Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks
It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanic...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 119; p. 105749 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 1873-6769 |
| DOI | 10.1016/j.engappai.2022.105749 |
Cover
| Abstract | It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanical components comprising manufacturing systems with complicated structures. This study proposes a novel data-driven prognostic analysis approach for predicting the failure of a mechanical component based on its degradation path and estimating the RUL. A simulated labelled degradation dataset of a mechanical component with a predefined failure threshold was exploited. In order to increase the ability to maintain the increasing trend and the monotony of the degradation path, supervised machine learning models, including combined artificial neural network architectures and an improved version of the neuron-by-neuron training algorithm using accumulative neural networks design were applied for the prediction process.
The expected degradation path was extrapolated as a testing dataset of the trained prediction model using an accumulative function. The predicted values are updated with each new data point during the training process until a failure occurs. The results show that the used approach is efficient in predicting the failure and estimating the RUL of mechanical components with high accuracy and a high prediction success rate, and it can maintain the monotonous trend of the degradation path. On the other hand, the used network architectures enable the prediction of the failures of mechanical components within a manufacturing system having a complex structure and providing a vast amount of data.
•A novel methodology for fault prognostics of mechanical components.•Improving the ANN-NBN prediction model with accumulative network design.•Improving predictability and performance by utilising FCN and ACN architectures.•A feasible tool for RUL predictions of mechanical components. |
|---|---|
| AbstractList | It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanical components comprising manufacturing systems with complicated structures. This study proposes a novel data-driven prognostic analysis approach for predicting the failure of a mechanical component based on its degradation path and estimating the RUL. A simulated labelled degradation dataset of a mechanical component with a predefined failure threshold was exploited. In order to increase the ability to maintain the increasing trend and the monotony of the degradation path, supervised machine learning models, including combined artificial neural network architectures and an improved version of the neuron-by-neuron training algorithm using accumulative neural networks design were applied for the prediction process.
The expected degradation path was extrapolated as a testing dataset of the trained prediction model using an accumulative function. The predicted values are updated with each new data point during the training process until a failure occurs. The results show that the used approach is efficient in predicting the failure and estimating the RUL of mechanical components with high accuracy and a high prediction success rate, and it can maintain the monotonous trend of the degradation path. On the other hand, the used network architectures enable the prediction of the failures of mechanical components within a manufacturing system having a complex structure and providing a vast amount of data.
•A novel methodology for fault prognostics of mechanical components.•Improving the ANN-NBN prediction model with accumulative network design.•Improving predictability and performance by utilising FCN and ACN architectures.•A feasible tool for RUL predictions of mechanical components. |
| ArticleNumber | 105749 |
| Author | Shaheen, Basheer Kocsis, Ádám Németh, István |
| Author_xml | – sequence: 1 givenname: Basheer orcidid: 0000-0002-1241-2198 surname: Shaheen fullname: Shaheen, Basheer email: shaheen.basheer@gpk.bme.hu – sequence: 2 givenname: Ádám surname: Kocsis fullname: Kocsis, Ádám – sequence: 3 givenname: István orcidid: 0000-0001-7122-3891 surname: Németh fullname: Németh, István |
| BookMark | eNqNkdtqHDEMhk1JoJvDKxS_wGztOdgz0IuW9AgLhZJcG60sp97Oegbbs0nevs5ue9Ob9Erwo09Iny7YWZgCMfZGirUUUr3drSncwzyDX9eirkvY6XZ4xVay102ltBrO2EoMXV3JQavX7CKlnRCi6Vu1Yo8fIUNloz9Q4A78uETicyTrMfspcAiW_7jbcErZ7-EYTY7vCX9C8Agjx2k_l31CTnxJPtxzQFz2y1h6D8QhZu88-tIYaInHkh-m-CtdsXMHY6LrP_WS3X3-dHvztdp8__Lt5sOmwkaJXA1ua7UAJaXVrnESe9JCkWsdddjS1skG26a1XSsHZx00euj7bY26G2QHVjSXTJ_mLmGGpwcYRzPHckp8MlKYZ4FmZ_4KNM8CzUlgIdWJxDilFMn9P_juHxB9PrrLsRh-GX9_wqloOXiKJqGngOUnkTAbO_mXRvwGtHKpIg |
| CitedBy_id | crossref_primary_10_1016_j_engfailanal_2024_108455 crossref_primary_10_1016_j_cie_2023_109510 crossref_primary_10_1016_j_engappai_2023_107114 crossref_primary_10_1177_00219983241268861 crossref_primary_10_1016_j_engappai_2023_107157 crossref_primary_10_1016_j_energy_2024_133648 crossref_primary_10_1016_j_engappai_2024_109868 crossref_primary_10_1109_TR_2024_3362331 crossref_primary_10_1016_j_engappai_2023_107790 crossref_primary_10_7717_peerj_cs_1943 crossref_primary_10_1007_s10845_024_02545_6 crossref_primary_10_1007_s11581_024_05992_6 crossref_primary_10_1016_j_engappai_2024_109267 crossref_primary_10_55529_ijasm_12_30_42 crossref_primary_10_3390_machines11100923 crossref_primary_10_1016_j_procir_2024_10_096 crossref_primary_10_1145_3623378 |
| Cites_doi | 10.1109/TDLA47668.2020.9326244 10.1109/TNN.2010.2045657 10.1109/IJCNN.2003.1223966 10.1016/j.apor.2018.02.016 10.1016/j.engappai.2014.05.015 10.1016/S0952-1976(03)00063-0 10.1016/j.camwa.2010.03.065 10.3311/PPme.16625 10.1109/TNNLS.2021.3070840 10.1109/ICCSCE50387.2020.9204921 10.1016/j.ress.2017.11.021 10.1109/ACCESS.2021.3050243 10.1016/j.ress.2016.10.002 10.3311/PPme.8742 10.1023/A:1009629311100 10.1088/1361-6501/ab6671 10.1109/TR.2012.2194175 10.1109/TII.2018.2868687 10.1016/j.ins.2008.05.007 10.1109/TNN.2010.2073482 10.1016/j.ifacol.2020.11.051 10.1109/ACCESS.2020.3023335 10.1109/TCYB.2013.2259229 10.3182/20100701-2-PT-4012.00025 10.1109/MIE.2009.934790 10.1016/j.ymssp.2017.11.016 10.1109/TII.2012.2187914 10.3390/en14113156 10.3390/pr10112173 10.1002/mcda.1618 10.1016/j.engappai.2013.02.006 10.36001/phmconf.2012.v4i1.2115 10.1109/ISIE.2010.5637934 10.1109/ACCESS.2020.3006788 10.1109/ACCESS.2017.2765544 10.1115/1.1962019 10.1109/HSI.2010.5514571 10.1016/j.ifacol.2019.11.337 10.1016/j.compind.2020.103298 10.3311/PPme.20145 10.1109/MESA.2018.8449150 10.1109/ICIT.2011.5754336 10.1109/TII.2014.2349359 10.1109/BigData.2017.8258307 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.engappai.2022.105749 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10.1016/j.engappai.2022.105749 10_1016_j_engappai_2022_105749 S0952197622007394 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c360t-9fbd70a611d7f3f1c8e706ef4fe5c4ebf13c434d5419fdfa37988b2c75915ad03 |
| IEDL.DBID | UNPAY |
| ISSN | 0952-1976 1873-6769 |
| IngestDate | Tue Aug 19 16:51:55 EDT 2025 Sat Oct 25 05:18:20 EDT 2025 Thu Apr 24 22:49:06 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault prognostics Remaining useful life prediction Maintenance planning and scheduling Accumulative neural networks Machine learning Predictive maintenance |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-9fbd70a611d7f3f1c8e706ef4fe5c4ebf13c434d5419fdfa37988b2c75915ad03 |
| ORCID | 0000-0001-7122-3891 0000-0002-1241-2198 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.engappai.2022.105749 |
| ParticipantIDs | unpaywall_primary_10_1016_j_engappai_2022_105749 crossref_primary_10_1016_j_engappai_2022_105749 crossref_citationtrail_10_1016_j_engappai_2022_105749 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105749 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bagdonavičius, Nikulin (b3) 2001; 7 Hunter, D., Yu, H., Member, S., Pukish, M.S., Member, S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures — a comparative study. 8(2), 228–240. Susto, Schirru, Pampuri, McLoone, Beghi (b52) 2015; 11 Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta, Mengoni, Frontoni, Kapetis (b8) 2020; 11 Çinar, Nuhu, Zeeshan, Korhan, Asmael, Safaei (b9) 2020; 12 Li, Ding, Sun (b27) 2018; 172 Cotton, Wilamowski, Yu (b11) 2011 Lei, Li, Guo, Li, Yan, Lin (b26) 2018; 104 Yan, Meng, Lu, Li (b65) 2017; 5 Berghout, Mouss, Kadri, Saïdi, Benbouzid (b6) 2020; 96 Li, Wang, Ismail (b28) 2013; 43 Li, Zhang, Ma, Luo, Li (b30) 2022; 33 Shifat, Yasmin, Hur (b49) 2021; 14 Ramasso, E., Placet, V., Gouriveau, R., Boubakar, L., Zerhouni, N., 2012. Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012. pp. 17–27. Mahamad, Saon, Hiyama (b32) 2010; 60 Medjaher, Tobon-Mejia, Zerhouni (b33) 2012; 61 Laguna, R., Geremias, N., Mauiri, D., Alfonso, J., Chiruzzo, L., Ezzatti, P., Gutierrez, A., 2020. Early detection of gearbox damage, development of ANN forecast maintenance tool. In: 2020 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D la 2020. pp. 1–6. Leh, N.A.M., Zain, F.M., Muhammad, Z., Hamid, S.A., Rosli, A.D., 2020. Fault Detection Method Using ANN for Power Transmission Line. In: Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020. pp. 79–84. Ozcan, Simsir (b36) 2019; 22 de Jonge, Teunter, Tinga (b13) 2017; 158 Wilamowski (b58) 2011 Gopal (b16) 2021; 65 Wilamowski, B.M., Yu, H., 2010. Improved computation for levenberg – marquardt training. 21(6), 930–937. Wilamowski, B.M., 2011a. How to not get frustrated with neural networks. In: IEEE International Conference on Industrial Technology. pp. 5–11. . Xu, Baraldi, Al-Dahidi, Zio (b63) 2020; 87 Javed, Gouriveau, Zemouri, Zerhouni, Javed, Gouriveau, Zemouri, Improving, Javed, Gouriveau, Zemouri, Zerhouni (b20) 2011 Wilamowski, B.M., Yu, H., 2010. Neural network learning without backpropagation. 21(11), 1793–1803. Saxena, Celaya, Balaban, Goebel, Saha, Saha, Schwabacher (b43) 2008 Miao (b34) 2021 Shaheen, Németh (b45) 2022; 10 Tebassi, Yallese, Meddour, Girardin, Mabrouki (b53) 2017; 61 Bourezza, Mousrij (b7) 2021 Dalzochio, Kunst, Pignaton, Binotto, Sanyal, Favilla, Barbosa (b12) 2020; 123 Sampaio, Filho, da Silva, da Silva (b42) 2019; 19 Seiti, Tagipour, Hafezalkotob, Asgari (b44) 2017; 24 Aghezzaf, Najid (b1) 2008; 178 Han, Wang, Xie, He, Li, Wang (b17) 2021; 210 Wilamowski, B.M., 2010. Challenges in applications of computational intelligence in industrial electronics. In: IEEE International Symposium on Industrial Electronics. pp. 15–22. Lu, Sun, Zhang, Feng, Kang, Fu (b31) 2018; 74 Németh, Kocsis, Takács, Shaheen, Takács, Merlo, Eytan, Bidoggia, Olocco (b35) 2020; 53 Rajmohan, Palanikumar (b39) 2011; 6 Yu, H., Wilamowski, B.M., 2010. Fast and Efficient and Training of Neural Networks. In: 3rd International Conference on Human System Interaction. pp. 175–181. Zemouri, Gouriveau (b67) 2010; 1 no. August. Cotton (b10) 2008 Xia, Li, Shu, Wan, De Silva, Wang (b62) 2019; 15 Singh, Darpe, Singh (b50) 2020; 31 Einabadi, Baboli, Ebrahimi (b15) 2019; 52 Pan, Er, Li, Yu, Gouriveau (b37) 2014; 35 Wilamowski (b55) 2009; 3 Baru (b4) 2018 Zhang, Li, Ma, Luo, Li (b69) 2021; 211 Hussain, Mokhtar, Howe (b19) 2013 Wilamowski, B., Hunter, D., Maljnowski, A., 2003. Solving Parity-N Problems with Feedforward Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks. pp. 2546–2551. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J., 2018. Machine Learning approach for Predictive Maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018. pp. 1–6. Jiménez, Gómez Muñoz, García Márquez (b21) 2018; 11 Shifat, Hur (b47) 2021; 9 Zemouri, Racoceanu, Zerhouni (b68) 2003; 16 Shaheen, Németh (b46) 2022; 66 Li, Xu, Li, Yang, Lei (b29) 2022 de Pater, Mitici (b14) 2023; 117 Sirvio (b51) 2015; 87 Lee, Y.O., Jo, J., Hwang, J., 2017. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In: Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, Vol. 2018-Janua. pp. 3248–3253. Wang, Alexander (b54) 2016; 1 Ak, Li, Vitelli, Zio (b2) 2013; 33 Benkedjouh, Medjaher, Zerhouni, Rechak (b5) 2013; 26 Kiangala, Wang (b22) 2020; 8 Shifat, Jang-Wook (b48) 2020; 8 Rozycki, Malinowski, Kolbusz, Wilamowski (b41) 2019 Yan, Lee (b64) 2005; 127 10.1016/j.engappai.2022.105749_b57 Javed (10.1016/j.engappai.2022.105749_b20) 2011 10.1016/j.engappai.2022.105749_b59 Singh (10.1016/j.engappai.2022.105749_b50) 2020; 31 Seiti (10.1016/j.engappai.2022.105749_b44) 2017; 24 10.1016/j.engappai.2022.105749_b18 Gopal (10.1016/j.engappai.2022.105749_b16) 2021; 65 10.1016/j.engappai.2022.105749_b56 Shaheen (10.1016/j.engappai.2022.105749_b46) 2022; 66 Cotton (10.1016/j.engappai.2022.105749_b11) 2011 Mahamad (10.1016/j.engappai.2022.105749_b32) 2010; 60 Shaheen (10.1016/j.engappai.2022.105749_b45) 2022; 10 Cotton (10.1016/j.engappai.2022.105749_b10) 2008 Dalzochio (10.1016/j.engappai.2022.105749_b12) 2020; 123 10.1016/j.engappai.2022.105749_b24 Rajmohan (10.1016/j.engappai.2022.105749_b39) 2011; 6 10.1016/j.engappai.2022.105749_b25 Zemouri (10.1016/j.engappai.2022.105749_b67) 2010; 1 Saxena (10.1016/j.engappai.2022.105749_b43) 2008 Pan (10.1016/j.engappai.2022.105749_b37) 2014; 35 Shifat (10.1016/j.engappai.2022.105749_b49) 2021; 14 10.1016/j.engappai.2022.105749_b60 10.1016/j.engappai.2022.105749_b61 Hussain (10.1016/j.engappai.2022.105749_b19) 2013 Susto (10.1016/j.engappai.2022.105749_b52) 2015; 11 10.1016/j.engappai.2022.105749_b66 Zhang (10.1016/j.engappai.2022.105749_b69) 2021; 211 10.1016/j.engappai.2022.105749_b23 Ozcan (10.1016/j.engappai.2022.105749_b36) 2019; 22 Lei (10.1016/j.engappai.2022.105749_b26) 2018; 104 Einabadi (10.1016/j.engappai.2022.105749_b15) 2019; 52 Rozycki (10.1016/j.engappai.2022.105749_b41) 2019 Berghout (10.1016/j.engappai.2022.105749_b6) 2020; 96 Çinar (10.1016/j.engappai.2022.105749_b9) 2020; 12 10.1016/j.engappai.2022.105749_b38 Baru (10.1016/j.engappai.2022.105749_b4) 2018 Bourezza (10.1016/j.engappai.2022.105749_b7) 2021 de Jonge (10.1016/j.engappai.2022.105749_b13) 2017; 158 Zemouri (10.1016/j.engappai.2022.105749_b68) 2003; 16 Miao (10.1016/j.engappai.2022.105749_b34) 2021 Lu (10.1016/j.engappai.2022.105749_b31) 2018; 74 Aghezzaf (10.1016/j.engappai.2022.105749_b1) 2008; 178 Tebassi (10.1016/j.engappai.2022.105749_b53) 2017; 61 Yan (10.1016/j.engappai.2022.105749_b64) 2005; 127 Li (10.1016/j.engappai.2022.105749_b29) 2022 Wang (10.1016/j.engappai.2022.105749_b54) 2016; 1 de Pater (10.1016/j.engappai.2022.105749_b14) 2023; 117 Jiménez (10.1016/j.engappai.2022.105749_b21) 2018; 11 Li (10.1016/j.engappai.2022.105749_b30) 2022; 33 Li (10.1016/j.engappai.2022.105749_b28) 2013; 43 Németh (10.1016/j.engappai.2022.105749_b35) 2020; 53 Shifat (10.1016/j.engappai.2022.105749_b48) 2020; 8 Kiangala (10.1016/j.engappai.2022.105749_b22) 2020; 8 Bagdonavičius (10.1016/j.engappai.2022.105749_b3) 2001; 7 Sampaio (10.1016/j.engappai.2022.105749_b42) 2019; 19 Benkedjouh (10.1016/j.engappai.2022.105749_b5) 2013; 26 10.1016/j.engappai.2022.105749_b40 Wilamowski (10.1016/j.engappai.2022.105749_b55) 2009; 3 Li (10.1016/j.engappai.2022.105749_b27) 2018; 172 Wilamowski (10.1016/j.engappai.2022.105749_b58) 2011 Shifat (10.1016/j.engappai.2022.105749_b47) 2021; 9 Medjaher (10.1016/j.engappai.2022.105749_b33) 2012; 61 Sirvio (10.1016/j.engappai.2022.105749_b51) 2015; 87 Ak (10.1016/j.engappai.2022.105749_b2) 2013; 33 Xia (10.1016/j.engappai.2022.105749_b62) 2019; 15 Calabrese (10.1016/j.engappai.2022.105749_b8) 2020; 11 Han (10.1016/j.engappai.2022.105749_b17) 2021; 210 Yan (10.1016/j.engappai.2022.105749_b65) 2017; 5 Xu (10.1016/j.engappai.2022.105749_b63) 2020; 87 |
| References_xml | – year: 2008 ident: b10 article-title: Training Arbitrarily Connected Neural Networks with Second Order Algorithms – volume: 10 start-page: 2173 year: 2022 ident: b45 article-title: Integration of maintenance management system functions with industry 4.0 technologies and features—A review publication-title: Processes – reference: Wilamowski, B.M., 2010. Challenges in applications of computational intelligence in industrial electronics. In: IEEE International Symposium on Industrial Electronics. pp. 15–22. – start-page: 1 year: 2011 end-page: 18 ident: b58 article-title: Neural networks learning publication-title: Intelligent Systems – volume: 7 start-page: 85 year: 2001 end-page: 103 ident: b3 article-title: Estimation in degradation models with explanatory variables publication-title: Lifetime Data Anal. – volume: 1 start-page: 140 year: 2010 end-page: 145 ident: b67 article-title: Towards accurate and reproducible predictions for prognostic: An approach combining a RRBF network and an AutoRegressive model publication-title: IFAC Proc. Vol. (IFAC-PapersOnline) – volume: 117 year: 2023 ident: b14 article-title: Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 9 start-page: 9429 year: 2021 end-page: 9441 ident: b47 article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis publication-title: IEEE Access – volume: 22 start-page: 1175 year: 2019 end-page: 1186 ident: b36 article-title: A new model based on artificial bee colony algorithm for preventive maintenance with replacement scheduling in continuous production lines publication-title: Eng. Sci. Technol. Int. J. – volume: 11 start-page: 812 year: 2015 end-page: 820 ident: b52 article-title: Machine learning for predictive maintenance: A multiple classifier approach publication-title: IEEE Trans. Ind. Inform. – volume: 33 start-page: 925 year: 2013 end-page: 930 ident: b2 article-title: A genetic algorithm and neural network technique for predicting wind power under uncertainty publication-title: Chem. Eng. Trans. – volume: 19 start-page: 5 year: 2019 end-page: 7 ident: b42 article-title: Prediction of motor failure time using an artificial neural network publication-title: Sensors (Switzerland) – year: 2018 ident: b4 article-title: Three ways to estimate remaining useful life for predictive maintenance, mathworks newsletters – volume: 96 year: 2020 ident: b6 article-title: Aircraft engines remaining useful life prediction with an adaptive denoising online sequential extreme learning machine publication-title: Eng. Appl. Artif. Intell. – start-page: 41 year: 2019 end-page: 46 ident: b41 article-title: The impact of architecture on the deep neural networks training – volume: 87 year: 2020 ident: b63 article-title: Fault prognostics by an ensemble of echo state networks in presence of event based measurements publication-title: Eng. Appl. Artif. Intell. – reference: Wilamowski, B.M., 2011a. How to not get frustrated with neural networks. In: IEEE International Conference on Industrial Technology. pp. 5–11. – volume: 61 start-page: 292 year: 2012 end-page: 302 ident: b33 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: IEEE Trans. Reliab. – volume: 24 start-page: 257 year: 2017 end-page: 274 ident: b44 article-title: Maintenance strategy selection with risky evaluations using RAHP publication-title: J. Multi-Criteria Decis. Anal. – start-page: 2021 year: 2021 ident: b34 article-title: Prediction-based maintenance of existing bridges using neural network and sensitivity analysis publication-title: Adv. Civ. Eng. – volume: 14 year: 2021 ident: b49 article-title: A data driven rul estimation framework of electric motor using deep electrical feature learning from current harmonics and apparent power publication-title: Energies – volume: 12 year: 2020 ident: b9 article-title: Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0 publication-title: Sustainability (Switzerland) – year: 2008 ident: b43 article-title: Metrics for evaluating performance of prognostic techniques – volume: 26 start-page: 1751 year: 2013 end-page: 1760 ident: b5 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 168414 year: 2020 end-page: 168428 ident: b48 article-title: Remaining useful life estimation of BLDC motor considering voltage degradation and attention-based neural network publication-title: IEEE Access – volume: 123 year: 2020 ident: b12 article-title: Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges publication-title: Comput. Ind. – volume: 15 start-page: 3703 year: 2019 end-page: 3711 ident: b62 article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks publication-title: IEEE Trans. Ind. Inform. – reference: Lee, Y.O., Jo, J., Hwang, J., 2017. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In: Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, Vol. 2018-Janua. pp. 3248–3253. – volume: 158 start-page: 21 year: 2017 end-page: 30 ident: b13 article-title: The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance publication-title: Reliab. Eng. Syst. Saf. – volume: 3 start-page: 56 year: 2009 end-page: 63 ident: b55 article-title: Neural network architectures and learning algorithms publication-title: IEEE Ind. Electron. Mag. – volume: 87 start-page: 221 year: 2015 end-page: 245 ident: b51 article-title: Intelligent systems in maintenance planning and management publication-title: Intell. Syst. Ref. Libr. – volume: 52 start-page: 1069 year: 2019 end-page: 1074 ident: b15 article-title: Dynamic predictive maintenance in industry 4.0 based on real time information: Case study in automotive industries publication-title: IFAC PapersOnLine – volume: 211 year: 2021 ident: b69 article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions publication-title: Reliab. Eng. Syst. Saf. – volume: 60 start-page: 1078 year: 2010 end-page: 1087 ident: b32 article-title: Predicting remaining useful life of rotating machinery based artificial neural network publication-title: Comput. Math. Appl. – volume: 6 start-page: 281 year: 2011 end-page: 290 ident: b39 article-title: Ann model to predict surface roughness in drilling hybrid composites publication-title: Adv. Prod. Eng. Manage. – volume: 5 start-page: 23484 year: 2017 end-page: 23491 ident: b65 article-title: Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: b26 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Signal Process. – year: 2021 ident: b7 article-title: Towards a Platform to Implement an Intelligent and Predictive Maintenance in the Context of Industry 4.0, Vol. 1193 – reference: Wilamowski, B., Hunter, D., Maljnowski, A., 2003. Solving Parity-N Problems with Feedforward Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks. pp. 2546–2551. – volume: 31 year: 2020 ident: b50 article-title: Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering publication-title: Meas. Sci. Technol. – volume: 61 start-page: 1 year: 2017 end-page: 11 ident: b53 article-title: On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response surface methodology: Accuracy and beneft publication-title: Periodica Polytech. Mech. Eng. – start-page: 555 year: 2011 end-page: 560 ident: b20 article-title: Improving data-driven prognostics by assessing predictability of features publication-title: Progn. Health Manage. Soc. – volume: 1 start-page: 52 year: 2016 end-page: 61 ident: b54 article-title: Machine learning in big data publication-title: Int. J. Math. Eng. Manage. Sci. – volume: 8 start-page: 121033 year: 2020 end-page: 121049 ident: b22 article-title: An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment publication-title: IEEE Access – reference: Wilamowski, B.M., Yu, H., 2010. Neural network learning without backpropagation. 21(11), 1793–1803. – volume: 127 start-page: 912 year: 2005 end-page: 914 ident: b64 article-title: Degradation assessment and fault modes classification using logistic regression publication-title: Trans. ASME, J. Manuf. Sci. Eng. – volume: 35 start-page: 105 year: 2014 end-page: 113 ident: b37 article-title: Machine health condition prediction via online dynamic fuzzy neural networks publication-title: Eng. Appl. Artif. Intell. – volume: 11 start-page: 1 year: 2018 end-page: 16 ident: b21 article-title: Machine learning for wind turbine blades maintenance management publication-title: Energies – start-page: 1 year: 2011 end-page: 24 ident: b11 article-title: NBN algorithm publication-title: Industrial Electronics Handbook – volume: 53 start-page: 319 year: 2020 end-page: 324 ident: b35 article-title: Maintenance schedule optimisation for manufacturing systems publication-title: IFAC-PapersOnLine – volume: 33 start-page: 5480 year: 2022 end-page: 5491 ident: b30 article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Laguna, R., Geremias, N., Mauiri, D., Alfonso, J., Chiruzzo, L., Ezzatti, P., Gutierrez, A., 2020. Early detection of gearbox damage, development of ANN forecast maintenance tool. In: 2020 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D la 2020. pp. 1–6. – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: b27 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. – reference: Ramasso, E., Placet, V., Gouriveau, R., Boubakar, L., Zerhouni, N., 2012. Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012. pp. 17–27. – volume: 11 start-page: 1 year: 2020 end-page: 17 ident: b8 article-title: SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information (Switzerland) – volume: 66 start-page: 244 year: 2022 end-page: 252 ident: b46 article-title: Machine learning approach for degradation path prediction using different models and architectures of artificial neural networks publication-title: Periodica Polytech. Mech. Eng. – reference: Leh, N.A.M., Zain, F.M., Muhammad, Z., Hamid, S.A., Rosli, A.D., 2020. Fault Detection Method Using ANN for Power Transmission Line. In: Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020. pp. 79–84. – volume: 43 start-page: 1484 year: 2013 end-page: 1494 ident: b28 article-title: Fuzzy neural network technique for system state forecasting publication-title: IEEE Trans. Cybern. – reference: . – reference: Hunter, D., Yu, H., Member, S., Pukish, M.S., Member, S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures — a comparative study. 8(2), 228–240. – volume: 178 start-page: 3382 year: 2008 end-page: 3392 ident: b1 article-title: Integrated production planning and preventive maintenance in deteriorating production systems publication-title: Inform. Sci. – volume: 210 year: 2021 ident: b17 article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence publication-title: Reliab. Eng. Syst. Saf. – reference: Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J., 2018. Machine Learning approach for Predictive Maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018. pp. 1–6. – reference: Yu, H., Wilamowski, B.M., 2010. Fast and Efficient and Training of Neural Networks. In: 3rd International Conference on Human System Interaction. pp. 175–181. – year: 2013 ident: b19 article-title: Aircraft sensor estimation for fault tolerant flight control system using fully connected cascade neural network – start-page: 1 year: 2022 end-page: 14 ident: b29 article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks publication-title: IEEE/CAA J. Autom. Sin. – volume: 74 start-page: 69 year: 2018 end-page: 79 ident: b31 article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach publication-title: Appl. Ocean Res. – volume: 65 start-page: 141 year: 2021 end-page: 150 ident: b16 article-title: Effect of machining parameters and optimization of temperature rise in turning operation of aluminium-6061 using RSM and artificial neural network publication-title: Periodica Polytech. Mech. Eng. – reference: Wilamowski, B.M., Yu, H., 2010. Improved computation for levenberg – marquardt training. 21(6), 930–937. – reference: , no. August. – volume: 16 start-page: 453 year: 2003 end-page: 463 ident: b68 article-title: Recurrent radial basis function network for time-series prediction publication-title: Eng. Appl. Artif. Intell. – ident: 10.1016/j.engappai.2022.105749_b23 doi: 10.1109/TDLA47668.2020.9326244 – ident: 10.1016/j.engappai.2022.105749_b60 doi: 10.1109/TNN.2010.2045657 – year: 2008 ident: 10.1016/j.engappai.2022.105749_b10 – volume: 211 issue: February year: 2021 ident: 10.1016/j.engappai.2022.105749_b69 article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions publication-title: Reliab. Eng. Syst. Saf. – ident: 10.1016/j.engappai.2022.105749_b59 doi: 10.1109/IJCNN.2003.1223966 – volume: 74 start-page: 69 year: 2018 ident: 10.1016/j.engappai.2022.105749_b31 article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.02.016 – volume: 11 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.engappai.2022.105749_b21 article-title: Machine learning for wind turbine blades maintenance management publication-title: Energies – volume: 35 start-page: 105 year: 2014 ident: 10.1016/j.engappai.2022.105749_b37 article-title: Machine health condition prediction via online dynamic fuzzy neural networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.05.015 – volume: 16 start-page: 453 issue: 5–6 year: 2003 ident: 10.1016/j.engappai.2022.105749_b68 article-title: Recurrent radial basis function network for time-series prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(03)00063-0 – volume: 22 start-page: 1175 issue: 6 year: 2019 ident: 10.1016/j.engappai.2022.105749_b36 article-title: A new model based on artificial bee colony algorithm for preventive maintenance with replacement scheduling in continuous production lines publication-title: Eng. Sci. Technol. Int. J. – start-page: 41 year: 2019 ident: 10.1016/j.engappai.2022.105749_b41 – volume: 60 start-page: 1078 issue: 4 year: 2010 ident: 10.1016/j.engappai.2022.105749_b32 article-title: Predicting remaining useful life of rotating machinery based artificial neural network publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.03.065 – volume: 65 start-page: 141 issue: 2 year: 2021 ident: 10.1016/j.engappai.2022.105749_b16 article-title: Effect of machining parameters and optimization of temperature rise in turning operation of aluminium-6061 using RSM and artificial neural network publication-title: Periodica Polytech. Mech. Eng. doi: 10.3311/PPme.16625 – volume: 117 issue: October 2022 year: 2023 ident: 10.1016/j.engappai.2022.105749_b14 article-title: Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 210 issue: February year: 2021 ident: 10.1016/j.engappai.2022.105749_b17 article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence publication-title: Reliab. Eng. Syst. Saf. – volume: 33 start-page: 5480 issue: 10 year: 2022 ident: 10.1016/j.engappai.2022.105749_b30 article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3070840 – ident: 10.1016/j.engappai.2022.105749_b25 doi: 10.1109/ICCSCE50387.2020.9204921 – volume: 172 start-page: 1 issue: June 2017 year: 2018 ident: 10.1016/j.engappai.2022.105749_b27 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2022.105749_b29 article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks publication-title: IEEE/CAA J. Autom. Sin. – volume: 1 start-page: 52 issue: 2 year: 2016 ident: 10.1016/j.engappai.2022.105749_b54 article-title: Machine learning in big data publication-title: Int. J. Math. Eng. Manage. Sci. – volume: 9 start-page: 9429 year: 2021 ident: 10.1016/j.engappai.2022.105749_b47 article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050243 – volume: 158 start-page: 21 issue: 24 year: 2017 ident: 10.1016/j.engappai.2022.105749_b13 article-title: The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.10.002 – volume: 61 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.engappai.2022.105749_b53 article-title: On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response surface methodology: Accuracy and beneft publication-title: Periodica Polytech. Mech. Eng. doi: 10.3311/PPme.8742 – volume: 7 start-page: 85 issue: 1 year: 2001 ident: 10.1016/j.engappai.2022.105749_b3 article-title: Estimation in degradation models with explanatory variables publication-title: Lifetime Data Anal. doi: 10.1023/A:1009629311100 – volume: 6 start-page: 281 issue: 4 year: 2011 ident: 10.1016/j.engappai.2022.105749_b39 article-title: Ann model to predict surface roughness in drilling hybrid composites publication-title: Adv. Prod. Eng. Manage. – year: 2021 ident: 10.1016/j.engappai.2022.105749_b7 – volume: 31 issue: 8 year: 2020 ident: 10.1016/j.engappai.2022.105749_b50 article-title: Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab6671 – volume: 61 start-page: 292 issue: 2 year: 2012 ident: 10.1016/j.engappai.2022.105749_b33 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2012.2194175 – volume: 15 start-page: 3703 issue: 6 year: 2019 ident: 10.1016/j.engappai.2022.105749_b62 article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2868687 – year: 2013 ident: 10.1016/j.engappai.2022.105749_b19 – volume: 87 start-page: 221 issue: October year: 2015 ident: 10.1016/j.engappai.2022.105749_b51 article-title: Intelligent systems in maintenance planning and management publication-title: Intell. Syst. Ref. Libr. – volume: 178 start-page: 3382 issue: 17 year: 2008 ident: 10.1016/j.engappai.2022.105749_b1 article-title: Integrated production planning and preventive maintenance in deteriorating production systems publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.05.007 – ident: 10.1016/j.engappai.2022.105749_b61 doi: 10.1109/TNN.2010.2073482 – year: 2018 ident: 10.1016/j.engappai.2022.105749_b4 – volume: 53 start-page: 319 issue: 3 year: 2020 ident: 10.1016/j.engappai.2022.105749_b35 article-title: Maintenance schedule optimisation for manufacturing systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2020.11.051 – volume: 8 start-page: 168414 year: 2020 ident: 10.1016/j.engappai.2022.105749_b48 article-title: Remaining useful life estimation of BLDC motor considering voltage degradation and attention-based neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023335 – volume: 43 start-page: 1484 issue: 5 year: 2013 ident: 10.1016/j.engappai.2022.105749_b28 article-title: Fuzzy neural network technique for system state forecasting publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2259229 – volume: 1 start-page: 140 issue: PART 1 year: 2010 ident: 10.1016/j.engappai.2022.105749_b67 article-title: Towards accurate and reproducible predictions for prognostic: An approach combining a RRBF network and an AutoRegressive model publication-title: IFAC Proc. Vol. (IFAC-PapersOnline) doi: 10.3182/20100701-2-PT-4012.00025 – volume: 96 issue: July year: 2020 ident: 10.1016/j.engappai.2022.105749_b6 article-title: Aircraft engines remaining useful life prediction with an adaptive denoising online sequential extreme learning machine publication-title: Eng. Appl. Artif. Intell. – volume: 3 start-page: 56 issue: 4 year: 2009 ident: 10.1016/j.engappai.2022.105749_b55 article-title: Neural network architectures and learning algorithms publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2009.934790 – volume: 104 start-page: 799 year: 2018 ident: 10.1016/j.engappai.2022.105749_b26 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.11.016 – start-page: 555 year: 2011 ident: 10.1016/j.engappai.2022.105749_b20 article-title: Improving data-driven prognostics by assessing predictability of features publication-title: Progn. Health Manage. Soc. – ident: 10.1016/j.engappai.2022.105749_b18 doi: 10.1109/TII.2012.2187914 – volume: 14 issue: 11 year: 2021 ident: 10.1016/j.engappai.2022.105749_b49 article-title: A data driven rul estimation framework of electric motor using deep electrical feature learning from current harmonics and apparent power publication-title: Energies doi: 10.3390/en14113156 – year: 2008 ident: 10.1016/j.engappai.2022.105749_b43 – volume: 10 start-page: 2173 issue: 11 year: 2022 ident: 10.1016/j.engappai.2022.105749_b45 article-title: Integration of maintenance management system functions with industry 4.0 technologies and features—A review publication-title: Processes doi: 10.3390/pr10112173 – volume: 24 start-page: 257 issue: 5–6 year: 2017 ident: 10.1016/j.engappai.2022.105749_b44 article-title: Maintenance strategy selection with risky evaluations using RAHP publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.1618 – volume: 26 start-page: 1751 issue: 7 year: 2013 ident: 10.1016/j.engappai.2022.105749_b5 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.02.006 – ident: 10.1016/j.engappai.2022.105749_b40 doi: 10.36001/phmconf.2012.v4i1.2115 – volume: 12 issue: 19 year: 2020 ident: 10.1016/j.engappai.2022.105749_b9 article-title: Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0 publication-title: Sustainability (Switzerland) – volume: 19 start-page: 5 issue: 19 year: 2019 ident: 10.1016/j.engappai.2022.105749_b42 article-title: Prediction of motor failure time using an artificial neural network publication-title: Sensors (Switzerland) – ident: 10.1016/j.engappai.2022.105749_b56 doi: 10.1109/ISIE.2010.5637934 – volume: 8 start-page: 121033 year: 2020 ident: 10.1016/j.engappai.2022.105749_b22 article-title: An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006788 – start-page: 1 year: 2011 ident: 10.1016/j.engappai.2022.105749_b58 article-title: Neural networks learning – start-page: 1 year: 2011 ident: 10.1016/j.engappai.2022.105749_b11 article-title: NBN algorithm – start-page: 2021 year: 2021 ident: 10.1016/j.engappai.2022.105749_b34 article-title: Prediction-based maintenance of existing bridges using neural network and sensitivity analysis publication-title: Adv. Civ. Eng. – volume: 33 start-page: 925 issue: 2007 year: 2013 ident: 10.1016/j.engappai.2022.105749_b2 article-title: A genetic algorithm and neural network technique for predicting wind power under uncertainty publication-title: Chem. Eng. Trans. – volume: 5 start-page: 23484 issue: c year: 2017 ident: 10.1016/j.engappai.2022.105749_b65 article-title: Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2765544 – volume: 127 start-page: 912 issue: 4 year: 2005 ident: 10.1016/j.engappai.2022.105749_b64 article-title: Degradation assessment and fault modes classification using logistic regression publication-title: Trans. ASME, J. Manuf. Sci. Eng. doi: 10.1115/1.1962019 – ident: 10.1016/j.engappai.2022.105749_b66 doi: 10.1109/HSI.2010.5514571 – volume: 52 start-page: 1069 issue: 13 year: 2019 ident: 10.1016/j.engappai.2022.105749_b15 article-title: Dynamic predictive maintenance in industry 4.0 based on real time information: Case study in automotive industries publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2019.11.337 – volume: 123 year: 2020 ident: 10.1016/j.engappai.2022.105749_b12 article-title: Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103298 – volume: 66 start-page: 244 issue: 3 year: 2022 ident: 10.1016/j.engappai.2022.105749_b46 article-title: Machine learning approach for degradation path prediction using different models and architectures of artificial neural networks publication-title: Periodica Polytech. Mech. Eng. doi: 10.3311/PPme.20145 – ident: 10.1016/j.engappai.2022.105749_b38 doi: 10.1109/MESA.2018.8449150 – ident: 10.1016/j.engappai.2022.105749_b57 doi: 10.1109/ICIT.2011.5754336 – volume: 11 start-page: 812 issue: 3 year: 2015 ident: 10.1016/j.engappai.2022.105749_b52 article-title: Machine learning for predictive maintenance: A multiple classifier approach publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2349359 – ident: 10.1016/j.engappai.2022.105749_b24 doi: 10.1109/BigData.2017.8258307 – volume: 11 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.engappai.2022.105749_b8 article-title: SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information (Switzerland) – volume: 87 issue: October 2019 year: 2020 ident: 10.1016/j.engappai.2022.105749_b63 article-title: Fault prognostics by an ensemble of echo state networks in presence of event based measurements publication-title: Eng. Appl. Artif. Intell. |
| SSID | ssj0003846 |
| Score | 2.4761074 |
| Snippet | It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 105749 |
| SubjectTerms | Accumulative neural networks Fault prognostics Machine learning Maintenance planning and scheduling Predictive maintenance Remaining useful life prediction |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA6lF724i3UjB6_Tzkwy21GqpYh6UAu9DZkkr7S006GLy8Xfbt4stYJQwcsMhGQS8iUvb8j3vkfIlVSah34IlnACZXEBoRV65gGR74BmnCe5gOnDo9_t8bu-16-RdhULg7TK0vYXNj231mVJq5zNVjYctp6Nc2C2m9nMbn7dhJqgnAeYxaD5-U3zYGERrGMqW1h7LUp41NTpQGSZGJr_RNfNU96ipubvB9TWMs3Ex5sYj9cOoM4e2Sk9R3pdDG6f1HR6QHZLL5KWe3RuiqpEDVXZIXm_EQthqRlaNgpiiFR0ms3wjgZxoSJV9Kl3T1FxowhlpFOgE41RwQgiReL5NEXOBUWi_IAKKZeTPPPXq6Y4X4UQBUV5zPyVk8vnR6TXuX1pd60y5YIlmW8vrAgSFdjCdxwVAANHhjqwfQ0ctCe5TsBhkjOuPO5EoEAwlDtLXBl4keMJZbNjUk_NeE4ItXmgOIgkCcB4Cdw2H-YKIs8Gg5Z2WYN41TzHstQjx7QY47gino3iCp8Y8YkLfBqktWqXFYocG1tEFYzxj7UVm2NjY1t7hfsfuzv9R3dnZBvz2Rckt3NSX8yW-sJ4PYvkMl_WXxtCA6g priority: 102 providerName: Elsevier |
| Title | Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.105749 https://doi.org/10.1016/j.engappai.2022.105749 |
| UnpaywallVersion | publishedVersion |
| Volume | 119 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R3QMnylMUwcoHrl7i2M7juAKqhYUFVawop8ixPVXLNo22WV4HfjuePKqCQC2XWLI0TmKP7c_yN98APLXOqyzJkBuROq4MZjzT4YF5ItBLpcpWwPTtMpmv1OtDfdgfFCkW5rf7-5aH5asjU9fmOJzl4rhNS6vyHRgnOmDvEYxXy_ezT52gXsxF3maTE1kqOXE3L4UE_72hf-1GN7dVbb5_Nev1pd1mfxfeDd_ZkUw-T7dNObU__pBwvP6P3IZbPfBks85T7sANX92F3R6Esn6Kn4eqIc_DUHcPvr0wjeFuQwsjQ3NMTHZWb-iKh4aVmcqxg9UbRoIdXSQkO0N26imomHyAEW_9rCLKBiOe_REz1m5P28RhXzwj5-10LBipa7ZFy00_vw-r_Zcfns95n7GBW5lEDc-xdGlkEiFcihKFzXwaJR4Vem2VL1FIq6RyWokcHRpJamllbFOdC21cJB_AqArf8xBYpFKn0JRligFkqCg0rBzmOsKwKPlY7oEeRq6wvZw5ZdVYFwNv7aQYerygHi-6Ht-DZxd2dSfocaVFPjhG0cOSDm4UYYyvtI0uPOmar3v0_yaPYdRstv5JgEdNOYGd6U8xgfHs1WK-pHJx8HEx6WfKL8PMFAs |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDnBhR-z4wDU0ie0sR8SiAm0P0ErcIsf2oFYlRKVlufDteLKwSEhF4pJIlp1YfvZ4LL95Q8iR0oZHQQSO9ELtcAmREwn7gDjwwDDO00LAtN0Jmj1-dSfuZshpHQuDtMrK9pc2vbDWVUmjGs1G3u83bq1zYJebXcx-cd3EZ8k8F36IJ7Dj9y-eB4vKaB1b28Hq38KEB8cmu5d5Lvv2oOj7Rc5bFNX8fYdamGS5fHuRw-G3HehihSxVriM9KXu3SmZMtkaWKzeSVov0yRbVmRrqsnXyeibH0tEjNG0UZB-56DQf4SUNAkNlpulNr0VRcqOMZaSPQB8MhgUjihSZ548Zki4oMuXvqVRq8lCk_no2FAesVKKgqI9ZvAp2-dMG6V2cd0-bTpVzwVEscMdODKkOXRl4ng6BgaciE7qBAQ5GKG5S8JjijGvBvRg0SIZ6Z6mvQhF7QmqXbZK5zPZni1CXh5qDTNMQrJvAXfthriEWLli4jM-2iajHOVGVIDnmxRgmNfNskNT4JIhPUuKzTRqf7fJSkmNqi7iGMfkxuRK7b0xt637i_sff7fzjd4dkodltt5LWZed6lyxicvuS8bZH5sajidm3LtA4PSim-AcyoAbL |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS_UwFA1-z4WrzxkVlSzcRpsm6bAUB0ScEB_oqqRJrqjPWp59Tr_e3A6ioqibFgI3TZOb5IScey4ha8Y6mUQJMM1jy6SGhCXKPyCNODghZV4LmB4eRXt9uX-uztuDIsbCfLi_r3lYrrjUZamv_FkuDOu0tDL9R8Yj5bF3j4z3j042LxpBvZDxtM4mx5NYMORuvgsJ_rqi73ajiVFR6udHPRi82212J8lx186GZHKzPqrydfPyScLx9z8yRf63wJNuNp4yTcZcMUMmWxBK2yl-74u6PA9d2Sx52taVZnaICyMFfYVMdloO8YoHh5XqwtLT_gFFwY4mEpLeAb11GFSMPkCRt35XIGWDIs_-kmpjRrd14rAHR9F5Gx0Liuqa9avmpt_Pkf7uztnWHmszNjAjoqBiKeQ2DnTEuY1BADeJi4PIgQSnjHQ5cGGkkFZJnoIFLVAtLQ9NrFKutA3EPOkVvj0LhAYythJ0nsfgQYYMfMXSQqoC8IuSC8UiUd3IZaaVM8esGoOs461dZ12PZ9jjWdPji2Tjza5sBD1-tEg7x8haWNLAjcyP8Y-2wZsn_fJzS383WSa9ajhyKx4eVflqOydeAUESD9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+failure+prediction+and+RUL+estimation+of+mechanical+components+using+accumulative+artificial+neural+networks&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shaheen%2C+Basheer&rft.au=Kocsis%2C+%C3%81d%C3%A1m&rft.au=N%C3%A9meth%2C+Istv%C3%A1n&rft.date=2023-03-01&rft.issn=0952-1976&rft.volume=119&rft.spage=105749&rft_id=info:doi/10.1016%2Fj.engappai.2022.105749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |