Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems
We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowi...
Saved in:
| Published in | Optimization Vol. 52; no. 6; pp. 693 - 713 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis Group
01.12.2003
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0233-1934 1029-4945 |
| DOI | 10.1080/023319340310001637387 |
Cover
| Abstract | We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowing for more than one optimal solution). We consider the family of all functions involved in some fixed optimization problem as one element of a space of data equipped with some topology, and arbitrary perturbations are premitted as long as the perturbed problem continues to be convex semiinfinite. Since no structure is required for T, our results apply to the ordinary convex programming case. We also provide conditions, not involving any second order optimality one, guaranteeing that the distance between optimal solutions of the discretized subproblems and the optimal set of the original problem decreases by a rate which is linear with respect to the discretization mesh-size. |
|---|---|
| AbstractList | We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowing for more than one optimal solution). We consider the family of all functions involved in some fixed optimization problem as one element of a space of data equipped with some topology, and arbitrary perturbations are premitted as long as the perturbed problem continues to be convex semiinfinite. Since no structure is required for T, our results apply to the ordinary convex programming case. We also provide conditions, not involving any second order optimality one, guaranteeing that the distance between optimal solutions of the discretized subproblems and the optimal set of the original problem decreases by a rate which is linear with respect to the discretization mesh-size. |
| Author | De Serio, Virginia N. Vera Gayá, Verónica E. López, Marco A. |
| Author_xml | – sequence: 1 givenname: Verónica E. surname: Gayá fullname: Gayá, Verónica E. organization: Facultad de Ciencias Políticas y Sociales , Universidad Nacional de Cuyo, Centro Universitario – sequence: 2 givenname: Marco A. surname: López fullname: López, Marco A. organization: Department of Statistics and Operations Research , Faculty of Sciences, University of Alicante – sequence: 3 givenname: Virginia N. Vera surname: De Serio fullname: De Serio, Virginia N. Vera organization: Facultad de Ciencias Económicas , Universidad Nacional de Cuyo, Centro Universitario |
| BookMark | eNqNkNtKAzEQhoMo2FYfQcgLrOa0J7xRiicoeKFeL2l2UiLZpCSptoLv7q7tlRT1ahj4vp-Zf4wOnXeA0Bkl55RU5IIwzmnNBeGUEEILXvKqPEAjSlidiVrkh2g0MNkAHaNxjK-EMFowMUKfT0nOjTVpg43Dyrs3WOMIncmM08aZBHgZ_CLIrjNugaVrcZAJIvZ6S4cFOAXD6pfJdNLi6O0qGe--mdZEFSCZD2jxLi-u5n3k3EIXT9CRljbC6W5O0MvtzfP0Pps93j1Mr2eZ4gVJWV3mNS-koHPWlixnhJESpKhkLqDVjFGhdQ5VQTVQAm1Zi1qrismikpyXRcEnKN_mquBjDKCbZehvDZuGkmbosNnbYe9d_vCUSXJ4LgVp7H_tvkofOvnug22bJDfWBx2kUybuN5u0Tr199afNfz_gCx7eoXg |
| CitedBy_id | crossref_primary_10_1007_s10107_007_0128_2 crossref_primary_10_1137_060658345 crossref_primary_10_1155_2012_145083 crossref_primary_10_1007_s10898_008_9391_x crossref_primary_10_1007_s10957_010_9753_7 crossref_primary_10_1016_j_ejor_2006_08_045 crossref_primary_10_1137_090746331 crossref_primary_10_1007_s11750_011_0225_5 |
| Cites_doi | 10.1287/moor.27.4.755.306 10.1080/01630568508816198 10.1007/s101070100239 10.1137/S1052623497319869 10.1007/978-3-662-02796-7 10.1137/0331063 10.1007/BFb0084195 10.1137/S105262349528901X 10.1007/978-94-015-8149-3 10.1007/978-1-4612-1394-9 10.1006/jmaa.1997.5288 10.1007/978-3-642-02431-3 10.1007/978-1-4615-0011-7 10.1007/BF02192650 10.1137/S0895479895259766 10.1515/9781400873173 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2003 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2003 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/023319340310001637387 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4945 |
| EndPage | 713 |
| ExternalDocumentID | 10_1080_023319340310001637387 9612635 |
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DKSSO DMQIW DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYXX ACGEE ACTCW AEUMN AGCQS AGLEN AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q |
| ID | FETCH-LOGICAL-c360t-975936a41b2d72520207ea48a54edf2214ff5e861fe10ed7949fc82a68a337663 |
| ISSN | 0233-1934 |
| IngestDate | Thu Apr 24 23:12:01 EDT 2025 Wed Oct 01 04:30:52 EDT 2025 Mon Oct 20 23:35:35 EDT 2025 Mon May 13 12:09:11 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-975936a41b2d72520207ea48a54edf2214ff5e861fe10ed7949fc82a68a337663 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1080_023319340310001637387 informaworld_taylorfrancis_310_1080_023319340310001637387 crossref_citationtrail_10_1080_023319340310001637387 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 12/1/2003 2003-12-00 |
| PublicationDateYYYYMMDD | 2003-12-01 |
| PublicationDate_xml | – month: 12 year: 2003 text: 12/1/2003 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Optimization |
| PublicationYear | 2003 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | Rockafellar R. (bib16) 1970 Tichatschke R. (bib20) 1978; 20 Beer G. (bib2) 1993 Bonnans J.F. (bib3) 2000 Trujillo-Cortez R. (bib22) 2001; 6 bib15 bib23 Zlobec S. (bib24) 2001 Goberna M.A. (bib9) 1998 Bank B. (bib1) 1983 bib10 Klatte D. (bib13) 1998 bib11 Tichatschke R. (bib21) 1979; 21 Dontchev A.L. (bib7) 1993; 1543 bib8 bib5 bib6 Still G. (bib19) 2001; 91 bib4 López M.A. (bib14) 2001 bib17 Shapiro A. (bib18) 2001 Hiriart-Urruty J.-B. (bib12) 1993 |
| References_xml | – start-page: pp. 69–102 volume-title: Semi-Infinite Programming year: 1998 ident: bib13 – volume-title: Rates of convergence of optimal solutions of discretized semi-infinite programming problems, Working Paper year: 2001 ident: bib18 – ident: bib5 doi: 10.1287/moor.27.4.755.306 – ident: bib15 doi: 10.1080/01630568508816198 – volume: 91 start-page: 53 year: 2001 ident: bib19 publication-title: Mathematical Programming, Series A doi: 10.1007/s101070100239 – volume-title: Non-linear Parametric Optimization year: 1983 ident: bib1 – ident: bib6 doi: 10.1137/S1052623497319869 – volume-title: Convex Analysis and Minimization Algorithms I year: 1993 ident: bib12 doi: 10.1007/978-3-662-02796-7 – volume: 20 start-page: 789 year: 1978 ident: bib20 publication-title: Wis. Z. Tech. Hochsch. Karl-Max-Stadt – ident: bib4 doi: 10.1137/0331063 – volume: 1543 volume-title: Well-Posed Optimization Problems year: 1993 ident: bib7 doi: 10.1007/BFb0084195 – volume: 6 start-page: 107 year: 2001 ident: bib22 publication-title: Mathematical Communications – ident: bib11 doi: 10.1137/S105262349528901X – start-page: pp. 101–120 volume-title: Semi-Infinite Programming Recent Advances year: 2001 ident: bib14 – volume-title: Topologies on Closed and Closed Convex Sets year: 1993 ident: bib2 doi: 10.1007/978-94-015-8149-3 – volume-title: Perturbation Analysis of Optimization Problems year: 2000 ident: bib3 doi: 10.1007/978-1-4612-1394-9 – ident: bib23 doi: 10.1006/jmaa.1997.5288 – ident: bib17 doi: 10.1007/978-3-642-02431-3 – volume-title: Linear Semi-Infinite Optimization year: 1998 ident: bib9 – volume: 21 start-page: 577 year: 1979 ident: bib21 publication-title: Wis. Z. Tech. Hochsch. Karl-Max-Stadt – volume-title: Stable Parametric Programming year: 2001 ident: bib24 doi: 10.1007/978-1-4615-0011-7 – ident: bib8 doi: 10.1007/BF02192650 – ident: bib10 doi: 10.1137/S0895479895259766 – volume-title: Convex Analysis year: 1970 ident: bib16 doi: 10.1515/9781400873173 |
| SSID | ssj0021624 |
| Score | 1.6444306 |
| Snippet | We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 693 |
| SubjectTerms | Convex semiinfinite programming Hadamard well-posedness Mathematics Subject Classifications 2000: Primary 90C34, 90C31 Optimal set mapping Optimal value function Rate of convergence Secondary 90C25, 90C05, 05C38, 15A15 Stability |
| Title | Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/023319340310001637387 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1029-4945 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: AMVHM dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1029-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1029-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdKd4ED4lOUAfKBW5WqsZ3EORY2VCFtXDqYuFRxYqNItJ3aVBqT-Hv2b_Ke7QSXVePrEjVunx31_WL__Pw-CHkdx2UG1J5FrMqzSMjcRKqE90pVOfABYVip0A55cppOz8T78-S817sOvJa2jRqVV3vjSv5Fq9AGesUo2b_QbNcpNMBn0C9cQcNw_SMdA1O0vq02ds_6j18ON3pRR9B5jWSydb9atKGImBhi41zJ4ddrl4kTblcwcywwdKR9XmzEiF0McrwCUur722yVL0GzCWntBxT3EZ2dR0_xzZ7Cx9aV1h3Jv-EYizI8HnV-QK71wtmxT-CtWw0n3bdHGuey2lpzP9brLzWGkJ2OsLdix1zBf3H9mN2oHBIY2dy0xzgI5d7Eqd20jE46IneJJ9t5O2EBPsNJOHU1F_16nrlY1xtLhfethNFwsLE96ABymnFPAHazcOfABIGb3SEHDJaPcZ8cTKZHnz91e_s4tfWTu4dvg8Uwjfu-IXZo0E6S3IDezB6Q-35fQicOZA9JTy8fkXtBtsrH5HsHN1ovqYMb3YEbDeBGAW7Uwo2uDA3ghrcebrSDGzYGcKO-vwBuT8jZu-PZ22nkq3dEJU_HTZRnWCyyELFiVcYSBvuSTBdCFonQlWEsFsYkWqax0fFYV7Au5KaUrEhlwWHVS_lT0l-ulvoZ5hWQWipd8VQDmTIZJhRiqcpKJhWXUgyIaP_MeelT22OFla_zuM2Au08HAzLqxC5cbpffCYhQU_PGgtk4HO8XmTeXzYDkt4jxW4d8_h-yh-TuzzfwBek3661-CRS6Ua88fH8AUx--vQ |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gHIADb8R45sC1Y03SJj0ixDRg2wkkblWTJtIE2xDrJEDiv2P3MW0IxoFjqzpJW8f-YtmfCTn3fSMB2jOPpZH0hIqcpw3sK51GgAeEY0ZjHLLbC9sP4vYxeJyphcG0SjxDu4IoIrfVuLkxGF2lxF2AnwHN4aKZR6cBUUiu5DJZCQDsYxcD3uxND11-mDe2RREPZaoqnt-GmfNPc-ylM36ntUlMteIi3eSpMcl0w3x8I3P83yttkY0SltLLQo-2yZId7pD1GbLCXfIJuDTPpH2n_SHNs9Xf6NgO-h4sv4_QlZbJXgN4nsJSKNJQjOnIFU_nZZ4WL0dgpwYw3VTv8SbWB2NJ5YdNaTneeKLLhjfjPfLQur6_antl8wbP8LCZeZHEXoGJ8DVLJQsYwFJpE6GSQNjUMeYL5wKrQt9Zv2lTMAuRM4oloUo4GL2Q75PacDS0B1hWrqzSNuWhBV_qJPLJsFBLw5TmSok6EdUvi03JbI4NNp5jvyJA_enr1kljKvZSUHv8JSBm9SHO8piKKxqg_CwSZ29ZnUQLxPjCKQ__IXtGVtv33U7cuendHZG1IgsR83COSS17ndgTQFOZPs23yxfxTw8L |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkRZfeCa0jiO7RwRULFWHKjELYoTW6qgi0gqFST-nZksVUGlHHpM5LGdZDwzdt68IeTMdWMJoT1zWBJIh6vAOjqGdaWTAOIBblms8RzysSVu2vzuxa_QhGkJq8Q9tC2IInJbjYt7kNgKEXcObgYUx-ON_HAaAgrpKblIlgX-FcMsjkZrvOdyRV7XFkUclKmSeP7q5od7-kFeOuF2mhtEVxMu0Cav9WGm6_HnLy7HuZ5ok6yXQSm9KLRoiyyY3jZZm6Aq3CFfEJXmONoP2unRHKs-oqnpdhyYfQcDV1pCvbrQnsJMKJJQpLRvi9Z5kqfByz5YqS4MN9Z6vInZwZhQ-WkSWvaXDnVZ7ibdJe3m9fPljVOWbnBiTzQyJ5BYKTDirmaJZD6DoFSaiKvI5yaxjLncWt8o4VrjNkwCRiGwsWKRUJEHJk94e2Sp1--ZfUwqV0Zpk3jCgCe1EtlkmNAyZkp7SvEa4dUXC-OS1xzLa7yFbkV_Ou3t1kh9LDYoiD3-E-CT6hBm-YmKLcqfTBcJs1FWI8EMMW_mkAdzyJ6SlaerZvhw27o_JKsFBBFBOEdkKXsfmmMIpTJ9ki-Wb36ZDa8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+in+convex+semi-infinite+programming+and+rates+of+convergence+of+optimal+solutions+of+discretized+finite+subproblems&rft.jtitle=Optimization&rft.au=Gay%C3%A1%2C+Ver%C3%B3nica+E.&rft.au=L%C3%B3pez%2C+Marco+A.&rft.au=De+Serio%2C+Virginia+N.+Vera&rft.date=2003-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=52&rft.issue=6&rft.spage=693&rft.epage=713&rft_id=info:doi/10.1080%2F023319340310001637387&rft.externalDocID=9612635 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |