solution quality in simulated annealing and fast searching ability in particle swarm optimization. As stochas...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 218; no. 8; pp. 4365 - 4383
Main Authors Shieh, Horng-Lin, Kuo, Cheng-Chien, Chiang, Chin-Ming
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.12.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2011.10.012

Cover

Abstract The hybrid algorithm that combined particle swarm optimization with simulated annealing behavior (SA-PSO) is proposed in this paper. The SA-PSO algorithm takes both of the advantages of good solution quality in simulated annealing and fast searching ability in particle swarm optimization. As stochastic optimization algorithms are sensitive to their parameters, proper procedure for parameters selection is introduced in this paper to improve solution quality. To verify the usability and effectiveness of the proposed algorithm, simulations are performed using 20 different mathematical optimization functions with different dimensions. The comparative works have also been conducted among different algorithms under the criteria of quality of the solution, the efficiency of searching for the solution and the convergence characteristics. According to the results, the SA-PSO could have higher efficiency, better quality and faster convergence speed than compared algorithms.
AbstractList The hybrid algorithm that combined particle swarm optimization with simulated annealing behavior (SA-PSO) is proposed in this paper. The SA-PSO algorithm takes both of the advantages of good solution quality in simulated annealing and fast searching ability in particle swarm optimization. As stochastic optimization algorithms are sensitive to their parameters, proper procedure for parameters selection is introduced in this paper to improve solution quality. To verify the usability and effectiveness of the proposed algorithm, simulations are performed using 20 different mathematical optimization functions with different dimensions. The comparative works have also been conducted among different algorithms under the criteria of quality of the solution, the efficiency of searching for the solution and the convergence characteristics. According to the results, the SA-PSO could have higher efficiency, better quality and faster convergence speed than compared algorithms.
Author Shieh, Horng-Lin
Chiang, Chin-Ming
Kuo, Cheng-Chien
Author_xml – sequence: 1
  givenname: Horng-Lin
  surname: Shieh
  fullname: Shieh, Horng-Lin
  email: shieh@mail.sju.edu.tw
– sequence: 2
  givenname: Cheng-Chien
  surname: Kuo
  fullname: Kuo, Cheng-Chien
  email: cckuo@mail.sju.edu.tw
– sequence: 3
  givenname: Chin-Ming
  surname: Chiang
  fullname: Chiang, Chin-Ming
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25313138$$DView record in Pascal Francis
BookMark eNp9UU1v1DAUtFArsW35Adx8QeKS5TkfdiJOqKKAVMSlPVsvjtO-lWMvtncr-PU4bMWBQ2XJzx7NjJ5mLtiZD94y9lbAVoCQH3ZbXMy2BiHKfwuifsU2oldN1cl2OGMbgEFWDUDzml2ktAMAJUW7YeF7mGgmO_E9xkzGWZ6eMC487DMt9BszBc_RPYRI-XHhT-XmiZaDw1xE6L1FR_6Bj_YRjxRigSZOOXF_WGwkg44fy5zLa7W6YuczumTfPM9Ldn_z-e76a3X748u360-3lWkk5Go0c92PZd2-6-Q8zW0nRllANRUcZG-GsVdohtYqWdetgE6AVSgkIPZgVHPJ3p989zH8PNiU9ULJWOfQ23BIuoQGvRoGtVLfPVMxlXXniN5Q0vtIC8Zfuu4aUU5feOLEMzGkFO38jyJg9ZN6p0sJei1hhUoJRaP-0xjKf4PIEcm9qPx4UtqS0pFs1MmQ9cZOFK3Jegr0gvoPVVSlKw
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1007_s11277_023_10746_0
crossref_primary_10_1007_s10015_014_0150_4
crossref_primary_10_1016_j_enconman_2015_11_041
crossref_primary_10_1016_j_cie_2017_06_006
crossref_primary_10_1007_s42235_023_00394_2
crossref_primary_10_1016_j_cjche_2015_03_005
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1016_j_compgeo_2016_07_013
crossref_primary_10_1080_03610918_2018_1498890
crossref_primary_10_1109_JIOT_2019_2938486
crossref_primary_10_1016_j_ins_2018_08_049
crossref_primary_10_1007_s00158_014_1137_4
crossref_primary_10_1155_2014_976486
crossref_primary_10_3233_AIC_160706
crossref_primary_10_1007_s00521_019_04656_1
crossref_primary_10_1590_S1679_78252014000700007
crossref_primary_10_21923_jesd_824663
crossref_primary_10_1007_s10230_021_00788_w
crossref_primary_10_1016_j_swevo_2018_02_017
crossref_primary_10_1155_2014_923260
crossref_primary_10_1016_j_ins_2016_03_051
crossref_primary_10_1061__ASCE_CP_1943_5487_0000347
crossref_primary_10_1093_jcde_qwac100
crossref_primary_10_1002_nme_7111
crossref_primary_10_1007_s10706_022_02270_y
crossref_primary_10_1109_JSEN_2017_2739188
crossref_primary_10_1109_ACCESS_2021_3115026
crossref_primary_10_3390_systems11050221
crossref_primary_10_1007_s40430_017_0733_9
crossref_primary_10_1016_j_petrol_2017_08_024
crossref_primary_10_1007_s00500_015_1716_3
crossref_primary_10_1016_j_isci_2024_110270
crossref_primary_10_1016_j_ijepes_2015_06_026
crossref_primary_10_3390_en12010116
crossref_primary_10_1109_TVT_2019_2903822
crossref_primary_10_3390_math11092018
crossref_primary_10_1016_j_eswa_2021_116301
crossref_primary_10_1007_s10845_015_1124_7
crossref_primary_10_1007_s00366_019_00887_x
crossref_primary_10_1155_2013_108768
crossref_primary_10_5424_sjar_2022203_18065
crossref_primary_10_1109_ACCESS_2019_2920736
crossref_primary_10_1016_j_swevo_2016_10_003
crossref_primary_10_1007_s11633_016_0973_7
crossref_primary_10_3390_app13031372
crossref_primary_10_1371_journal_pone_0154191
crossref_primary_10_1007_s00521_015_1942_8
crossref_primary_10_1002_int_22543
crossref_primary_10_1007_s12204_021_2354_9
crossref_primary_10_1016_j_ins_2018_09_004
crossref_primary_10_1088_1742_6596_2822_1_012039
crossref_primary_10_1007_s00170_018_3017_3
crossref_primary_10_1016_j_renene_2021_03_101
crossref_primary_10_1109_ACCESS_2020_3015808
crossref_primary_10_1109_TCYB_2020_2967462
crossref_primary_10_1155_2014_239721
crossref_primary_10_3390_en10010054
crossref_primary_10_3390_en9120987
crossref_primary_10_1016_j_amc_2013_06_095
crossref_primary_10_1016_j_jestch_2016_10_012
crossref_primary_10_1371_journal_pone_0130995
crossref_primary_10_1016_j_applthermaleng_2018_10_070
Cites_doi 10.1007/BFb0040812
10.1016/j.amc.2009.09.051
10.1016/j.amc.2010.12.054
10.1016/j.amc.2006.05.149
10.1016/j.amc.2005.05.038
10.1016/j.amc.2006.11.090
10.1016/j.amc.2007.09.047
10.1109/4235.985692
10.2307/3214991
10.1109/CDC.1985.268600
10.1063/1.1699114
10.1016/j.amc.2007.12.053
10.1126/science.220.4598.671
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2011.10.012
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 4383
ExternalDocumentID 25313138
10_1016_j_amc_2011_10_012
S0096300311012422
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c360t-bcf28b0038556fdf451b6bcf7df28068c9b87ac94e7622410510e7a160aa80c73
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Sun Sep 28 06:39:27 EDT 2025
Mon Jul 21 09:14:27 EDT 2025
Wed Oct 01 06:40:35 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Fri Feb 23 02:31:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Heuristic search
Particle swarm optimization
Simulated annealing
Metropolis process
Elite reserve
Optimization method
Algorithm
Convergence
Stochastic programming
Convergence speed
Mathematical function
Numerical analysis
Algorithm performance
Applied mathematics
Variational calculus
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-bcf28b0038556fdf451b6bcf7df28068c9b87ac94e7622410510e7a160aa80c73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010879977
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1010879977
pascalfrancis_primary_25313138
crossref_primary_10_1016_j_amc_2011_10_012
crossref_citationtrail_10_1016_j_amc_2011_10_012
elsevier_sciencedirect_doi_10_1016_j_amc_2011_10_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-15
PublicationDateYYYYMMDD 2011-12-15
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied mathematics and computation
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References D. Mitra, F. Romeo, A. Sangiovanni-Vincentelli, Convergence and finite-time behavior of simulated annealing, in: Proceeding 1985 of the 24th Conference on Decision and Control, pp. 761–767.
Wang, Zhang (b0015) 2006; 174
Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE 1998 International Conference Evolutionary Computation, pp. 69–73.
Palubeckis (b0030) 2007; 189
Locatelli (b0060) 1996; 33
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings IEEE International Conference on Neural Networks IV, 1995, pp. 1942–1948.
Laporte, Farahani, Miandoabchi (b0025) 2006; 183
Aryanezhad, Hemati (b0005) 2008; 199
Alrefaei, Diabat (b0010) 2009; 215
Kirkpatrick, Gelatt, Vecchi (b0080) 1983; 200
Cai, Ewing, Ma (b0020) 2011; 217
Olamaei, Niknam, Gharehpetian (b0045) 2008; 201
R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization, in: IEEE 1998 International Conference, Evolutionary Computation, pp. 611–616.
Shi, Eberhart (b0055) 1999
Clerc, Kennedy (b0070) 2002; 6
Metropolis, Rosenbluth, Rosenbluth, Teller (b0075) 1953; 21
Shi (10.1016/j.amc.2011.10.012_b0055) 1999
Alrefaei (10.1016/j.amc.2011.10.012_b0010) 2009; 215
Locatelli (10.1016/j.amc.2011.10.012_b0060) 1996; 33
10.1016/j.amc.2011.10.012_b0050
10.1016/j.amc.2011.10.012_b0040
10.1016/j.amc.2011.10.012_b0065
Metropolis (10.1016/j.amc.2011.10.012_b0075) 1953; 21
Palubeckis (10.1016/j.amc.2011.10.012_b0030) 2007; 189
Laporte (10.1016/j.amc.2011.10.012_b0025) 2006; 183
10.1016/j.amc.2011.10.012_b0035
Aryanezhad (10.1016/j.amc.2011.10.012_b0005) 2008; 199
Wang (10.1016/j.amc.2011.10.012_b0015) 2006; 174
Olamaei (10.1016/j.amc.2011.10.012_b0045) 2008; 201
Clerc (10.1016/j.amc.2011.10.012_b0070) 2002; 6
Kirkpatrick (10.1016/j.amc.2011.10.012_b0080) 1983; 200
Cai (10.1016/j.amc.2011.10.012_b0020) 2011; 217
References_xml – reference: D. Mitra, F. Romeo, A. Sangiovanni-Vincentelli, Convergence and finite-time behavior of simulated annealing, in: Proceeding 1985 of the 24th Conference on Decision and Control, pp. 761–767.
– volume: 199
  start-page: 186
  year: 2008
  end-page: 194
  ident: b0005
  article-title: A new genetic algorithm for solving nonconvex nonlinear programming problems
  publication-title: Applied Mathematics and Computation
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b0075
  article-title: Equation of state calculations by fast computer machines
  publication-title: Journal of Chemical Physics
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b0070
  article-title: The particle swarm explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 200
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0080
  article-title: Optimization by simulated annealing
  publication-title: Science
– reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE 1998 International Conference Evolutionary Computation, pp. 69–73.
– volume: 174
  start-page: 1329
  year: 2006
  end-page: 1342
  ident: b0015
  article-title: Stochastic optimization using simulated annealing with hypothesis test
  publication-title: Applied Mathematics and Computation
– volume: 217
  start-page: 5754
  year: 2011
  end-page: 5767
  ident: b0020
  article-title: Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography
  publication-title: Applied Mathematics and Computation
– volume: 215
  start-page: 3029
  year: 2009
  end-page: 3035
  ident: b0010
  article-title: A simulated annealing technique for multi-objective simulation optimization
  publication-title: Applied Mathematics and Computation
– volume: 189
  start-page: 371
  year: 2007
  end-page: 383
  ident: b0030
  article-title: Iterated tabu search for the maximum diversity problem
  publication-title: Applied Mathematics and Computation
– start-page: 1945
  year: 1999
  end-page: 1950
  ident: b0055
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the Congress on Evolutionary Computation
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings IEEE International Conference on Neural Networks IV, 1995, pp. 1942–1948.
– volume: 33
  start-page: 1127
  year: 1996
  end-page: 1140
  ident: b0060
  article-title: Convergence properties of simulated annealing for continuous global optimization
  publication-title: Journal of Applied Probability
– volume: 183
  start-page: 1410
  year: 2006
  end-page: 1421
  ident: b0025
  article-title: Designing an efficient method for tandem AGV network design problem using tabu search
  publication-title: Applied Mathematics and Computation
– volume: 201
  start-page: 575
  year: 2008
  end-page: 586
  ident: b0045
  article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators
  publication-title: Applied Mathematics and computation
– reference: R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization, in: IEEE 1998 International Conference, Evolutionary Computation, pp. 611–616.
– ident: 10.1016/j.amc.2011.10.012_b0035
  doi: 10.1007/BFb0040812
– volume: 215
  start-page: 3029
  year: 2009
  ident: 10.1016/j.amc.2011.10.012_b0010
  article-title: A simulated annealing technique for multi-objective simulation optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.09.051
– volume: 217
  start-page: 5754
  year: 2011
  ident: 10.1016/j.amc.2011.10.012_b0020
  article-title: Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2010.12.054
– volume: 183
  start-page: 1410
  year: 2006
  ident: 10.1016/j.amc.2011.10.012_b0025
  article-title: Designing an efficient method for tandem AGV network design problem using tabu search
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.05.149
– ident: 10.1016/j.amc.2011.10.012_b0040
– volume: 174
  start-page: 1329
  year: 2006
  ident: 10.1016/j.amc.2011.10.012_b0015
  article-title: Stochastic optimization using simulated annealing with hypothesis test
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2005.05.038
– volume: 189
  start-page: 371
  year: 2007
  ident: 10.1016/j.amc.2011.10.012_b0030
  article-title: Iterated tabu search for the maximum diversity problem
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.11.090
– volume: 199
  start-page: 186
  year: 2008
  ident: 10.1016/j.amc.2011.10.012_b0005
  article-title: A new genetic algorithm for solving nonconvex nonlinear programming problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.09.047
– volume: 6
  start-page: 58
  year: 2002
  ident: 10.1016/j.amc.2011.10.012_b0070
  article-title: The particle swarm explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 33
  start-page: 1127
  year: 1996
  ident: 10.1016/j.amc.2011.10.012_b0060
  article-title: Convergence properties of simulated annealing for continuous global optimization
  publication-title: Journal of Applied Probability
  doi: 10.2307/3214991
– start-page: 1945
  year: 1999
  ident: 10.1016/j.amc.2011.10.012_b0055
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the Congress on Evolutionary Computation
– ident: 10.1016/j.amc.2011.10.012_b0065
  doi: 10.1109/CDC.1985.268600
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.amc.2011.10.012_b0075
  article-title: Equation of state calculations by fast computer machines
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1699114
– volume: 201
  start-page: 575
  year: 2008
  ident: 10.1016/j.amc.2011.10.012_b0045
  article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators
  publication-title: Applied Mathematics and computation
  doi: 10.1016/j.amc.2007.12.053
– volume: 200
  start-page: 671
  year: 1983
  ident: 10.1016/j.amc.2011.10.012_b0080
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 10.1016/j.amc.2011.10.012_b0050
  doi: 10.1109/ICNN.1995.488968
SSID ssj0007614
Score 2.3577437
Snippet The hybrid algorithm that combined particle swarm optimization with simulated annealing behavior (SA-PSO) is proposed in this paper. The SA-PSO algorithm takes...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4365
SubjectTerms Algorithms
Calculus of variations and optimal control
Computational efficiency
Computing time
Convergence
Elite reserve
Exact sciences and technology
Heuristic search
Mathematical analysis
Mathematical models
Mathematics
Metropolis process
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Particle swarm optimization
Sciences and techniques of general use
Searching
Simulated annealing
Title Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification
URI https://dx.doi.org/10.1016/j.amc.2011.10.012
https://www.proquest.com/docview/1010879977
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iF0XEJ66PJYInodq06SPHRZRV0ZOCtzJNU61s22XbxZu_3Zk-VkT0IL0NTdJmki-P-WaGsVMpVSxkoiyN4I8HlNSzQIFnhSYBXI4hMS3L98EfP8nbZ-95iV32vjBEq-ywv8X0Bq07yUXXmxfTLCMfX0XxolxBIaqkQzgsZUBZDM4_vmgeeExvIzEr4njZbm_ZbDhekOs2iicRvITz29q0PoUKeyxtU138QO1mKbreZBvdHpKP2s_cYkum2GZr94sArNUOK-_LJEtxe8mn3d_w6h1mOS8RIvLO95LD5KWcZfVrzuk6lldZTsm8sBAg-gI5qvPejR9FCc_qihfz1sYz4TgJiGfUVLXLnq6vHi_HVpdbwdKub9dWrFMnjBu7oOenSSo9EfsoDJKUbK2hVnEYgFbSIFo6xAUVtglA-DZAaOvA3WPLRVmYfcZFLI3QIoUQHImKjgM3kApUYoSxfXAGzO57NdJd4HHKfzGJeobZW4SKiEgRJEJFDNjZosi0jbrx18uyV1X0behEuCr8VWz4Ta2LhhyEJXzCATvp9RzhnCNDChSmnFdUoR0GCrfOB_9r-5CtNnfTwrGEd8SW69ncHOPmpo6HzegdspXRzd344RNNpPqM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGhVVVCourRQI_WEFIgd5-EjQqCl7O4JJG7RxHHaoE2y2mTFjd_OTB5boQoOKLdRbCce-xvb882YsV9K6USoVDsGwR83KJnvgAbfiWwKaI4htR3LdxaM79Tve_9-g10MsTBEq-yxv8P0Fq17yVnfm2eLPKcYX035ojxBKaqURBzeUr4MaQd2-vSP54H79C4VsyaSl-sNrs2W5AWF6dJ4EsNLyNeM06cF1NhlWXfXxX-w3dqiqx32uV9E8vPuO3fZhi2_sI_TdQbWeo9V0yrNM1xf8kX_O7x-hGXBK8SIog--5DD_Uy3z5m_B6TyW13lBt3lhIUD4BYpU50McP4pSnjc1L1edk2fOcRYQ0aitap_dXV3eXoyd_nIFx3iB2ziJyWSUtI5BP8jSTPkiCVAYphk5WyOjkygEo5VFuJREBhWuDUEELkDkmtD7yjbLqrTfGBeJssKIDCKQCjWdhF6oNOjUCusGIEfMHXo1Nn3mcboAYx4PFLOHGBURkyJIhIoYsZN1kUWXduOtl9WgqvjF2InRLLxV7OiFWtcNScQlfKIROx70HOOkI08KlLZa1VShG4Ua184H72v7J9se304n8eR6dvOdfWgPqoV0hP-DbTbLlT3ElU6THLUj-RkSDfwh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+particle+swarm+optimization+algorithm+with+simulated+annealing+behavior+and+its+numerical+verification&rft.jtitle=Applied+mathematics+and+computation&rft.au=SHIEH%2C+Horng-Lin&rft.au=KUO%2C+Cheng-Chien&rft.au=CHIANG%2C+Chin-Ming&rft.date=2011-12-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=218&rft.issue=8&rft.spage=4365&rft.epage=4383&rft_id=info:doi/10.1016%2Fj.amc.2011.10.012&rft.externalDBID=n%2Fa&rft.externalDocID=25313138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon