Dynamic response of single-layer reticulated shell with explosion-protection wall under blast loading
To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp...
Saved in:
| Published in | Thin-walled structures Vol. 127; pp. 389 - 401 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-8231 1879-3223 |
| DOI | 10.1016/j.tws.2017.12.008 |
Cover
| Abstract | To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp the propagation law of blast shock waves around the wall. The results of simulation and experiment are compared and the results verify the creditability and applicability of numerical simulation by using ALE (Arbitrary-Lagrange-Euler) algorithm. A Kiewitt8 single-layer reticulated shell of refinement with span of 40 m is established to simulate the responses of structure considering explosion-protection wall, which contains reticulated shell member, purlin hanger, purlin, rivet and roof boarding. According to simulation results from the maximum nodal displacement, average plastic strain and yielding degree of cross section of reticulated shell member, the dynamic response laws are proposed based on varying parameters, including height, position, length, material of the explosion-protection wall, rise-span ratio of reticulated shell and TNT explosive weights. Meanwhile, the influence rules of explosion-protection wall and structure on diffraction and reflection action of blast shock wave are obtained. In addition, the adverse height of the explosion-protection wall for reticulated shell with span of 40 m under external blast loading is proposed. Four damage types of reticulated shell with the explosion-protection wall subject to external blast loading are defined by summarizing all the structural response of FE numerical models, which could provide reference for reasonable explosion-proof design for reticulated shell structure.
[Display omitted]
•A FE model is developed using LS-DYNA and verified by experimental data.•The propagation of blast shock wave around explosion-protection wall is studied.•Adverse height of the explosion-protection wall for reticulated shell is proposed.•Dynamic response laws of reticulated shell with the wall are obtained.•Four damage types of reticulated shell with explosion-protection wall are defined. |
|---|---|
| AbstractList | To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit finite element (FE) programme LS-DYNA is used to set up the analytical model of explosion-protection wall corresponding to an experiment to grasp the propagation law of blast shock waves around the wall. The results of simulation and experiment are compared and the results verify the creditability and applicability of numerical simulation by using ALE (Arbitrary-Lagrange-Euler) algorithm. A Kiewitt8 single-layer reticulated shell of refinement with span of 40 m is established to simulate the responses of structure considering explosion-protection wall, which contains reticulated shell member, purlin hanger, purlin, rivet and roof boarding. According to simulation results from the maximum nodal displacement, average plastic strain and yielding degree of cross section of reticulated shell member, the dynamic response laws are proposed based on varying parameters, including height, position, length, material of the explosion-protection wall, rise-span ratio of reticulated shell and TNT explosive weights. Meanwhile, the influence rules of explosion-protection wall and structure on diffraction and reflection action of blast shock wave are obtained. In addition, the adverse height of the explosion-protection wall for reticulated shell with span of 40 m under external blast loading is proposed. Four damage types of reticulated shell with the explosion-protection wall subject to external blast loading are defined by summarizing all the structural response of FE numerical models, which could provide reference for reasonable explosion-proof design for reticulated shell structure.
[Display omitted]
•A FE model is developed using LS-DYNA and verified by experimental data.•The propagation of blast shock wave around explosion-protection wall is studied.•Adverse height of the explosion-protection wall for reticulated shell is proposed.•Dynamic response laws of reticulated shell with the wall are obtained.•Four damage types of reticulated shell with explosion-protection wall are defined. |
| Author | Su, Qianqian Zhai, Ximei |
| Author_xml | – sequence: 1 givenname: Qianqian surname: Su fullname: Su, Qianqian email: suqianqian_hit@163.com organization: Key Lab of Structures Dynamic Behavior and Control of Ministry of Education, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 2 givenname: Ximei surname: Zhai fullname: Zhai, Ximei email: xmzhai@hit.edu.cn organization: Key Lab of Structures Dynamic Behavior and Control of Ministry of Education, Harbin Institute of Technology, Harbin 150090, PR China |
| BookMark | eNp9kM9OwzAMhyM0JLbBA3DrC7TETZu24oTGX2kSFzhHWeqwTFlTJRljb0-mceKwky3Z30_2NyOTwQ1IyC3QAijwu00R96EoKTQFlAWl7QWZQtt0OStLNiFTWnKWtyWDKzILYUPTInTVlODjYZBbozKPYXRDwMzpLJjhy2Ju5QF9GkSjdlZG7LOwRmuzvYnrDH9G64JxQz56F1HF1GZ7mca7oU_YysoQM-tkn8KuyaWWNuDNX52Tz-enj8Vrvnx_eVs8LHPFOI25BEX1quk1tB1HzioFrOEcacf0SmrGq6qv6rqCqtVIoa2h1BWvW2wVKKCazUlzylXeheBRC2WiPJ4WvTRWABVHW2Ijki1xtCWgFMlWIuEfOXqzlf5wlrk_MZhe-jboRVAGB4W98UmI6J05Q_8CdEOHIw |
| CitedBy_id | crossref_primary_10_3390_app122211781 crossref_primary_10_1016_j_conbuildmat_2024_136237 crossref_primary_10_1177_20414196241269381 crossref_primary_10_1016_j_jcsr_2021_107118 crossref_primary_10_1016_j_tws_2022_110300 crossref_primary_10_1016_j_oceaneng_2024_119217 crossref_primary_10_1016_j_tws_2022_110109 crossref_primary_10_1016_j_ijimpeng_2022_104360 crossref_primary_10_3390_jmse10111743 crossref_primary_10_3390_buildings14030633 |
| Cites_doi | 10.1016/j.ijimpeng.2007.03.003 10.1016/j.ijimpeng.2010.06.002 10.1016/j.ijimpeng.2004.08.002 10.1016/j.tws.2013.07.011 10.1680/stbu.2002.152.3.269 10.12989/sem.2009.31.1.025 10.1007/s12209-008-0090-y 10.1007/s00193-007-0099-5 10.1016/j.engstruct.2010.02.017 10.1016/j.jcsr.2007.12.013 10.1115/PVP2003-1827 10.1016/j.ijimpeng.2004.04.013 10.1016/j.ijimpeng.2006.01.010 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2017.12.008 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| EndPage | 401 |
| ExternalDocumentID | 10_1016_j_tws_2017_12_008 S0263823117308856 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c360t-a1c0fb7df1896e634c13766e093fbaf3644d4554148fe018512f4658e8c1c10f3 |
| IEDL.DBID | .~1 |
| ISSN | 0263-8231 |
| IngestDate | Thu Oct 09 00:29:26 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Fri Feb 23 02:47:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic response ALE (Arbitrary-Lagrange-Euler) External blast loading Explosion-protection wall Single-layer reticulated shell |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-a1c0fb7df1896e634c13766e093fbaf3644d4554148fe018512f4658e8c1c10f3 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2017_12_008 crossref_primary_10_1016_j_tws_2017_12_008 elsevier_sciencedirect_doi_10_1016_j_tws_2017_12_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hong, Fan, Jin (bib4) 2012; 29 Li, Wu, Jia (bib3) 2010; 31 LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2014. Zhang, Duan, Zhang (bib18) 2008; 14 Li, Rong, Pan (bib16) 2007; 34 Sun (bib28) 2015 Sabuwala, Linzell, Krauthammer (bib12) 2005; 31 Jacinto, Ambrosini, Danesi (bib11) 2002; 152 Ni (bib23) 2012 Hao, Ma, Wang (bib2) 2010; 42 Zhai, Wang, Huang (bib22) 2013; 73 Wu, Song (bib7) 2014; 31 Zhang, Zhang, Nian (bib8) 2013; 32 Lee (bib14) 2009; 31 Wu, Liu, Yan (bib1) 2008; 41 Langdon, Schleyer (bib5) 2006; 32 Gao, Wang, Jiang (bib21) 2010; 27 Zhou, Hao (bib6) 2008; 35 Du, Li, Hao (bib9) 2007; 08 Shi, Li, Hao (bib20) 2010; 32 D. Lawver, R. Daddazio, D. Vaughan, M. Stanley, H. Levine. Response of AWASC steel column section to blast loading. in: Proceedings of the 2009 ASME Pressure Vessels and Piping Conference, Cleveland, US, 2003. Wang (bib24) 2010 Liew (bib19) 2008; 64 Shi, Hao, Li (bib27) 2007; 17 J. Lacambre, L. Delmas, I A T. Using LS-DYNA MM-ALE capabilities to help design a wall mitigating accidental blast effects, in: Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, 2011.1-6. Mu, Ren, Li (bib10) 2008; 23 Huson, Asaro, Stewart (bib17) 2011; 38 Karns, Houghton, Hong, Kim (bib13) 2009 Li (10.1016/j.tws.2017.12.008_bib16) 2007; 34 10.1016/j.tws.2017.12.008_bib15 Lee (10.1016/j.tws.2017.12.008_bib14) 2009; 31 Wang (10.1016/j.tws.2017.12.008_bib24) 2010 Sabuwala (10.1016/j.tws.2017.12.008_bib12) 2005; 31 Gao (10.1016/j.tws.2017.12.008_bib21) 2010; 27 Mu (10.1016/j.tws.2017.12.008_bib10) 2008; 23 Zhang (10.1016/j.tws.2017.12.008_bib18) 2008; 14 Wu (10.1016/j.tws.2017.12.008_bib1) 2008; 41 Du (10.1016/j.tws.2017.12.008_bib9) 2007; 08 Hong (10.1016/j.tws.2017.12.008_bib4) 2012; 29 Hao (10.1016/j.tws.2017.12.008_bib2) 2010; 42 Jacinto (10.1016/j.tws.2017.12.008_bib11) 2002; 152 Shi (10.1016/j.tws.2017.12.008_bib27) 2007; 17 Sun (10.1016/j.tws.2017.12.008_bib28) 2015 Langdon (10.1016/j.tws.2017.12.008_bib5) 2006; 32 10.1016/j.tws.2017.12.008_bib26 Zhai (10.1016/j.tws.2017.12.008_bib22) 2013; 73 10.1016/j.tws.2017.12.008_bib25 Ni (10.1016/j.tws.2017.12.008_bib23) 2012 Li (10.1016/j.tws.2017.12.008_bib3) 2010; 31 Wu (10.1016/j.tws.2017.12.008_bib7) 2014; 31 Huson (10.1016/j.tws.2017.12.008_bib17) 2011; 38 Zhou (10.1016/j.tws.2017.12.008_bib6) 2008; 35 Zhang (10.1016/j.tws.2017.12.008_bib8) 2013; 32 Karns (10.1016/j.tws.2017.12.008_bib13) 2009 Liew (10.1016/j.tws.2017.12.008_bib19) 2008; 64 Shi (10.1016/j.tws.2017.12.008_bib20) 2010; 32 |
| References_xml | – volume: 42 start-page: 1042 year: 2010 end-page: 1049 ident: bib2 article-title: Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall publication-title: Chin. J. Theor. Appl. Mech. – volume: 64 start-page: 854 year: 2008 end-page: 866 ident: bib19 article-title: Survivability of steel frame structure subjected to blast and fire publication-title: J. Constr. Steel Res. – volume: 31 start-page: 360 year: 2010 end-page: 363 ident: bib3 article-title: Numerical simulation of the weakening effect of retaining wall on shock wave publication-title: J. North Univ. China (Nat. Sci. Ed.) – year: 2012 ident: bib23 article-title: Response Analysis of Single-layer Reticulated Domes Subjected to External Blast Loading using CONWEP and Experimental Design – volume: 41 start-page: 99 year: 2008 end-page: 103 ident: bib1 article-title: Combined protective structures of fabricated anti-blast wall and turnover road stab publication-title: China Civil. Eng. J. – volume: 73 start-page: 57 year: 2013 end-page: 67 ident: bib22 article-title: Performance and protection approach of single-layer reticulated dome subjected to blast loading publication-title: Thin-Walled Struct. – volume: 38 start-page: 546 year: 2011 end-page: 557 ident: bib17 article-title: Non-explosive methods for simulating blast loading of structures with complex geometries publication-title: Int. J. Impact Eng. – volume: 29 start-page: 228 year: 2012 end-page: 235 ident: bib4 article-title: Blast response of inclined rigid walls publication-title: Eng. Mech. – year: 2015 ident: bib28 article-title: Damage Model and Damage Assessment for K8 Single-layer Reticulated Domes under Exterior Blast Loading – start-page: 1868 year: 2009 end-page: 1877 ident: bib13 article-title: Behaviour of varied steel frame connection types subjected to air blast, debrwas impact, and/or post-blast progressive collapse load conditions publication-title: Proc. 2009 Struct. Congr. – volume: 14 start-page: 523 year: 2008 end-page: 529 ident: bib18 article-title: Numerical simulation of dynamic response and collapse for steel frame structures subjected to blast loading publication-title: Trans. Tianjin Univ. – reference: J. Lacambre, L. Delmas, I A T. Using LS-DYNA MM-ALE capabilities to help design a wall mitigating accidental blast effects, in: Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, 2011.1-6. – volume: 08 start-page: 413 year: 2007 end-page: 418 ident: bib9 article-title: Numerical simulation on blast overpressure loading outside buildings. [in Chinese] publication-title: J. PLA Univ. Sci. Technol. – volume: 34 start-page: 743 year: 2007 end-page: 754 ident: bib16 article-title: Drift-controlled design of reinforced concrete frame structures under dwastant blast conditions—Part I: theoretical basis publication-title: Int. J. Impact Eng. – volume: 31 start-page: 9 year: 2014 end-page: 14 ident: bib7 article-title: Research on diffraction flow effect of explosion shock wave behind blast wall publication-title: J. Hebei Univ. Eng. (Nat. Sci. Ed.) – volume: 27 start-page: 226 year: 2010 end-page: 233 ident: bib21 article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading publication-title: Eng. Mech. – volume: 152 start-page: 269 year: 2002 end-page: 276 ident: bib11 article-title: Dynamic response of plates subjected to blast loading publication-title: Proc. Inst. Civil. Eng. Struct. Build. – year: 2010 ident: bib24 article-title: Numerical simulation of Kiewitt8 single-layer reticulated shell subjected to blast loading – volume: 17 start-page: 113 year: 2007 end-page: 133 ident: bib27 article-title: Numerical simulation of blast wave interaction with structure columns. publication-title: Shock Waves – reference: D. Lawver, R. Daddazio, D. Vaughan, M. Stanley, H. Levine. Response of AWASC steel column section to blast loading. in: Proceedings of the 2009 ASME Pressure Vessels and Piping Conference, Cleveland, US, 2003. – volume: 32 start-page: 988 year: 2006 end-page: 1012 ident: bib5 article-title: Deformation and failure of profiled stainless steel blast wall panels. Part III: finite element simulations and overall summary publication-title: Int. J. Impact Eng. – volume: 31 start-page: 25 year: 2009 end-page: 38 ident: bib14 article-title: Local response of w-shape steel columns under blast loading publication-title: Struct. Eng. Mech. – volume: 35 start-page: 363 year: 2008 end-page: 375 ident: bib6 article-title: Prediction of airblast loadings on structures behind a protective barrier publication-title: Int. J. Impact Eng. – volume: 32 start-page: 1691 year: 2010 end-page: 1703 ident: bib20 article-title: A new method for progressive collapse analysis of RC frames under blast loading publication-title: Eng. Struct. – volume: 23 start-page: 169 year: 2008 end-page: 174 ident: bib10 article-title: Experimental study of blast wave reflection and diffraction on a shelter wall publication-title: J. Exp. Mech. – reference: LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2014. – volume: 31 start-page: 861 year: 2005 end-page: 876 ident: bib12 article-title: Finite element analysis of steel beam to column connections subjected to blast loadings publication-title: Int. J. Impact Eng. – volume: 32 start-page: 192 year: 2013 end-page: 197 ident: bib8 article-title: Effect on concrete protective wall on explosion shock wave. publication-title: J. Vib. Shock – start-page: 1868 year: 2009 ident: 10.1016/j.tws.2017.12.008_bib13 article-title: Behaviour of varied steel frame connection types subjected to air blast, debrwas impact, and/or post-blast progressive collapse load conditions publication-title: Proc. 2009 Struct. Congr. – volume: 08 start-page: 413 issue: 05 year: 2007 ident: 10.1016/j.tws.2017.12.008_bib9 article-title: Numerical simulation on blast overpressure loading outside buildings. [in Chinese] publication-title: J. PLA Univ. Sci. Technol. – volume: 31 start-page: 360 issue: 04 year: 2010 ident: 10.1016/j.tws.2017.12.008_bib3 article-title: Numerical simulation of the weakening effect of retaining wall on shock wave publication-title: J. North Univ. China (Nat. Sci. Ed.) – volume: 35 start-page: 363 issue: 5 year: 2008 ident: 10.1016/j.tws.2017.12.008_bib6 article-title: Prediction of airblast loadings on structures behind a protective barrier publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.03.003 – volume: 38 start-page: 546 issue: 7 year: 2011 ident: 10.1016/j.tws.2017.12.008_bib17 article-title: Non-explosive methods for simulating blast loading of structures with complex geometries publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2010.06.002 – volume: 32 start-page: 988 issue: 6 year: 2006 ident: 10.1016/j.tws.2017.12.008_bib5 article-title: Deformation and failure of profiled stainless steel blast wall panels. Part III: finite element simulations and overall summary publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.08.002 – volume: 73 start-page: 57 year: 2013 ident: 10.1016/j.tws.2017.12.008_bib22 article-title: Performance and protection approach of single-layer reticulated dome subjected to blast loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2013.07.011 – volume: 31 start-page: 9 issue: 02 year: 2014 ident: 10.1016/j.tws.2017.12.008_bib7 article-title: Research on diffraction flow effect of explosion shock wave behind blast wall publication-title: J. Hebei Univ. Eng. (Nat. Sci. Ed.) – volume: 42 start-page: 1042 issue: 06 year: 2010 ident: 10.1016/j.tws.2017.12.008_bib2 article-title: Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall publication-title: Chin. J. Theor. Appl. Mech. – volume: 152 start-page: 269 issue: 3 year: 2002 ident: 10.1016/j.tws.2017.12.008_bib11 article-title: Dynamic response of plates subjected to blast loading publication-title: Proc. Inst. Civil. Eng. Struct. Build. doi: 10.1680/stbu.2002.152.3.269 – volume: 31 start-page: 25 issue: 1 year: 2009 ident: 10.1016/j.tws.2017.12.008_bib14 article-title: Local response of w-shape steel columns under blast loading publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2009.31.1.025 – year: 2012 ident: 10.1016/j.tws.2017.12.008_bib23 – volume: 32 start-page: 192 issue: 24 year: 2013 ident: 10.1016/j.tws.2017.12.008_bib8 article-title: Effect on concrete protective wall on explosion shock wave. publication-title: J. Vib. Shock – ident: 10.1016/j.tws.2017.12.008_bib25 – volume: 29 start-page: 228 issue: 11 year: 2012 ident: 10.1016/j.tws.2017.12.008_bib4 article-title: Blast response of inclined rigid walls publication-title: Eng. Mech. – volume: 41 start-page: 99 issue: 01 year: 2008 ident: 10.1016/j.tws.2017.12.008_bib1 article-title: Combined protective structures of fabricated anti-blast wall and turnover road stab publication-title: China Civil. Eng. J. – volume: 14 start-page: 523 issue: suppl year: 2008 ident: 10.1016/j.tws.2017.12.008_bib18 article-title: Numerical simulation of dynamic response and collapse for steel frame structures subjected to blast loading publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-008-0090-y – volume: 17 start-page: 113 year: 2007 ident: 10.1016/j.tws.2017.12.008_bib27 article-title: Numerical simulation of blast wave interaction with structure columns. publication-title: Shock Waves doi: 10.1007/s00193-007-0099-5 – volume: 23 start-page: 169 issue: 02 year: 2008 ident: 10.1016/j.tws.2017.12.008_bib10 article-title: Experimental study of blast wave reflection and diffraction on a shelter wall publication-title: J. Exp. Mech. – year: 2015 ident: 10.1016/j.tws.2017.12.008_bib28 – volume: 32 start-page: 1691 year: 2010 ident: 10.1016/j.tws.2017.12.008_bib20 article-title: A new method for progressive collapse analysis of RC frames under blast loading publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.02.017 – volume: 64 start-page: 854 issue: 7–8 year: 2008 ident: 10.1016/j.tws.2017.12.008_bib19 article-title: Survivability of steel frame structure subjected to blast and fire publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2007.12.013 – ident: 10.1016/j.tws.2017.12.008_bib15 doi: 10.1115/PVP2003-1827 – volume: 31 start-page: 861 issue: 7 year: 2005 ident: 10.1016/j.tws.2017.12.008_bib12 article-title: Finite element analysis of steel beam to column connections subjected to blast loadings publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.04.013 – volume: 34 start-page: 743 issue: 4 year: 2007 ident: 10.1016/j.tws.2017.12.008_bib16 article-title: Drift-controlled design of reinforced concrete frame structures under dwastant blast conditions—Part I: theoretical basis publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.01.010 – volume: 27 start-page: 226 issue: 04 year: 2010 ident: 10.1016/j.tws.2017.12.008_bib21 article-title: Shock wave pressure distribution on large-space structures and explosion venting under blast loading publication-title: Eng. Mech. – year: 2010 ident: 10.1016/j.tws.2017.12.008_bib24 – ident: 10.1016/j.tws.2017.12.008_bib26 |
| SSID | ssj0017194 |
| Score | 2.2421896 |
| Snippet | To investigate the structural dynamic response of long span reticulated shell under external blast loading considering explosion-protection wall, explicit... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 389 |
| SubjectTerms | ALE (Arbitrary-Lagrange-Euler) Dynamic response Explosion-protection wall External blast loading Single-layer reticulated shell |
| Title | Dynamic response of single-layer reticulated shell with explosion-protection wall under blast loading |
| URI | https://dx.doi.org/10.1016/j.tws.2017.12.008 |
| Volume | 127 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuKaNU3T45iO6WAHdbhbSdsEJmUbs7Kbf7vvpe2YoB489SuB8pL83kvyy_sRcg2ILyMTKWZhusxEJhXT4FmYhJGnk0hYmTmW71gOJ-JxGkwbpF-fhUFaZYX9JaY7tK7edCprdpazWecZZg9uE4tDJ1UqwLTbQoSoYnD7uaF58JA7MUQszLB0vbPpOF7FGjN289CtCKLC5E--acvfDA7IfhUo0l75L4ekYeZHZG8rfeAxMXelnDxdlURXQxeW4tw_NyzXEEtTd0QRBbpMRt-R8klx3ZUaJN7hMhmr0jTALV1r-IxHylY0gZC6oPnC8etPyGRw_9Ifsko2gaW-9AqmeerZJMwsV5E00hcpBxSRBhrDJtr6EAFlIkD5b2WNB_6ad62AQMSolKfcs_4pac4Xc3NGqDa-0gCXMFAzoYMkCVMeqMTAQO_CrdciXm2wOK1yiqO0RR7X5LG3GGwco41j3o3Bxi1ys6myLBNq_FVY1K0Qf-sVMQD-79XO_1ftguzCkyqJYJekWaw-zBWEHEXSdn2qTXZ6D6PhGK-jp9fRF-Rx19E |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHtSD-InzMwdPQlzTpml6lOmYOndxg91C2iYwKduYld38231J2zFBPXgLzQuUl-R9JL-8H0LXYPF5rGNBDKTLhGVcEAWehXDYeSqJmeGZQ_kOeG_EnsbhuIE69VsYC6usbH9p0521rr60K22255NJ-xWyB3eJRWGRChHyDbTJQj-yGdjt5wrnQSPq2BCtNLHi9dWmA3kVS1uym0buSNBSTP7knNYcTncP7VaRIr4rf2YfNfT0AO2s1Q88RPq-5JPHixLpqvHMYJv855rkCoJp7N4oWoYuneF3i_nE9uAVa4u8s-dkpKrTAE28VNBt35QtcAIxdYHzmQPYH6FR92HY6ZGKN4GkAfcKomjqmSTKDBUx1zxgKQUzwjXMhkmUCSAEylho-b-F0R44bOobBpGIFilNqWeCY9Sczqb6BGGlA6HAXsJOzZgKkyRKaSgSDTvdh6bXQl6tMJlWRcUtt0Uua_TYmwQdS6tjSX0JOm6hm9WQeVlR4y9hVs-C_LYsJFj834ed_m_YFdrqDV_6sv84eD5D29AjSlTYOWoWiw99AfFHkVy69fUFR8DXww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+response+of+single-layer+reticulated+shell+with+explosion-protection+wall+under+blast+loading&rft.jtitle=Thin-walled+structures&rft.au=Su%2C+Qianqian&rft.au=Zhai%2C+Ximei&rft.date=2018-06-01&rft.issn=0263-8231&rft.volume=127&rft.spage=389&rft.epage=401&rft_id=info:doi/10.1016%2Fj.tws.2017.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tws_2017_12_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |