Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks

It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanic...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 119; p. 105749
Main Authors Shaheen, Basheer, Kocsis, Ádám, Németh, István
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
1873-6769
DOI10.1016/j.engappai.2022.105749

Cover

Abstract It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanical components comprising manufacturing systems with complicated structures. This study proposes a novel data-driven prognostic analysis approach for predicting the failure of a mechanical component based on its degradation path and estimating the RUL. A simulated labelled degradation dataset of a mechanical component with a predefined failure threshold was exploited. In order to increase the ability to maintain the increasing trend and the monotony of the degradation path, supervised machine learning models, including combined artificial neural network architectures and an improved version of the neuron-by-neuron training algorithm using accumulative neural networks design were applied for the prediction process. The expected degradation path was extrapolated as a testing dataset of the trained prediction model using an accumulative function. The predicted values are updated with each new data point during the training process until a failure occurs. The results show that the used approach is efficient in predicting the failure and estimating the RUL of mechanical components with high accuracy and a high prediction success rate, and it can maintain the monotonous trend of the degradation path. On the other hand, the used network architectures enable the prediction of the failures of mechanical components within a manufacturing system having a complex structure and providing a vast amount of data. •A novel methodology for fault prognostics of mechanical components.•Improving the ANN-NBN prediction model with accumulative network design.•Improving predictability and performance by utilising FCN and ACN architectures.•A feasible tool for RUL predictions of mechanical components.
AbstractList It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional expenses and decreased productivity. Such techniques include advanced failure prediction and remaining useful life (RUL) estimation of mechanical components comprising manufacturing systems with complicated structures. This study proposes a novel data-driven prognostic analysis approach for predicting the failure of a mechanical component based on its degradation path and estimating the RUL. A simulated labelled degradation dataset of a mechanical component with a predefined failure threshold was exploited. In order to increase the ability to maintain the increasing trend and the monotony of the degradation path, supervised machine learning models, including combined artificial neural network architectures and an improved version of the neuron-by-neuron training algorithm using accumulative neural networks design were applied for the prediction process. The expected degradation path was extrapolated as a testing dataset of the trained prediction model using an accumulative function. The predicted values are updated with each new data point during the training process until a failure occurs. The results show that the used approach is efficient in predicting the failure and estimating the RUL of mechanical components with high accuracy and a high prediction success rate, and it can maintain the monotonous trend of the degradation path. On the other hand, the used network architectures enable the prediction of the failures of mechanical components within a manufacturing system having a complex structure and providing a vast amount of data. •A novel methodology for fault prognostics of mechanical components.•Improving the ANN-NBN prediction model with accumulative network design.•Improving predictability and performance by utilising FCN and ACN architectures.•A feasible tool for RUL predictions of mechanical components.
ArticleNumber 105749
Author Shaheen, Basheer
Kocsis, Ádám
Németh, István
Author_xml – sequence: 1
  givenname: Basheer
  orcidid: 0000-0002-1241-2198
  surname: Shaheen
  fullname: Shaheen, Basheer
  email: shaheen.basheer@gpk.bme.hu
– sequence: 2
  givenname: Ádám
  surname: Kocsis
  fullname: Kocsis, Ádám
– sequence: 3
  givenname: István
  orcidid: 0000-0001-7122-3891
  surname: Németh
  fullname: Németh, István
BookMark eNqNkdtqHDEMhk1JoJvDKxS_wGztOdgz0IuW9AgLhZJcG60sp97Oegbbs0nevs5ue9Ob9Erwo09Iny7YWZgCMfZGirUUUr3drSncwzyDX9eirkvY6XZ4xVay102ltBrO2EoMXV3JQavX7CKlnRCi6Vu1Yo8fIUNloz9Q4A78uETicyTrMfspcAiW_7jbcErZ7-EYTY7vCX9C8Agjx2k_l31CTnxJPtxzQFz2y1h6D8QhZu88-tIYaInHkh-m-CtdsXMHY6LrP_WS3X3-dHvztdp8__Lt5sOmwkaJXA1ua7UAJaXVrnESe9JCkWsdddjS1skG26a1XSsHZx00euj7bY26G2QHVjSXTJ_mLmGGpwcYRzPHckp8MlKYZ4FmZ_4KNM8CzUlgIdWJxDilFMn9P_juHxB9PrrLsRh-GX9_wqloOXiKJqGngOUnkTAbO_mXRvwGtHKpIg
CitedBy_id crossref_primary_10_1016_j_engfailanal_2024_108455
crossref_primary_10_1016_j_cie_2023_109510
crossref_primary_10_1016_j_engappai_2023_107114
crossref_primary_10_1177_00219983241268861
crossref_primary_10_1016_j_engappai_2023_107157
crossref_primary_10_1016_j_energy_2024_133648
crossref_primary_10_1016_j_engappai_2024_109868
crossref_primary_10_1109_TR_2024_3362331
crossref_primary_10_1016_j_engappai_2023_107790
crossref_primary_10_7717_peerj_cs_1943
crossref_primary_10_1007_s10845_024_02545_6
crossref_primary_10_1007_s11581_024_05992_6
crossref_primary_10_1016_j_engappai_2024_109267
crossref_primary_10_55529_ijasm_12_30_42
crossref_primary_10_3390_machines11100923
crossref_primary_10_1016_j_procir_2024_10_096
crossref_primary_10_1145_3623378
Cites_doi 10.1109/TDLA47668.2020.9326244
10.1109/TNN.2010.2045657
10.1109/IJCNN.2003.1223966
10.1016/j.apor.2018.02.016
10.1016/j.engappai.2014.05.015
10.1016/S0952-1976(03)00063-0
10.1016/j.camwa.2010.03.065
10.3311/PPme.16625
10.1109/TNNLS.2021.3070840
10.1109/ICCSCE50387.2020.9204921
10.1016/j.ress.2017.11.021
10.1109/ACCESS.2021.3050243
10.1016/j.ress.2016.10.002
10.3311/PPme.8742
10.1023/A:1009629311100
10.1088/1361-6501/ab6671
10.1109/TR.2012.2194175
10.1109/TII.2018.2868687
10.1016/j.ins.2008.05.007
10.1109/TNN.2010.2073482
10.1016/j.ifacol.2020.11.051
10.1109/ACCESS.2020.3023335
10.1109/TCYB.2013.2259229
10.3182/20100701-2-PT-4012.00025
10.1109/MIE.2009.934790
10.1016/j.ymssp.2017.11.016
10.1109/TII.2012.2187914
10.3390/en14113156
10.3390/pr10112173
10.1002/mcda.1618
10.1016/j.engappai.2013.02.006
10.36001/phmconf.2012.v4i1.2115
10.1109/ISIE.2010.5637934
10.1109/ACCESS.2020.3006788
10.1109/ACCESS.2017.2765544
10.1115/1.1962019
10.1109/HSI.2010.5514571
10.1016/j.ifacol.2019.11.337
10.1016/j.compind.2020.103298
10.3311/PPme.20145
10.1109/MESA.2018.8449150
10.1109/ICIT.2011.5754336
10.1109/TII.2014.2349359
10.1109/BigData.2017.8258307
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.engappai.2022.105749
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10.1016/j.engappai.2022.105749
10_1016_j_engappai_2022_105749
S0952197622007394
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c360t-9fbd70a611d7f3f1c8e706ef4fe5c4ebf13c434d5419fdfa37988b2c75915ad03
IEDL.DBID UNPAY
ISSN 0952-1976
1873-6769
IngestDate Tue Aug 19 16:51:55 EDT 2025
Sat Oct 25 05:18:20 EDT 2025
Thu Apr 24 22:49:06 EDT 2025
Fri Feb 23 02:39:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault prognostics
Remaining useful life prediction
Maintenance planning and scheduling
Accumulative neural networks
Machine learning
Predictive maintenance
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-9fbd70a611d7f3f1c8e706ef4fe5c4ebf13c434d5419fdfa37988b2c75915ad03
ORCID 0000-0001-7122-3891
0000-0002-1241-2198
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.engappai.2022.105749
ParticipantIDs unpaywall_primary_10_1016_j_engappai_2022_105749
crossref_primary_10_1016_j_engappai_2022_105749
crossref_citationtrail_10_1016_j_engappai_2022_105749
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105749
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bagdonavičius, Nikulin (b3) 2001; 7
Hunter, D., Yu, H., Member, S., Pukish, M.S., Member, S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures — a comparative study. 8(2), 228–240.
Susto, Schirru, Pampuri, McLoone, Beghi (b52) 2015; 11
Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta, Mengoni, Frontoni, Kapetis (b8) 2020; 11
Çinar, Nuhu, Zeeshan, Korhan, Asmael, Safaei (b9) 2020; 12
Li, Ding, Sun (b27) 2018; 172
Cotton, Wilamowski, Yu (b11) 2011
Lei, Li, Guo, Li, Yan, Lin (b26) 2018; 104
Yan, Meng, Lu, Li (b65) 2017; 5
Berghout, Mouss, Kadri, Saïdi, Benbouzid (b6) 2020; 96
Li, Wang, Ismail (b28) 2013; 43
Li, Zhang, Ma, Luo, Li (b30) 2022; 33
Shifat, Yasmin, Hur (b49) 2021; 14
Ramasso, E., Placet, V., Gouriveau, R., Boubakar, L., Zerhouni, N., 2012. Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012. pp. 17–27.
Mahamad, Saon, Hiyama (b32) 2010; 60
Medjaher, Tobon-Mejia, Zerhouni (b33) 2012; 61
Laguna, R., Geremias, N., Mauiri, D., Alfonso, J., Chiruzzo, L., Ezzatti, P., Gutierrez, A., 2020. Early detection of gearbox damage, development of ANN forecast maintenance tool. In: 2020 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D la 2020. pp. 1–6.
Leh, N.A.M., Zain, F.M., Muhammad, Z., Hamid, S.A., Rosli, A.D., 2020. Fault Detection Method Using ANN for Power Transmission Line. In: Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020. pp. 79–84.
Ozcan, Simsir (b36) 2019; 22
de Jonge, Teunter, Tinga (b13) 2017; 158
Wilamowski (b58) 2011
Gopal (b16) 2021; 65
Wilamowski, B.M., Yu, H., 2010. Improved computation for levenberg – marquardt training. 21(6), 930–937.
Wilamowski, B.M., 2011a. How to not get frustrated with neural networks. In: IEEE International Conference on Industrial Technology. pp. 5–11.
.
Xu, Baraldi, Al-Dahidi, Zio (b63) 2020; 87
Javed, Gouriveau, Zemouri, Zerhouni, Javed, Gouriveau, Zemouri, Improving, Javed, Gouriveau, Zemouri, Zerhouni (b20) 2011
Wilamowski, B.M., Yu, H., 2010. Neural network learning without backpropagation. 21(11), 1793–1803.
Saxena, Celaya, Balaban, Goebel, Saha, Saha, Schwabacher (b43) 2008
Miao (b34) 2021
Shaheen, Németh (b45) 2022; 10
Tebassi, Yallese, Meddour, Girardin, Mabrouki (b53) 2017; 61
Bourezza, Mousrij (b7) 2021
Dalzochio, Kunst, Pignaton, Binotto, Sanyal, Favilla, Barbosa (b12) 2020; 123
Sampaio, Filho, da Silva, da Silva (b42) 2019; 19
Seiti, Tagipour, Hafezalkotob, Asgari (b44) 2017; 24
Aghezzaf, Najid (b1) 2008; 178
Han, Wang, Xie, He, Li, Wang (b17) 2021; 210
Wilamowski, B.M., 2010. Challenges in applications of computational intelligence in industrial electronics. In: IEEE International Symposium on Industrial Electronics. pp. 15–22.
Lu, Sun, Zhang, Feng, Kang, Fu (b31) 2018; 74
Németh, Kocsis, Takács, Shaheen, Takács, Merlo, Eytan, Bidoggia, Olocco (b35) 2020; 53
Rajmohan, Palanikumar (b39) 2011; 6
Yu, H., Wilamowski, B.M., 2010. Fast and Efficient and Training of Neural Networks. In: 3rd International Conference on Human System Interaction. pp. 175–181.
Zemouri, Gouriveau (b67) 2010; 1
no. August.
Cotton (b10) 2008
Xia, Li, Shu, Wan, De Silva, Wang (b62) 2019; 15
Singh, Darpe, Singh (b50) 2020; 31
Einabadi, Baboli, Ebrahimi (b15) 2019; 52
Pan, Er, Li, Yu, Gouriveau (b37) 2014; 35
Wilamowski (b55) 2009; 3
Baru (b4) 2018
Zhang, Li, Ma, Luo, Li (b69) 2021; 211
Hussain, Mokhtar, Howe (b19) 2013
Wilamowski, B., Hunter, D., Maljnowski, A., 2003. Solving Parity-N Problems with Feedforward Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks. pp. 2546–2551.
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J., 2018. Machine Learning approach for Predictive Maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018. pp. 1–6.
Jiménez, Gómez Muñoz, García Márquez (b21) 2018; 11
Shifat, Hur (b47) 2021; 9
Zemouri, Racoceanu, Zerhouni (b68) 2003; 16
Shaheen, Németh (b46) 2022; 66
Li, Xu, Li, Yang, Lei (b29) 2022
de Pater, Mitici (b14) 2023; 117
Sirvio (b51) 2015; 87
Lee, Y.O., Jo, J., Hwang, J., 2017. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In: Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, Vol. 2018-Janua. pp. 3248–3253.
Wang, Alexander (b54) 2016; 1
Ak, Li, Vitelli, Zio (b2) 2013; 33
Benkedjouh, Medjaher, Zerhouni, Rechak (b5) 2013; 26
Kiangala, Wang (b22) 2020; 8
Shifat, Jang-Wook (b48) 2020; 8
Rozycki, Malinowski, Kolbusz, Wilamowski (b41) 2019
Yan, Lee (b64) 2005; 127
10.1016/j.engappai.2022.105749_b57
Javed (10.1016/j.engappai.2022.105749_b20) 2011
10.1016/j.engappai.2022.105749_b59
Singh (10.1016/j.engappai.2022.105749_b50) 2020; 31
Seiti (10.1016/j.engappai.2022.105749_b44) 2017; 24
10.1016/j.engappai.2022.105749_b18
Gopal (10.1016/j.engappai.2022.105749_b16) 2021; 65
10.1016/j.engappai.2022.105749_b56
Shaheen (10.1016/j.engappai.2022.105749_b46) 2022; 66
Cotton (10.1016/j.engappai.2022.105749_b11) 2011
Mahamad (10.1016/j.engappai.2022.105749_b32) 2010; 60
Shaheen (10.1016/j.engappai.2022.105749_b45) 2022; 10
Cotton (10.1016/j.engappai.2022.105749_b10) 2008
Dalzochio (10.1016/j.engappai.2022.105749_b12) 2020; 123
10.1016/j.engappai.2022.105749_b24
Rajmohan (10.1016/j.engappai.2022.105749_b39) 2011; 6
10.1016/j.engappai.2022.105749_b25
Zemouri (10.1016/j.engappai.2022.105749_b67) 2010; 1
Saxena (10.1016/j.engappai.2022.105749_b43) 2008
Pan (10.1016/j.engappai.2022.105749_b37) 2014; 35
Shifat (10.1016/j.engappai.2022.105749_b49) 2021; 14
10.1016/j.engappai.2022.105749_b60
10.1016/j.engappai.2022.105749_b61
Hussain (10.1016/j.engappai.2022.105749_b19) 2013
Susto (10.1016/j.engappai.2022.105749_b52) 2015; 11
10.1016/j.engappai.2022.105749_b66
Zhang (10.1016/j.engappai.2022.105749_b69) 2021; 211
10.1016/j.engappai.2022.105749_b23
Ozcan (10.1016/j.engappai.2022.105749_b36) 2019; 22
Lei (10.1016/j.engappai.2022.105749_b26) 2018; 104
Einabadi (10.1016/j.engappai.2022.105749_b15) 2019; 52
Rozycki (10.1016/j.engappai.2022.105749_b41) 2019
Berghout (10.1016/j.engappai.2022.105749_b6) 2020; 96
Çinar (10.1016/j.engappai.2022.105749_b9) 2020; 12
10.1016/j.engappai.2022.105749_b38
Baru (10.1016/j.engappai.2022.105749_b4) 2018
Bourezza (10.1016/j.engappai.2022.105749_b7) 2021
de Jonge (10.1016/j.engappai.2022.105749_b13) 2017; 158
Zemouri (10.1016/j.engappai.2022.105749_b68) 2003; 16
Miao (10.1016/j.engappai.2022.105749_b34) 2021
Lu (10.1016/j.engappai.2022.105749_b31) 2018; 74
Aghezzaf (10.1016/j.engappai.2022.105749_b1) 2008; 178
Tebassi (10.1016/j.engappai.2022.105749_b53) 2017; 61
Yan (10.1016/j.engappai.2022.105749_b64) 2005; 127
Li (10.1016/j.engappai.2022.105749_b29) 2022
Wang (10.1016/j.engappai.2022.105749_b54) 2016; 1
de Pater (10.1016/j.engappai.2022.105749_b14) 2023; 117
Jiménez (10.1016/j.engappai.2022.105749_b21) 2018; 11
Li (10.1016/j.engappai.2022.105749_b30) 2022; 33
Li (10.1016/j.engappai.2022.105749_b28) 2013; 43
Németh (10.1016/j.engappai.2022.105749_b35) 2020; 53
Shifat (10.1016/j.engappai.2022.105749_b48) 2020; 8
Kiangala (10.1016/j.engappai.2022.105749_b22) 2020; 8
Bagdonavičius (10.1016/j.engappai.2022.105749_b3) 2001; 7
Sampaio (10.1016/j.engappai.2022.105749_b42) 2019; 19
Benkedjouh (10.1016/j.engappai.2022.105749_b5) 2013; 26
10.1016/j.engappai.2022.105749_b40
Wilamowski (10.1016/j.engappai.2022.105749_b55) 2009; 3
Li (10.1016/j.engappai.2022.105749_b27) 2018; 172
Wilamowski (10.1016/j.engappai.2022.105749_b58) 2011
Shifat (10.1016/j.engappai.2022.105749_b47) 2021; 9
Medjaher (10.1016/j.engappai.2022.105749_b33) 2012; 61
Sirvio (10.1016/j.engappai.2022.105749_b51) 2015; 87
Ak (10.1016/j.engappai.2022.105749_b2) 2013; 33
Xia (10.1016/j.engappai.2022.105749_b62) 2019; 15
Calabrese (10.1016/j.engappai.2022.105749_b8) 2020; 11
Han (10.1016/j.engappai.2022.105749_b17) 2021; 210
Yan (10.1016/j.engappai.2022.105749_b65) 2017; 5
Xu (10.1016/j.engappai.2022.105749_b63) 2020; 87
References_xml – year: 2008
  ident: b10
  article-title: Training Arbitrarily Connected Neural Networks with Second Order Algorithms
– volume: 10
  start-page: 2173
  year: 2022
  ident: b45
  article-title: Integration of maintenance management system functions with industry 4.0 technologies and features—A review
  publication-title: Processes
– reference: Wilamowski, B.M., 2010. Challenges in applications of computational intelligence in industrial electronics. In: IEEE International Symposium on Industrial Electronics. pp. 15–22.
– start-page: 1
  year: 2011
  end-page: 18
  ident: b58
  article-title: Neural networks learning
  publication-title: Intelligent Systems
– volume: 7
  start-page: 85
  year: 2001
  end-page: 103
  ident: b3
  article-title: Estimation in degradation models with explanatory variables
  publication-title: Lifetime Data Anal.
– volume: 1
  start-page: 140
  year: 2010
  end-page: 145
  ident: b67
  article-title: Towards accurate and reproducible predictions for prognostic: An approach combining a RRBF network and an AutoRegressive model
  publication-title: IFAC Proc. Vol. (IFAC-PapersOnline)
– volume: 117
  year: 2023
  ident: b14
  article-title: Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 9
  start-page: 9429
  year: 2021
  end-page: 9441
  ident: b47
  article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis
  publication-title: IEEE Access
– volume: 22
  start-page: 1175
  year: 2019
  end-page: 1186
  ident: b36
  article-title: A new model based on artificial bee colony algorithm for preventive maintenance with replacement scheduling in continuous production lines
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 11
  start-page: 812
  year: 2015
  end-page: 820
  ident: b52
  article-title: Machine learning for predictive maintenance: A multiple classifier approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 33
  start-page: 925
  year: 2013
  end-page: 930
  ident: b2
  article-title: A genetic algorithm and neural network technique for predicting wind power under uncertainty
  publication-title: Chem. Eng. Trans.
– volume: 19
  start-page: 5
  year: 2019
  end-page: 7
  ident: b42
  article-title: Prediction of motor failure time using an artificial neural network
  publication-title: Sensors (Switzerland)
– year: 2018
  ident: b4
  article-title: Three ways to estimate remaining useful life for predictive maintenance, mathworks newsletters
– volume: 96
  year: 2020
  ident: b6
  article-title: Aircraft engines remaining useful life prediction with an adaptive denoising online sequential extreme learning machine
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 41
  year: 2019
  end-page: 46
  ident: b41
  article-title: The impact of architecture on the deep neural networks training
– volume: 87
  year: 2020
  ident: b63
  article-title: Fault prognostics by an ensemble of echo state networks in presence of event based measurements
  publication-title: Eng. Appl. Artif. Intell.
– reference: Wilamowski, B.M., 2011a. How to not get frustrated with neural networks. In: IEEE International Conference on Industrial Technology. pp. 5–11.
– volume: 61
  start-page: 292
  year: 2012
  end-page: 302
  ident: b33
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: IEEE Trans. Reliab.
– volume: 24
  start-page: 257
  year: 2017
  end-page: 274
  ident: b44
  article-title: Maintenance strategy selection with risky evaluations using RAHP
  publication-title: J. Multi-Criteria Decis. Anal.
– start-page: 2021
  year: 2021
  ident: b34
  article-title: Prediction-based maintenance of existing bridges using neural network and sensitivity analysis
  publication-title: Adv. Civ. Eng.
– volume: 14
  year: 2021
  ident: b49
  article-title: A data driven rul estimation framework of electric motor using deep electrical feature learning from current harmonics and apparent power
  publication-title: Energies
– volume: 12
  year: 2020
  ident: b9
  article-title: Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0
  publication-title: Sustainability (Switzerland)
– year: 2008
  ident: b43
  article-title: Metrics for evaluating performance of prognostic techniques
– volume: 26
  start-page: 1751
  year: 2013
  end-page: 1760
  ident: b5
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 168414
  year: 2020
  end-page: 168428
  ident: b48
  article-title: Remaining useful life estimation of BLDC motor considering voltage degradation and attention-based neural network
  publication-title: IEEE Access
– volume: 123
  year: 2020
  ident: b12
  article-title: Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges
  publication-title: Comput. Ind.
– volume: 15
  start-page: 3703
  year: 2019
  end-page: 3711
  ident: b62
  article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks
  publication-title: IEEE Trans. Ind. Inform.
– reference: Lee, Y.O., Jo, J., Hwang, J., 2017. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In: Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, Vol. 2018-Janua. pp. 3248–3253.
– volume: 158
  start-page: 21
  year: 2017
  end-page: 30
  ident: b13
  article-title: The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 3
  start-page: 56
  year: 2009
  end-page: 63
  ident: b55
  article-title: Neural network architectures and learning algorithms
  publication-title: IEEE Ind. Electron. Mag.
– volume: 87
  start-page: 221
  year: 2015
  end-page: 245
  ident: b51
  article-title: Intelligent systems in maintenance planning and management
  publication-title: Intell. Syst. Ref. Libr.
– volume: 52
  start-page: 1069
  year: 2019
  end-page: 1074
  ident: b15
  article-title: Dynamic predictive maintenance in industry 4.0 based on real time information: Case study in automotive industries
  publication-title: IFAC PapersOnLine
– volume: 211
  year: 2021
  ident: b69
  article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 60
  start-page: 1078
  year: 2010
  end-page: 1087
  ident: b32
  article-title: Predicting remaining useful life of rotating machinery based artificial neural network
  publication-title: Comput. Math. Appl.
– volume: 6
  start-page: 281
  year: 2011
  end-page: 290
  ident: b39
  article-title: Ann model to predict surface roughness in drilling hybrid composites
  publication-title: Adv. Prod. Eng. Manage.
– volume: 5
  start-page: 23484
  year: 2017
  end-page: 23491
  ident: b65
  article-title: Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: b26
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Signal Process.
– year: 2021
  ident: b7
  article-title: Towards a Platform to Implement an Intelligent and Predictive Maintenance in the Context of Industry 4.0, Vol. 1193
– reference: Wilamowski, B., Hunter, D., Maljnowski, A., 2003. Solving Parity-N Problems with Feedforward Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks. pp. 2546–2551.
– volume: 31
  year: 2020
  ident: b50
  article-title: Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering
  publication-title: Meas. Sci. Technol.
– volume: 61
  start-page: 1
  year: 2017
  end-page: 11
  ident: b53
  article-title: On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response surface methodology: Accuracy and beneft
  publication-title: Periodica Polytech. Mech. Eng.
– start-page: 555
  year: 2011
  end-page: 560
  ident: b20
  article-title: Improving data-driven prognostics by assessing predictability of features
  publication-title: Progn. Health Manage. Soc.
– volume: 1
  start-page: 52
  year: 2016
  end-page: 61
  ident: b54
  article-title: Machine learning in big data
  publication-title: Int. J. Math. Eng. Manage. Sci.
– volume: 8
  start-page: 121033
  year: 2020
  end-page: 121049
  ident: b22
  article-title: An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment
  publication-title: IEEE Access
– reference: Wilamowski, B.M., Yu, H., 2010. Neural network learning without backpropagation. 21(11), 1793–1803.
– volume: 127
  start-page: 912
  year: 2005
  end-page: 914
  ident: b64
  article-title: Degradation assessment and fault modes classification using logistic regression
  publication-title: Trans. ASME, J. Manuf. Sci. Eng.
– volume: 35
  start-page: 105
  year: 2014
  end-page: 113
  ident: b37
  article-title: Machine health condition prediction via online dynamic fuzzy neural networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 16
  ident: b21
  article-title: Machine learning for wind turbine blades maintenance management
  publication-title: Energies
– start-page: 1
  year: 2011
  end-page: 24
  ident: b11
  article-title: NBN algorithm
  publication-title: Industrial Electronics Handbook
– volume: 53
  start-page: 319
  year: 2020
  end-page: 324
  ident: b35
  article-title: Maintenance schedule optimisation for manufacturing systems
  publication-title: IFAC-PapersOnLine
– volume: 33
  start-page: 5480
  year: 2022
  end-page: 5491
  ident: b30
  article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Laguna, R., Geremias, N., Mauiri, D., Alfonso, J., Chiruzzo, L., Ezzatti, P., Gutierrez, A., 2020. Early detection of gearbox damage, development of ANN forecast maintenance tool. In: 2020 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D la 2020. pp. 1–6.
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: b27
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
– reference: Ramasso, E., Placet, V., Gouriveau, R., Boubakar, L., Zerhouni, N., 2012. Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012. pp. 17–27.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 17
  ident: b8
  article-title: SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information (Switzerland)
– volume: 66
  start-page: 244
  year: 2022
  end-page: 252
  ident: b46
  article-title: Machine learning approach for degradation path prediction using different models and architectures of artificial neural networks
  publication-title: Periodica Polytech. Mech. Eng.
– reference: Leh, N.A.M., Zain, F.M., Muhammad, Z., Hamid, S.A., Rosli, A.D., 2020. Fault Detection Method Using ANN for Power Transmission Line. In: Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020. pp. 79–84.
– volume: 43
  start-page: 1484
  year: 2013
  end-page: 1494
  ident: b28
  article-title: Fuzzy neural network technique for system state forecasting
  publication-title: IEEE Trans. Cybern.
– reference: .
– reference: Hunter, D., Yu, H., Member, S., Pukish, M.S., Member, S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures — a comparative study. 8(2), 228–240.
– volume: 178
  start-page: 3382
  year: 2008
  end-page: 3392
  ident: b1
  article-title: Integrated production planning and preventive maintenance in deteriorating production systems
  publication-title: Inform. Sci.
– volume: 210
  year: 2021
  ident: b17
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab. Eng. Syst. Saf.
– reference: Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J., 2018. Machine Learning approach for Predictive Maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018. pp. 1–6.
– reference: Yu, H., Wilamowski, B.M., 2010. Fast and Efficient and Training of Neural Networks. In: 3rd International Conference on Human System Interaction. pp. 175–181.
– year: 2013
  ident: b19
  article-title: Aircraft sensor estimation for fault tolerant flight control system using fully connected cascade neural network
– start-page: 1
  year: 2022
  end-page: 14
  ident: b29
  article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 74
  start-page: 69
  year: 2018
  end-page: 79
  ident: b31
  article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach
  publication-title: Appl. Ocean Res.
– volume: 65
  start-page: 141
  year: 2021
  end-page: 150
  ident: b16
  article-title: Effect of machining parameters and optimization of temperature rise in turning operation of aluminium-6061 using RSM and artificial neural network
  publication-title: Periodica Polytech. Mech. Eng.
– reference: Wilamowski, B.M., Yu, H., 2010. Improved computation for levenberg – marquardt training. 21(6), 930–937.
– reference: , no. August.
– volume: 16
  start-page: 453
  year: 2003
  end-page: 463
  ident: b68
  article-title: Recurrent radial basis function network for time-series prediction
  publication-title: Eng. Appl. Artif. Intell.
– ident: 10.1016/j.engappai.2022.105749_b23
  doi: 10.1109/TDLA47668.2020.9326244
– ident: 10.1016/j.engappai.2022.105749_b60
  doi: 10.1109/TNN.2010.2045657
– year: 2008
  ident: 10.1016/j.engappai.2022.105749_b10
– volume: 211
  issue: February
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b69
  article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions
  publication-title: Reliab. Eng. Syst. Saf.
– ident: 10.1016/j.engappai.2022.105749_b59
  doi: 10.1109/IJCNN.2003.1223966
– volume: 74
  start-page: 69
  year: 2018
  ident: 10.1016/j.engappai.2022.105749_b31
  article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.02.016
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105749_b21
  article-title: Machine learning for wind turbine blades maintenance management
  publication-title: Energies
– volume: 35
  start-page: 105
  year: 2014
  ident: 10.1016/j.engappai.2022.105749_b37
  article-title: Machine health condition prediction via online dynamic fuzzy neural networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.05.015
– volume: 16
  start-page: 453
  issue: 5–6
  year: 2003
  ident: 10.1016/j.engappai.2022.105749_b68
  article-title: Recurrent radial basis function network for time-series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(03)00063-0
– volume: 22
  start-page: 1175
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2022.105749_b36
  article-title: A new model based on artificial bee colony algorithm for preventive maintenance with replacement scheduling in continuous production lines
  publication-title: Eng. Sci. Technol. Int. J.
– start-page: 41
  year: 2019
  ident: 10.1016/j.engappai.2022.105749_b41
– volume: 60
  start-page: 1078
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2022.105749_b32
  article-title: Predicting remaining useful life of rotating machinery based artificial neural network
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.03.065
– volume: 65
  start-page: 141
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b16
  article-title: Effect of machining parameters and optimization of temperature rise in turning operation of aluminium-6061 using RSM and artificial neural network
  publication-title: Periodica Polytech. Mech. Eng.
  doi: 10.3311/PPme.16625
– volume: 117
  issue: October 2022
  year: 2023
  ident: 10.1016/j.engappai.2022.105749_b14
  article-title: Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 210
  issue: February
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b17
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 33
  start-page: 5480
  issue: 10
  year: 2022
  ident: 10.1016/j.engappai.2022.105749_b30
  article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3070840
– ident: 10.1016/j.engappai.2022.105749_b25
  doi: 10.1109/ICCSCE50387.2020.9204921
– volume: 172
  start-page: 1
  issue: June 2017
  year: 2018
  ident: 10.1016/j.engappai.2022.105749_b27
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2022.105749_b29
  article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 1
  start-page: 52
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2022.105749_b54
  article-title: Machine learning in big data
  publication-title: Int. J. Math. Eng. Manage. Sci.
– volume: 9
  start-page: 9429
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b47
  article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050243
– volume: 158
  start-page: 21
  issue: 24
  year: 2017
  ident: 10.1016/j.engappai.2022.105749_b13
  article-title: The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2016.10.002
– volume: 61
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2022.105749_b53
  article-title: On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response surface methodology: Accuracy and beneft
  publication-title: Periodica Polytech. Mech. Eng.
  doi: 10.3311/PPme.8742
– volume: 7
  start-page: 85
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2022.105749_b3
  article-title: Estimation in degradation models with explanatory variables
  publication-title: Lifetime Data Anal.
  doi: 10.1023/A:1009629311100
– volume: 6
  start-page: 281
  issue: 4
  year: 2011
  ident: 10.1016/j.engappai.2022.105749_b39
  article-title: Ann model to predict surface roughness in drilling hybrid composites
  publication-title: Adv. Prod. Eng. Manage.
– year: 2021
  ident: 10.1016/j.engappai.2022.105749_b7
– volume: 31
  issue: 8
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b50
  article-title: Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab6671
– volume: 61
  start-page: 292
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2022.105749_b33
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2012.2194175
– volume: 15
  start-page: 3703
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2022.105749_b62
  article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2868687
– year: 2013
  ident: 10.1016/j.engappai.2022.105749_b19
– volume: 87
  start-page: 221
  issue: October
  year: 2015
  ident: 10.1016/j.engappai.2022.105749_b51
  article-title: Intelligent systems in maintenance planning and management
  publication-title: Intell. Syst. Ref. Libr.
– volume: 178
  start-page: 3382
  issue: 17
  year: 2008
  ident: 10.1016/j.engappai.2022.105749_b1
  article-title: Integrated production planning and preventive maintenance in deteriorating production systems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.05.007
– ident: 10.1016/j.engappai.2022.105749_b61
  doi: 10.1109/TNN.2010.2073482
– year: 2018
  ident: 10.1016/j.engappai.2022.105749_b4
– volume: 53
  start-page: 319
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b35
  article-title: Maintenance schedule optimisation for manufacturing systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.11.051
– volume: 8
  start-page: 168414
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b48
  article-title: Remaining useful life estimation of BLDC motor considering voltage degradation and attention-based neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023335
– volume: 43
  start-page: 1484
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2022.105749_b28
  article-title: Fuzzy neural network technique for system state forecasting
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2259229
– volume: 1
  start-page: 140
  issue: PART 1
  year: 2010
  ident: 10.1016/j.engappai.2022.105749_b67
  article-title: Towards accurate and reproducible predictions for prognostic: An approach combining a RRBF network and an AutoRegressive model
  publication-title: IFAC Proc. Vol. (IFAC-PapersOnline)
  doi: 10.3182/20100701-2-PT-4012.00025
– volume: 96
  issue: July
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b6
  article-title: Aircraft engines remaining useful life prediction with an adaptive denoising online sequential extreme learning machine
  publication-title: Eng. Appl. Artif. Intell.
– volume: 3
  start-page: 56
  issue: 4
  year: 2009
  ident: 10.1016/j.engappai.2022.105749_b55
  article-title: Neural network architectures and learning algorithms
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2009.934790
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.engappai.2022.105749_b26
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.016
– start-page: 555
  year: 2011
  ident: 10.1016/j.engappai.2022.105749_b20
  article-title: Improving data-driven prognostics by assessing predictability of features
  publication-title: Progn. Health Manage. Soc.
– ident: 10.1016/j.engappai.2022.105749_b18
  doi: 10.1109/TII.2012.2187914
– volume: 14
  issue: 11
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b49
  article-title: A data driven rul estimation framework of electric motor using deep electrical feature learning from current harmonics and apparent power
  publication-title: Energies
  doi: 10.3390/en14113156
– year: 2008
  ident: 10.1016/j.engappai.2022.105749_b43
– volume: 10
  start-page: 2173
  issue: 11
  year: 2022
  ident: 10.1016/j.engappai.2022.105749_b45
  article-title: Integration of maintenance management system functions with industry 4.0 technologies and features—A review
  publication-title: Processes
  doi: 10.3390/pr10112173
– volume: 24
  start-page: 257
  issue: 5–6
  year: 2017
  ident: 10.1016/j.engappai.2022.105749_b44
  article-title: Maintenance strategy selection with risky evaluations using RAHP
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1618
– volume: 26
  start-page: 1751
  issue: 7
  year: 2013
  ident: 10.1016/j.engappai.2022.105749_b5
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.02.006
– ident: 10.1016/j.engappai.2022.105749_b40
  doi: 10.36001/phmconf.2012.v4i1.2115
– volume: 12
  issue: 19
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b9
  article-title: Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0
  publication-title: Sustainability (Switzerland)
– volume: 19
  start-page: 5
  issue: 19
  year: 2019
  ident: 10.1016/j.engappai.2022.105749_b42
  article-title: Prediction of motor failure time using an artificial neural network
  publication-title: Sensors (Switzerland)
– ident: 10.1016/j.engappai.2022.105749_b56
  doi: 10.1109/ISIE.2010.5637934
– volume: 8
  start-page: 121033
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b22
  article-title: An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006788
– start-page: 1
  year: 2011
  ident: 10.1016/j.engappai.2022.105749_b58
  article-title: Neural networks learning
– start-page: 1
  year: 2011
  ident: 10.1016/j.engappai.2022.105749_b11
  article-title: NBN algorithm
– start-page: 2021
  year: 2021
  ident: 10.1016/j.engappai.2022.105749_b34
  article-title: Prediction-based maintenance of existing bridges using neural network and sensitivity analysis
  publication-title: Adv. Civ. Eng.
– volume: 33
  start-page: 925
  issue: 2007
  year: 2013
  ident: 10.1016/j.engappai.2022.105749_b2
  article-title: A genetic algorithm and neural network technique for predicting wind power under uncertainty
  publication-title: Chem. Eng. Trans.
– volume: 5
  start-page: 23484
  issue: c
  year: 2017
  ident: 10.1016/j.engappai.2022.105749_b65
  article-title: Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2765544
– volume: 127
  start-page: 912
  issue: 4
  year: 2005
  ident: 10.1016/j.engappai.2022.105749_b64
  article-title: Degradation assessment and fault modes classification using logistic regression
  publication-title: Trans. ASME, J. Manuf. Sci. Eng.
  doi: 10.1115/1.1962019
– ident: 10.1016/j.engappai.2022.105749_b66
  doi: 10.1109/HSI.2010.5514571
– volume: 52
  start-page: 1069
  issue: 13
  year: 2019
  ident: 10.1016/j.engappai.2022.105749_b15
  article-title: Dynamic predictive maintenance in industry 4.0 based on real time information: Case study in automotive industries
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.337
– volume: 123
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b12
  article-title: Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103298
– volume: 66
  start-page: 244
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2022.105749_b46
  article-title: Machine learning approach for degradation path prediction using different models and architectures of artificial neural networks
  publication-title: Periodica Polytech. Mech. Eng.
  doi: 10.3311/PPme.20145
– ident: 10.1016/j.engappai.2022.105749_b38
  doi: 10.1109/MESA.2018.8449150
– ident: 10.1016/j.engappai.2022.105749_b57
  doi: 10.1109/ICIT.2011.5754336
– volume: 11
  start-page: 812
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2022.105749_b52
  article-title: Machine learning for predictive maintenance: A multiple classifier approach
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2349359
– ident: 10.1016/j.engappai.2022.105749_b24
  doi: 10.1109/BigData.2017.8258307
– volume: 11
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b8
  article-title: SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information (Switzerland)
– volume: 87
  issue: October 2019
  year: 2020
  ident: 10.1016/j.engappai.2022.105749_b63
  article-title: Fault prognostics by an ensemble of echo state networks in presence of event based measurements
  publication-title: Eng. Appl. Artif. Intell.
SSID ssj0003846
Score 2.4761074
Snippet It is necessary to develop advanced fault prognostics techniques for improving maintenance planning and scheduling to avoid unexpected shutdowns, additional...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105749
SubjectTerms Accumulative neural networks
Fault prognostics
Machine learning
Maintenance planning and scheduling
Predictive maintenance
Remaining useful life prediction
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA6lF724i3UjB6_Tzkwy21GqpYh6UAu9DZkkr7S006GLy8Xfbt4stYJQwcsMhGQS8iUvb8j3vkfIlVSah34IlnACZXEBoRV65gGR74BmnCe5gOnDo9_t8bu-16-RdhULg7TK0vYXNj231mVJq5zNVjYctp6Nc2C2m9nMbn7dhJqgnAeYxaD5-U3zYGERrGMqW1h7LUp41NTpQGSZGJr_RNfNU96ipubvB9TWMs3Ex5sYj9cOoM4e2Sk9R3pdDG6f1HR6QHZLL5KWe3RuiqpEDVXZIXm_EQthqRlaNgpiiFR0ms3wjgZxoSJV9Kl3T1FxowhlpFOgE41RwQgiReL5NEXOBUWi_IAKKZeTPPPXq6Y4X4UQBUV5zPyVk8vnR6TXuX1pd60y5YIlmW8vrAgSFdjCdxwVAANHhjqwfQ0ctCe5TsBhkjOuPO5EoEAwlDtLXBl4keMJZbNjUk_NeE4ItXmgOIgkCcB4Cdw2H-YKIs8Gg5Z2WYN41TzHstQjx7QY47gino3iCp8Y8YkLfBqktWqXFYocG1tEFYzxj7UVm2NjY1t7hfsfuzv9R3dnZBvz2Rckt3NSX8yW-sJ4PYvkMl_WXxtCA6g
  priority: 102
  providerName: Elsevier
Title Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks
URI https://dx.doi.org/10.1016/j.engappai.2022.105749
https://doi.org/10.1016/j.engappai.2022.105749
UnpaywallVersion publishedVersion
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R3QMnylMUwcoHrl7i2M7juAKqhYUFVawop8ixPVXLNo22WV4HfjuePKqCQC2XWLI0TmKP7c_yN98APLXOqyzJkBuROq4MZjzT4YF5ItBLpcpWwPTtMpmv1OtDfdgfFCkW5rf7-5aH5asjU9fmOJzl4rhNS6vyHRgnOmDvEYxXy_ezT52gXsxF3maTE1kqOXE3L4UE_72hf-1GN7dVbb5_Nev1pd1mfxfeDd_ZkUw-T7dNObU__pBwvP6P3IZbPfBks85T7sANX92F3R6Esn6Kn4eqIc_DUHcPvr0wjeFuQwsjQ3NMTHZWb-iKh4aVmcqxg9UbRoIdXSQkO0N26imomHyAEW_9rCLKBiOe_REz1m5P28RhXzwj5-10LBipa7ZFy00_vw-r_Zcfns95n7GBW5lEDc-xdGlkEiFcihKFzXwaJR4Vem2VL1FIq6RyWokcHRpJamllbFOdC21cJB_AqArf8xBYpFKn0JRligFkqCg0rBzmOsKwKPlY7oEeRq6wvZw5ZdVYFwNv7aQYerygHi-6Ht-DZxd2dSfocaVFPjhG0cOSDm4UYYyvtI0uPOmar3v0_yaPYdRstv5JgEdNOYGd6U8xgfHs1WK-pHJx8HEx6WfKL8PMFAs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDnBhR-z4wDU0ie0sR8SiAm0P0ErcIsf2oFYlRKVlufDteLKwSEhF4pJIlp1YfvZ4LL95Q8iR0oZHQQSO9ELtcAmREwn7gDjwwDDO00LAtN0Jmj1-dSfuZshpHQuDtMrK9pc2vbDWVUmjGs1G3u83bq1zYJebXcx-cd3EZ8k8F36IJ7Dj9y-eB4vKaB1b28Hq38KEB8cmu5d5Lvv2oOj7Rc5bFNX8fYdamGS5fHuRw-G3HehihSxVriM9KXu3SmZMtkaWKzeSVov0yRbVmRrqsnXyeibH0tEjNG0UZB-56DQf4SUNAkNlpulNr0VRcqOMZaSPQB8MhgUjihSZ548Zki4oMuXvqVRq8lCk_no2FAesVKKgqI9ZvAp2-dMG6V2cd0-bTpVzwVEscMdODKkOXRl4ng6BgaciE7qBAQ5GKG5S8JjijGvBvRg0SIZ6Z6mvQhF7QmqXbZK5zPZni1CXh5qDTNMQrJvAXfthriEWLli4jM-2iajHOVGVIDnmxRgmNfNskNT4JIhPUuKzTRqf7fJSkmNqi7iGMfkxuRK7b0xt637i_sff7fzjd4dkodltt5LWZed6lyxicvuS8bZH5sajidm3LtA4PSim-AcyoAbL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS_UwFA1-z4WrzxkVlSzcRpsm6bAUB0ScEB_oqqRJrqjPWp59Tr_e3A6ioqibFgI3TZOb5IScey4ha8Y6mUQJMM1jy6SGhCXKPyCNODghZV4LmB4eRXt9uX-uztuDIsbCfLi_r3lYrrjUZamv_FkuDOu0tDL9R8Yj5bF3j4z3j042LxpBvZDxtM4mx5NYMORuvgsJ_rqi73ajiVFR6udHPRi82212J8lx186GZHKzPqrydfPyScLx9z8yRf63wJNuNp4yTcZcMUMmWxBK2yl-74u6PA9d2Sx52taVZnaICyMFfYVMdloO8YoHh5XqwtLT_gFFwY4mEpLeAb11GFSMPkCRt35XIGWDIs_-kmpjRrd14rAHR9F5Gx0Liuqa9avmpt_Pkf7uztnWHmszNjAjoqBiKeQ2DnTEuY1BADeJi4PIgQSnjHQ5cGGkkFZJnoIFLVAtLQ9NrFKutA3EPOkVvj0LhAYythJ0nsfgQYYMfMXSQqoC8IuSC8UiUd3IZaaVM8esGoOs461dZ12PZ9jjWdPji2Tjza5sBD1-tEg7x8haWNLAjcyP8Y-2wZsn_fJzS383WSa9ajhyKx4eVflqOydeAUESD9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+failure+prediction+and+RUL+estimation+of+mechanical+components+using+accumulative+artificial+neural+networks&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shaheen%2C+Basheer&rft.au=Kocsis%2C+%C3%81d%C3%A1m&rft.au=N%C3%A9meth%2C+Istv%C3%A1n&rft.date=2023-03-01&rft.issn=0952-1976&rft.volume=119&rft.spage=105749&rft_id=info:doi/10.1016%2Fj.engappai.2022.105749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon