Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems

We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowi...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 52; no. 6; pp. 693 - 713
Main Authors Gayá, Verónica E., López, Marco A., De Serio, Virginia N. Vera
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.12.2003
Subjects
Online AccessGet full text
ISSN0233-1934
1029-4945
DOI10.1080/023319340310001637387

Cover

Abstract We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowing for more than one optimal solution). We consider the family of all functions involved in some fixed optimization problem as one element of a space of data equipped with some topology, and arbitrary perturbations are premitted as long as the perturbed problem continues to be convex semiinfinite. Since no structure is required for T, our results apply to the ordinary convex programming case. We also provide conditions, not involving any second order optimality one, guaranteeing that the distance between optimal solutions of the discretized subproblems and the optimal set of the original problem decreases by a rate which is linear with respect to the discretization mesh-size.
AbstractList We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowing for more than one optimal solution). We consider the family of all functions involved in some fixed optimization problem as one element of a space of data equipped with some topology, and arbitrary perturbations are premitted as long as the perturbed problem continues to be convex semiinfinite. Since no structure is required for T, our results apply to the ordinary convex programming case. We also provide conditions, not involving any second order optimality one, guaranteeing that the distance between optimal solutions of the discretized subproblems and the optimal set of the original problem decreases by a rate which is linear with respect to the discretization mesh-size.
Author De Serio, Virginia N. Vera
Gayá, Verónica E.
López, Marco A.
Author_xml – sequence: 1
  givenname: Verónica E.
  surname: Gayá
  fullname: Gayá, Verónica E.
  organization: Facultad de Ciencias Políticas y Sociales , Universidad Nacional de Cuyo, Centro Universitario
– sequence: 2
  givenname: Marco A.
  surname: López
  fullname: López, Marco A.
  organization: Department of Statistics and Operations Research , Faculty of Sciences, University of Alicante
– sequence: 3
  givenname: Virginia N. Vera
  surname: De Serio
  fullname: De Serio, Virginia N. Vera
  organization: Facultad de Ciencias Económicas , Universidad Nacional de Cuyo, Centro Universitario
BookMark eNqNkNtKAzEQhoMo2FYfQcgLrOa0J7xRiicoeKFeL2l2UiLZpCSptoLv7q7tlRT1ahj4vp-Zf4wOnXeA0Bkl55RU5IIwzmnNBeGUEEILXvKqPEAjSlidiVrkh2g0MNkAHaNxjK-EMFowMUKfT0nOjTVpg43Dyrs3WOMIncmM08aZBHgZ_CLIrjNugaVrcZAJIvZ6S4cFOAXD6pfJdNLi6O0qGe--mdZEFSCZD2jxLi-u5n3k3EIXT9CRljbC6W5O0MvtzfP0Pps93j1Mr2eZ4gVJWV3mNS-koHPWlixnhJESpKhkLqDVjFGhdQ5VQTVQAm1Zi1qrismikpyXRcEnKN_mquBjDKCbZehvDZuGkmbosNnbYe9d_vCUSXJ4LgVp7H_tvkofOvnug22bJDfWBx2kUybuN5u0Tr199afNfz_gCx7eoXg
CitedBy_id crossref_primary_10_1007_s10107_007_0128_2
crossref_primary_10_1137_060658345
crossref_primary_10_1155_2012_145083
crossref_primary_10_1007_s10898_008_9391_x
crossref_primary_10_1007_s10957_010_9753_7
crossref_primary_10_1016_j_ejor_2006_08_045
crossref_primary_10_1137_090746331
crossref_primary_10_1007_s11750_011_0225_5
Cites_doi 10.1287/moor.27.4.755.306
10.1080/01630568508816198
10.1007/s101070100239
10.1137/S1052623497319869
10.1007/978-3-662-02796-7
10.1137/0331063
10.1007/BFb0084195
10.1137/S105262349528901X
10.1007/978-94-015-8149-3
10.1007/978-1-4612-1394-9
10.1006/jmaa.1997.5288
10.1007/978-3-642-02431-3
10.1007/978-1-4615-0011-7
10.1007/BF02192650
10.1137/S0895479895259766
10.1515/9781400873173
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2003
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2003
DBID AAYXX
CITATION
DOI 10.1080/023319340310001637387
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 713
ExternalDocumentID 10_1080_023319340310001637387
9612635
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c360t-975936a41b2d72520207ea48a54edf2214ff5e861fe10ed7949fc82a68a337663
ISSN 0233-1934
IngestDate Thu Apr 24 23:12:01 EDT 2025
Wed Oct 01 04:30:52 EDT 2025
Mon Oct 20 23:35:35 EDT 2025
Mon May 13 12:09:11 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-975936a41b2d72520207ea48a54edf2214ff5e861fe10ed7949fc82a68a337663
PageCount 21
ParticipantIDs crossref_primary_10_1080_023319340310001637387
informaworld_taylorfrancis_310_1080_023319340310001637387
crossref_citationtrail_10_1080_023319340310001637387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 12/1/2003
2003-12-00
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: 12/1/2003
  day: 01
PublicationDecade 2000
PublicationTitle Optimization
PublicationYear 2003
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Rockafellar R. (bib16) 1970
Tichatschke R. (bib20) 1978; 20
Beer G. (bib2) 1993
Bonnans J.F. (bib3) 2000
Trujillo-Cortez R. (bib22) 2001; 6
bib15
bib23
Zlobec S. (bib24) 2001
Goberna M.A. (bib9) 1998
Bank B. (bib1) 1983
bib10
Klatte D. (bib13) 1998
bib11
Tichatschke R. (bib21) 1979; 21
Dontchev A.L. (bib7) 1993; 1543
bib8
bib5
bib6
Still G. (bib19) 2001; 91
bib4
López M.A. (bib14) 2001
bib17
Shapiro A. (bib18) 2001
Hiriart-Urruty J.-B. (bib12) 1993
References_xml – start-page: pp. 69–102
  volume-title: Semi-Infinite Programming
  year: 1998
  ident: bib13
– volume-title: Rates of convergence of optimal solutions of discretized semi-infinite programming problems, Working Paper
  year: 2001
  ident: bib18
– ident: bib5
  doi: 10.1287/moor.27.4.755.306
– ident: bib15
  doi: 10.1080/01630568508816198
– volume: 91
  start-page: 53
  year: 2001
  ident: bib19
  publication-title: Mathematical Programming, Series A
  doi: 10.1007/s101070100239
– volume-title: Non-linear Parametric Optimization
  year: 1983
  ident: bib1
– ident: bib6
  doi: 10.1137/S1052623497319869
– volume-title: Convex Analysis and Minimization Algorithms I
  year: 1993
  ident: bib12
  doi: 10.1007/978-3-662-02796-7
– volume: 20
  start-page: 789
  year: 1978
  ident: bib20
  publication-title: Wis. Z. Tech. Hochsch. Karl-Max-Stadt
– ident: bib4
  doi: 10.1137/0331063
– volume: 1543
  volume-title: Well-Posed Optimization Problems
  year: 1993
  ident: bib7
  doi: 10.1007/BFb0084195
– volume: 6
  start-page: 107
  year: 2001
  ident: bib22
  publication-title: Mathematical Communications
– ident: bib11
  doi: 10.1137/S105262349528901X
– start-page: pp. 101–120
  volume-title: Semi-Infinite Programming Recent Advances
  year: 2001
  ident: bib14
– volume-title: Topologies on Closed and Closed Convex Sets
  year: 1993
  ident: bib2
  doi: 10.1007/978-94-015-8149-3
– volume-title: Perturbation Analysis of Optimization Problems
  year: 2000
  ident: bib3
  doi: 10.1007/978-1-4612-1394-9
– ident: bib23
  doi: 10.1006/jmaa.1997.5288
– ident: bib17
  doi: 10.1007/978-3-642-02431-3
– volume-title: Linear Semi-Infinite Optimization
  year: 1998
  ident: bib9
– volume: 21
  start-page: 577
  year: 1979
  ident: bib21
  publication-title: Wis. Z. Tech. Hochsch. Karl-Max-Stadt
– volume-title: Stable Parametric Programming
  year: 2001
  ident: bib24
  doi: 10.1007/978-1-4615-0011-7
– ident: bib8
  doi: 10.1007/BF02192650
– ident: bib10
  doi: 10.1137/S0895479895259766
– volume-title: Convex Analysis
  year: 1970
  ident: bib16
  doi: 10.1515/9781400873173
SSID ssj0021624
Score 1.6444306
Snippet We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms Convex semiinfinite programming
Hadamard well-posedness
Mathematics Subject Classifications 2000: Primary 90C34, 90C31
Optimal set mapping
Optimal value function
Rate of convergence
Secondary 90C25, 90C05, 05C38, 15A15
Stability
Title Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems
URI https://www.tandfonline.com/doi/abs/10.1080/023319340310001637387
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: AMVHM
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdKd4ED4lOUAfKBW5WqsZ3EORY2VCFtXDqYuFRxYqNItJ3aVBqT-Hv2b_Ke7QSXVePrEjVunx31_WL__Pw-CHkdx2UG1J5FrMqzSMjcRKqE90pVOfABYVip0A55cppOz8T78-S817sOvJa2jRqVV3vjSv5Fq9AGesUo2b_QbNcpNMBn0C9cQcNw_SMdA1O0vq02ds_6j18ON3pRR9B5jWSydb9atKGImBhi41zJ4ddrl4kTblcwcywwdKR9XmzEiF0McrwCUur722yVL0GzCWntBxT3EZ2dR0_xzZ7Cx9aV1h3Jv-EYizI8HnV-QK71wtmxT-CtWw0n3bdHGuey2lpzP9brLzWGkJ2OsLdix1zBf3H9mN2oHBIY2dy0xzgI5d7Eqd20jE46IneJJ9t5O2EBPsNJOHU1F_16nrlY1xtLhfethNFwsLE96ABymnFPAHazcOfABIGb3SEHDJaPcZ8cTKZHnz91e_s4tfWTu4dvg8Uwjfu-IXZo0E6S3IDezB6Q-35fQicOZA9JTy8fkXtBtsrH5HsHN1ovqYMb3YEbDeBGAW7Uwo2uDA3ghrcebrSDGzYGcKO-vwBuT8jZu-PZ22nkq3dEJU_HTZRnWCyyELFiVcYSBvuSTBdCFonQlWEsFsYkWqax0fFYV7Au5KaUrEhlwWHVS_lT0l-ulvoZ5hWQWipd8VQDmTIZJhRiqcpKJhWXUgyIaP_MeelT22OFla_zuM2Au08HAzLqxC5cbpffCYhQU_PGgtk4HO8XmTeXzYDkt4jxW4d8_h-yh-TuzzfwBek3661-CRS6Ua88fH8AUx--vQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gHIADb8R45sC1Y03SJj0ixDRg2wkkblWTJtIE2xDrJEDiv2P3MW0IxoFjqzpJW8f-YtmfCTn3fSMB2jOPpZH0hIqcpw3sK51GgAeEY0ZjHLLbC9sP4vYxeJyphcG0SjxDu4IoIrfVuLkxGF2lxF2AnwHN4aKZR6cBUUiu5DJZCQDsYxcD3uxND11-mDe2RREPZaoqnt-GmfNPc-ylM36ntUlMteIi3eSpMcl0w3x8I3P83yttkY0SltLLQo-2yZId7pD1GbLCXfIJuDTPpH2n_SHNs9Xf6NgO-h4sv4_QlZbJXgN4nsJSKNJQjOnIFU_nZZ4WL0dgpwYw3VTv8SbWB2NJ5YdNaTneeKLLhjfjPfLQur6_antl8wbP8LCZeZHEXoGJ8DVLJQsYwFJpE6GSQNjUMeYL5wKrQt9Zv2lTMAuRM4oloUo4GL2Q75PacDS0B1hWrqzSNuWhBV_qJPLJsFBLw5TmSok6EdUvi03JbI4NNp5jvyJA_enr1kljKvZSUHv8JSBm9SHO8piKKxqg_CwSZ29ZnUQLxPjCKQ__IXtGVtv33U7cuendHZG1IgsR83COSS17ndgTQFOZPs23yxfxTw8L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkRZfeCa0jiO7RwRULFWHKjELYoTW6qgi0gqFST-nZksVUGlHHpM5LGdZDwzdt68IeTMdWMJoT1zWBJIh6vAOjqGdaWTAOIBblms8RzysSVu2vzuxa_QhGkJq8Q9tC2IInJbjYt7kNgKEXcObgYUx-ON_HAaAgrpKblIlgX-FcMsjkZrvOdyRV7XFkUclKmSeP7q5od7-kFeOuF2mhtEVxMu0Cav9WGm6_HnLy7HuZ5ok6yXQSm9KLRoiyyY3jZZm6Aq3CFfEJXmONoP2unRHKs-oqnpdhyYfQcDV1pCvbrQnsJMKJJQpLRvi9Z5kqfByz5YqS4MN9Z6vInZwZhQ-WkSWvaXDnVZ7ibdJe3m9fPljVOWbnBiTzQyJ5BYKTDirmaJZD6DoFSaiKvI5yaxjLncWt8o4VrjNkwCRiGwsWKRUJEHJk94e2Sp1--ZfUwqV0Zpk3jCgCe1EtlkmNAyZkp7SvEa4dUXC-OS1xzLa7yFbkV_Ou3t1kh9LDYoiD3-E-CT6hBm-YmKLcqfTBcJs1FWI8EMMW_mkAdzyJ6SlaerZvhw27o_JKsFBBFBOEdkKXsfmmMIpTJ9ki-Wb36ZDa8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+in+convex+semi-infinite+programming+and+rates+of+convergence+of+optimal+solutions+of+discretized+finite+subproblems&rft.jtitle=Optimization&rft.au=Gay%C3%A1%2C+Ver%C3%B3nica+E.&rft.au=L%C3%B3pez%2C+Marco+A.&rft.au=De+Serio%2C+Virginia+N.+Vera&rft.date=2003-12-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=52&rft.issue=6&rft.spage=693&rft.epage=713&rft_id=info:doi/10.1080%2F023319340310001637387&rft.externalDocID=9612635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon