Dynamic response of single-layer reticulated shell with explosion-protection wall under blast loading

To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 127; pp. 389 - 401
Main Authors Su, Qianqian, Zhai, Ximei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text
ISSN0263-8231
1879-3223
DOI10.1016/j.tws.2017.12.008

Cover

Abstract To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp the propagation law of blast shock waves around the wall. The results of simulation and experiment are compared and the results verify the creditability and applicability of numerical simulation by using ALE (Arbitrary-Lagrange-Euler) algorithm. A Kiewitt8 single-layer reticulated shell of refinement with span of 40 m is established to simulate the responses of structure considering explosion-protection wall, which contains reticulated shell member, purlin hanger, purlin, rivet and roof boarding. According to simulation results from the maximum nodal displacement, average plastic strain and yielding degree of cross section of reticulated shell member, the dynamic response laws are proposed based on varying parameters, including height, position, length, material of the explosion-protection wall, rise-span ratio of reticulated shell and TNT explosive weights. Meanwhile, the influence rules of explosion-protection wall and structure on diffraction and reflection action of blast shock wave are obtained. In addition, the adverse height of the explosion-protection wall for reticulated shell with span of 40 m under external blast loading is proposed. Four damage types of reticulated shell with the explosion-protection wall subject to external blast loading are defined by summarizing all the structural response of FE numerical models, which could provide reference for reasonable explosion-proof design for reticulated shell structure. [Display omitted] •A FE model is developed using LS-DYNA and verified by experimental data.•The propagation of blast shock wave around explosion-protection wall is studied.•Adverse height of the explosion-protection wall for reticulated shell is proposed.•Dynamic response laws of reticulated shell with the wall are obtained.•Four damage types of reticulated shell with explosion-protection wall are defined.
AbstractList To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp the propagation law of blast shock waves around the wall. The results of simulation and experiment are compared and the results verify the creditability and applicability of numerical simulation by using ALE (Arbitrary-Lagrange-Euler) algorithm. A Kiewitt8 single-layer reticulated shell of refinement with span of 40 m is established to simulate the responses of structure considering explosion-protection wall, which contains reticulated shell member, purlin hanger, purlin, rivet and roof boarding. According to simulation results from the maximum nodal displacement, average plastic strain and yielding degree of cross section of reticulated shell member, the dynamic response laws are proposed based on varying parameters, including height, position, length, material of the explosion-protection wall, rise-span ratio of reticulated shell and TNT explosive weights. Meanwhile, the influence rules of explosion-protection wall and structure on diffraction and reflection action of blast shock wave are obtained. In addition, the adverse height of the explosion-protection wall for reticulated shell with span of 40 m under external blast loading is proposed. Four damage types of reticulated shell with the explosion-protection wall subject to external blast loading are defined by summarizing all the structural response of FE numerical models, which could provide reference for reasonable explosion-proof design for reticulated shell structure. [Display omitted] •A FE model is developed using LS-DYNA and verified by experimental data.•The propagation of blast shock wave around explosion-protection wall is studied.•Adverse height of the explosion-protection wall for reticulated shell is proposed.•Dynamic response laws of reticulated shell with the wall are obtained.•Four damage types of reticulated shell with explosion-protection wall are defined.
Author Su, Qianqian
Zhai, Ximei
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Su
  fullname: Su, Qianqian
  email: suqianqian_hit@163.com
  organization: Key Lab of Structures Dynamic Behavior and Control of Ministry of Education, Harbin Institute of Technology, Harbin 150090, PR China
– sequence: 2
  givenname: Ximei
  surname: Zhai
  fullname: Zhai, Ximei
  email: xmzhai@hit.edu.cn
  organization: Key Lab of Structures Dynamic Behavior and Control of Ministry of Education, Harbin Institute of Technology, Harbin 150090, PR China
BookMark eNp9kM9OwzAMhyM0JLbBA3DrC7TETZu24oTGX2kSFzhHWeqwTFlTJRljb0-mceKwky3Z30_2NyOTwQ1IyC3QAijwu00R96EoKTQFlAWl7QWZQtt0OStLNiFTWnKWtyWDKzILYUPTInTVlODjYZBbozKPYXRDwMzpLJjhy2Ju5QF9GkSjdlZG7LOwRmuzvYnrDH9G64JxQz56F1HF1GZ7mca7oU_YysoQM-tkn8KuyaWWNuDNX52Tz-enj8Vrvnx_eVs8LHPFOI25BEX1quk1tB1HzioFrOEcacf0SmrGq6qv6rqCqtVIoa2h1BWvW2wVKKCazUlzylXeheBRC2WiPJ4WvTRWABVHW2Ijki1xtCWgFMlWIuEfOXqzlf5wlrk_MZhe-jboRVAGB4W98UmI6J05Q_8CdEOHIw
CitedBy_id crossref_primary_10_3390_app122211781
crossref_primary_10_1016_j_conbuildmat_2024_136237
crossref_primary_10_1177_20414196241269381
crossref_primary_10_1016_j_jcsr_2021_107118
crossref_primary_10_1016_j_tws_2022_110300
crossref_primary_10_1016_j_oceaneng_2024_119217
crossref_primary_10_1016_j_tws_2022_110109
crossref_primary_10_1016_j_ijimpeng_2022_104360
crossref_primary_10_3390_jmse10111743
crossref_primary_10_3390_buildings14030633
Cites_doi 10.1016/j.ijimpeng.2007.03.003
10.1016/j.ijimpeng.2010.06.002
10.1016/j.ijimpeng.2004.08.002
10.1016/j.tws.2013.07.011
10.1680/stbu.2002.152.3.269
10.12989/sem.2009.31.1.025
10.1007/s12209-008-0090-y
10.1007/s00193-007-0099-5
10.1016/j.engstruct.2010.02.017
10.1016/j.jcsr.2007.12.013
10.1115/PVP2003-1827
10.1016/j.ijimpeng.2004.04.013
10.1016/j.ijimpeng.2006.01.010
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2017.12.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
EndPage 401
ExternalDocumentID 10_1016_j_tws_2017_12_008
S0263823117308856
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c360t-a1c0fb7df1896e634c13766e093fbaf3644d4554148fe018512f4658e8c1c10f3
IEDL.DBID .~1
ISSN 0263-8231
IngestDate Thu Oct 09 00:29:26 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Fri Feb 23 02:47:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic response
ALE (Arbitrary-Lagrange-Euler)
External blast loading
Explosion-protection wall
Single-layer reticulated shell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-a1c0fb7df1896e634c13766e093fbaf3644d4554148fe018512f4658e8c1c10f3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_tws_2017_12_008
crossref_primary_10_1016_j_tws_2017_12_008
elsevier_sciencedirect_doi_10_1016_j_tws_2017_12_008
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Thin-walled structures
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hong, Fan, Jin (bib4) 2012; 29
Li, Wu, Jia (bib3) 2010; 31
LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2014.
Zhang, Duan, Zhang (bib18) 2008; 14
Li, Rong, Pan (bib16) 2007; 34
Sun (bib28) 2015
Sabuwala, Linzell, Krauthammer (bib12) 2005; 31
Jacinto, Ambrosini, Danesi (bib11) 2002; 152
Ni (bib23) 2012
Hao, Ma, Wang (bib2) 2010; 42
Zhai, Wang, Huang (bib22) 2013; 73
Wu, Song (bib7) 2014; 31
Zhang, Zhang, Nian (bib8) 2013; 32
Lee (bib14) 2009; 31
Wu, Liu, Yan (bib1) 2008; 41
Langdon, Schleyer (bib5) 2006; 32
Gao, Wang, Jiang (bib21) 2010; 27
Zhou, Hao (bib6) 2008; 35
Du, Li, Hao (bib9) 2007; 08
Shi, Li, Hao (bib20) 2010; 32
D. Lawver, R. Daddazio, D. Vaughan, M. Stanley, H. Levine. Response of AWASC steel column section to blast loading. in: Proceedings of the 2009 ASME Pressure Vessels and Piping Conference, Cleveland, US, 2003.
Wang (bib24) 2010
Liew (bib19) 2008; 64
Shi, Hao, Li (bib27) 2007; 17
J. Lacambre, L. Delmas, I A T. Using LS-DYNA MM-ALE capabilities to help design a wall mitigating accidental blast effects, in: Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, 2011.1-6.
Mu, Ren, Li (bib10) 2008; 23
Huson, Asaro, Stewart (bib17) 2011; 38
Karns, Houghton, Hong, Kim (bib13) 2009
Li (10.1016/j.tws.2017.12.008_bib16) 2007; 34
10.1016/j.tws.2017.12.008_bib15
Lee (10.1016/j.tws.2017.12.008_bib14) 2009; 31
Wang (10.1016/j.tws.2017.12.008_bib24) 2010
Sabuwala (10.1016/j.tws.2017.12.008_bib12) 2005; 31
Gao (10.1016/j.tws.2017.12.008_bib21) 2010; 27
Mu (10.1016/j.tws.2017.12.008_bib10) 2008; 23
Zhang (10.1016/j.tws.2017.12.008_bib18) 2008; 14
Wu (10.1016/j.tws.2017.12.008_bib1) 2008; 41
Du (10.1016/j.tws.2017.12.008_bib9) 2007; 08
Hong (10.1016/j.tws.2017.12.008_bib4) 2012; 29
Hao (10.1016/j.tws.2017.12.008_bib2) 2010; 42
Jacinto (10.1016/j.tws.2017.12.008_bib11) 2002; 152
Shi (10.1016/j.tws.2017.12.008_bib27) 2007; 17
Sun (10.1016/j.tws.2017.12.008_bib28) 2015
Langdon (10.1016/j.tws.2017.12.008_bib5) 2006; 32
10.1016/j.tws.2017.12.008_bib26
Zhai (10.1016/j.tws.2017.12.008_bib22) 2013; 73
10.1016/j.tws.2017.12.008_bib25
Ni (10.1016/j.tws.2017.12.008_bib23) 2012
Li (10.1016/j.tws.2017.12.008_bib3) 2010; 31
Wu (10.1016/j.tws.2017.12.008_bib7) 2014; 31
Huson (10.1016/j.tws.2017.12.008_bib17) 2011; 38
Zhou (10.1016/j.tws.2017.12.008_bib6) 2008; 35
Zhang (10.1016/j.tws.2017.12.008_bib8) 2013; 32
Karns (10.1016/j.tws.2017.12.008_bib13) 2009
Liew (10.1016/j.tws.2017.12.008_bib19) 2008; 64
Shi (10.1016/j.tws.2017.12.008_bib20) 2010; 32
References_xml – volume: 42
  start-page: 1042
  year: 2010
  end-page: 1049
  ident: bib2
  article-title: Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 64
  start-page: 854
  year: 2008
  end-page: 866
  ident: bib19
  article-title: Survivability of steel frame structure subjected to blast and fire
  publication-title: J. Constr. Steel Res.
– volume: 31
  start-page: 360
  year: 2010
  end-page: 363
  ident: bib3
  article-title: Numerical simulation of the weakening effect of retaining wall on shock wave
  publication-title: J. North Univ. China (Nat. Sci. Ed.)
– year: 2012
  ident: bib23
  article-title: Response Analysis of Single-layer Reticulated Domes Subjected to External Blast Loading using CONWEP and Experimental Design
– volume: 41
  start-page: 99
  year: 2008
  end-page: 103
  ident: bib1
  article-title: Combined protective structures of fabricated anti-blast wall and turnover road stab
  publication-title: China Civil. Eng. J.
– volume: 73
  start-page: 57
  year: 2013
  end-page: 67
  ident: bib22
  article-title: Performance and protection approach of single-layer reticulated dome subjected to blast loading
  publication-title: Thin-Walled Struct.
– volume: 38
  start-page: 546
  year: 2011
  end-page: 557
  ident: bib17
  article-title: Non-explosive methods for simulating blast loading of structures with complex geometries
  publication-title: Int. J. Impact Eng.
– volume: 29
  start-page: 228
  year: 2012
  end-page: 235
  ident: bib4
  article-title: Blast response of inclined rigid walls
  publication-title: Eng. Mech.
– year: 2015
  ident: bib28
  article-title: Damage Model and Damage Assessment for K8 Single-layer Reticulated Domes under Exterior Blast Loading
– start-page: 1868
  year: 2009
  end-page: 1877
  ident: bib13
  article-title: Behaviour of varied steel frame connection types subjected to air blast, debrwas impact, and/or post-blast progressive collapse load conditions
  publication-title: Proc. 2009 Struct. Congr.
– volume: 14
  start-page: 523
  year: 2008
  end-page: 529
  ident: bib18
  article-title: Numerical simulation of dynamic response and collapse for steel frame structures subjected to blast loading
  publication-title: Trans. Tianjin Univ.
– reference: J. Lacambre, L. Delmas, I A T. Using LS-DYNA MM-ALE capabilities to help design a wall mitigating accidental blast effects, in: Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, 2011.1-6.
– volume: 08
  start-page: 413
  year: 2007
  end-page: 418
  ident: bib9
  article-title: Numerical simulation on blast overpressure loading outside buildings. [in Chinese]
  publication-title: J. PLA Univ. Sci. Technol.
– volume: 34
  start-page: 743
  year: 2007
  end-page: 754
  ident: bib16
  article-title: Drift-controlled design of reinforced concrete frame structures under dwastant blast conditions—Part I: theoretical basis
  publication-title: Int. J. Impact Eng.
– volume: 31
  start-page: 9
  year: 2014
  end-page: 14
  ident: bib7
  article-title: Research on diffraction flow effect of explosion shock wave behind blast wall
  publication-title: J. Hebei Univ. Eng. (Nat. Sci. Ed.)
– volume: 27
  start-page: 226
  year: 2010
  end-page: 233
  ident: bib21
  article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading
  publication-title: Eng. Mech.
– volume: 152
  start-page: 269
  year: 2002
  end-page: 276
  ident: bib11
  article-title: Dynamic response of plates subjected to blast loading
  publication-title: Proc. Inst. Civil. Eng. Struct. Build.
– year: 2010
  ident: bib24
  article-title: Numerical simulation of Kiewitt8 single-layer reticulated shell subjected to blast loading
– volume: 17
  start-page: 113
  year: 2007
  end-page: 133
  ident: bib27
  article-title: Numerical simulation of blast wave interaction with structure columns.
  publication-title: Shock Waves
– reference: D. Lawver, R. Daddazio, D. Vaughan, M. Stanley, H. Levine. Response of AWASC steel column section to blast loading. in: Proceedings of the 2009 ASME Pressure Vessels and Piping Conference, Cleveland, US, 2003.
– volume: 32
  start-page: 988
  year: 2006
  end-page: 1012
  ident: bib5
  article-title: Deformation and failure of profiled stainless steel blast wall panels. Part III: finite element simulations and overall summary
  publication-title: Int. J. Impact Eng.
– volume: 31
  start-page: 25
  year: 2009
  end-page: 38
  ident: bib14
  article-title: Local response of w-shape steel columns under blast loading
  publication-title: Struct. Eng. Mech.
– volume: 35
  start-page: 363
  year: 2008
  end-page: 375
  ident: bib6
  article-title: Prediction of airblast loadings on structures behind a protective barrier
  publication-title: Int. J. Impact Eng.
– volume: 32
  start-page: 1691
  year: 2010
  end-page: 1703
  ident: bib20
  article-title: A new method for progressive collapse analysis of RC frames under blast loading
  publication-title: Eng. Struct.
– volume: 23
  start-page: 169
  year: 2008
  end-page: 174
  ident: bib10
  article-title: Experimental study of blast wave reflection and diffraction on a shelter wall
  publication-title: J. Exp. Mech.
– reference: LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2014.
– volume: 31
  start-page: 861
  year: 2005
  end-page: 876
  ident: bib12
  article-title: Finite element analysis of steel beam to column connections subjected to blast loadings
  publication-title: Int. J. Impact Eng.
– volume: 32
  start-page: 192
  year: 2013
  end-page: 197
  ident: bib8
  article-title: Effect on concrete protective wall on explosion shock wave.
  publication-title: J. Vib. Shock
– start-page: 1868
  year: 2009
  ident: 10.1016/j.tws.2017.12.008_bib13
  article-title: Behaviour of varied steel frame connection types subjected to air blast, debrwas impact, and/or post-blast progressive collapse load conditions
  publication-title: Proc. 2009 Struct. Congr.
– volume: 08
  start-page: 413
  issue: 05
  year: 2007
  ident: 10.1016/j.tws.2017.12.008_bib9
  article-title: Numerical simulation on blast overpressure loading outside buildings. [in Chinese]
  publication-title: J. PLA Univ. Sci. Technol.
– volume: 31
  start-page: 360
  issue: 04
  year: 2010
  ident: 10.1016/j.tws.2017.12.008_bib3
  article-title: Numerical simulation of the weakening effect of retaining wall on shock wave
  publication-title: J. North Univ. China (Nat. Sci. Ed.)
– volume: 35
  start-page: 363
  issue: 5
  year: 2008
  ident: 10.1016/j.tws.2017.12.008_bib6
  article-title: Prediction of airblast loadings on structures behind a protective barrier
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2007.03.003
– volume: 38
  start-page: 546
  issue: 7
  year: 2011
  ident: 10.1016/j.tws.2017.12.008_bib17
  article-title: Non-explosive methods for simulating blast loading of structures with complex geometries
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2010.06.002
– volume: 32
  start-page: 988
  issue: 6
  year: 2006
  ident: 10.1016/j.tws.2017.12.008_bib5
  article-title: Deformation and failure of profiled stainless steel blast wall panels. Part III: finite element simulations and overall summary
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2004.08.002
– volume: 73
  start-page: 57
  year: 2013
  ident: 10.1016/j.tws.2017.12.008_bib22
  article-title: Performance and protection approach of single-layer reticulated dome subjected to blast loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2013.07.011
– volume: 31
  start-page: 9
  issue: 02
  year: 2014
  ident: 10.1016/j.tws.2017.12.008_bib7
  article-title: Research on diffraction flow effect of explosion shock wave behind blast wall
  publication-title: J. Hebei Univ. Eng. (Nat. Sci. Ed.)
– volume: 42
  start-page: 1042
  issue: 06
  year: 2010
  ident: 10.1016/j.tws.2017.12.008_bib2
  article-title: Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 152
  start-page: 269
  issue: 3
  year: 2002
  ident: 10.1016/j.tws.2017.12.008_bib11
  article-title: Dynamic response of plates subjected to blast loading
  publication-title: Proc. Inst. Civil. Eng. Struct. Build.
  doi: 10.1680/stbu.2002.152.3.269
– volume: 31
  start-page: 25
  issue: 1
  year: 2009
  ident: 10.1016/j.tws.2017.12.008_bib14
  article-title: Local response of w-shape steel columns under blast loading
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2009.31.1.025
– year: 2012
  ident: 10.1016/j.tws.2017.12.008_bib23
– volume: 32
  start-page: 192
  issue: 24
  year: 2013
  ident: 10.1016/j.tws.2017.12.008_bib8
  article-title: Effect on concrete protective wall on explosion shock wave.
  publication-title: J. Vib. Shock
– ident: 10.1016/j.tws.2017.12.008_bib25
– volume: 29
  start-page: 228
  issue: 11
  year: 2012
  ident: 10.1016/j.tws.2017.12.008_bib4
  article-title: Blast response of inclined rigid walls
  publication-title: Eng. Mech.
– volume: 41
  start-page: 99
  issue: 01
  year: 2008
  ident: 10.1016/j.tws.2017.12.008_bib1
  article-title: Combined protective structures of fabricated anti-blast wall and turnover road stab
  publication-title: China Civil. Eng. J.
– volume: 14
  start-page: 523
  issue: suppl
  year: 2008
  ident: 10.1016/j.tws.2017.12.008_bib18
  article-title: Numerical simulation of dynamic response and collapse for steel frame structures subjected to blast loading
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-008-0090-y
– volume: 17
  start-page: 113
  year: 2007
  ident: 10.1016/j.tws.2017.12.008_bib27
  article-title: Numerical simulation of blast wave interaction with structure columns.
  publication-title: Shock Waves
  doi: 10.1007/s00193-007-0099-5
– volume: 23
  start-page: 169
  issue: 02
  year: 2008
  ident: 10.1016/j.tws.2017.12.008_bib10
  article-title: Experimental study of blast wave reflection and diffraction on a shelter wall
  publication-title: J. Exp. Mech.
– year: 2015
  ident: 10.1016/j.tws.2017.12.008_bib28
– volume: 32
  start-page: 1691
  year: 2010
  ident: 10.1016/j.tws.2017.12.008_bib20
  article-title: A new method for progressive collapse analysis of RC frames under blast loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.02.017
– volume: 64
  start-page: 854
  issue: 7–8
  year: 2008
  ident: 10.1016/j.tws.2017.12.008_bib19
  article-title: Survivability of steel frame structure subjected to blast and fire
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2007.12.013
– ident: 10.1016/j.tws.2017.12.008_bib15
  doi: 10.1115/PVP2003-1827
– volume: 31
  start-page: 861
  issue: 7
  year: 2005
  ident: 10.1016/j.tws.2017.12.008_bib12
  article-title: Finite element analysis of steel beam to column connections subjected to blast loadings
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2004.04.013
– volume: 34
  start-page: 743
  issue: 4
  year: 2007
  ident: 10.1016/j.tws.2017.12.008_bib16
  article-title: Drift-controlled design of reinforced concrete frame structures under dwastant blast conditions—Part I: theoretical basis
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.01.010
– volume: 27
  start-page: 226
  issue: 04
  year: 2010
  ident: 10.1016/j.tws.2017.12.008_bib21
  article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading
  publication-title: Eng. Mech.
– year: 2010
  ident: 10.1016/j.tws.2017.12.008_bib24
– ident: 10.1016/j.tws.2017.12.008_bib26
SSID ssj0017194
Score 2.2421896
Snippet To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 389
SubjectTerms ALE (Arbitrary-Lagrange-Euler)
Dynamic response
Explosion-protection wall
External blast loading
Single-layer reticulated shell
Title Dynamic response of single-layer reticulated shell with explosion-protection wall under blast loading
URI https://dx.doi.org/10.1016/j.tws.2017.12.008
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuKaNU3T45iO6WAHdbhbSdsEJmUbs7Kbf7vvpe2YoB489SuB8pL83kvyy_sRcg2ILyMTKWZhusxEJhXT4FmYhJGnk0hYmTmW71gOJ-JxGkwbpF-fhUFaZYX9JaY7tK7edCprdpazWecZZg9uE4tDJ1UqwLTbQoSoYnD7uaF58JA7MUQszLB0vbPpOF7FGjN289CtCKLC5E--acvfDA7IfhUo0l75L4ekYeZHZG8rfeAxMXelnDxdlURXQxeW4tw_NyzXEEtTd0QRBbpMRt-R8klx3ZUaJN7hMhmr0jTALV1r-IxHylY0gZC6oPnC8etPyGRw_9Ifsko2gaW-9AqmeerZJMwsV5E00hcpBxSRBhrDJtr6EAFlIkD5b2WNB_6ad62AQMSolKfcs_4pac4Xc3NGqDa-0gCXMFAzoYMkCVMeqMTAQO_CrdciXm2wOK1yiqO0RR7X5LG3GGwco41j3o3Bxi1ys6myLBNq_FVY1K0Qf-sVMQD-79XO_1ftguzCkyqJYJekWaw-zBWEHEXSdn2qTXZ6D6PhGK-jp9fRF-Rx19E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHtSD-InzMwdPQlzTpml6lOmYOndxg91C2iYwKduYld38231J2zFBPXgLzQuUl-R9JL-8H0LXYPF5rGNBDKTLhGVcEAWehXDYeSqJmeGZQ_kOeG_EnsbhuIE69VsYC6usbH9p0521rr60K22255NJ-xWyB3eJRWGRChHyDbTJQj-yGdjt5wrnQSPq2BCtNLHi9dWmA3kVS1uym0buSNBSTP7knNYcTncP7VaRIr4rf2YfNfT0AO2s1Q88RPq-5JPHixLpqvHMYJv855rkCoJp7N4oWoYuneF3i_nE9uAVa4u8s-dkpKrTAE28VNBt35QtcAIxdYHzmQPYH6FR92HY6ZGKN4GkAfcKomjqmSTKDBUx1zxgKQUzwjXMhkmUCSAEylho-b-F0R44bOobBpGIFilNqWeCY9Sczqb6BGGlA6HAXsJOzZgKkyRKaSgSDTvdh6bXQl6tMJlWRcUtt0Uua_TYmwQdS6tjSX0JOm6hm9WQeVlR4y9hVs-C_LYsJFj834ed_m_YFdrqDV_6sv84eD5D29AjSlTYOWoWiw99AfFHkVy69fUFR8DXww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+response+of+single-layer+reticulated+shell+with+explosion-protection+wall+under+blast+loading&rft.jtitle=Thin-walled+structures&rft.au=Su%2C+Qianqian&rft.au=Zhai%2C+Ximei&rft.date=2018-06-01&rft.issn=0263-8231&rft.volume=127&rft.spage=389&rft.epage=401&rft_id=info:doi/10.1016%2Fj.tws.2017.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tws_2017_12_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon