On the effects of data normalization for domain adaptation on EEG data

In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), whe...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 123; p. 106205
Main Authors Apicella, Andrea, Isgrò, Francesco, Pollastro, Andrea, Prevete, Roberto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
1873-6769
DOI10.1016/j.engappai.2023.106205

Cover

Abstract In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), where bio-signals as Electroencephalographic (EEG) are often used. Indeed, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several solutions are based on transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalization strategies applied together with DA methods. In particular, using SEED, DEAP, and BCI Competition IV 2a EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods. It results that the choice of the normalization strategy plays a key role on the classifier performances in DA scenarios, and, often, the use of only an appropriate normalization schema outperforms the DA technique. For SEED and BCI Competition IV 2a, a proper normalization strategy alone in a cross-subject context allows to reach accuracy of 81.52±7.26% and 68.52±11.35%, respectively. In a cross-session context, the accuracy of 86.56±8.15% and 67.82±12.48% for SEED and BCI Competition can be reached, respectively. For DEAP, the best cross-subject performance achieved using only normalization was 39.33±14.08%. All these results are comparable with the performance obtained by several well-known DA strategies. •We study the impact of data normalization on DA for EEG classification problems.•To the best of our knowledge, this aspect has yet to be extensively investigated.•We show that normalization plays a key role in performance when using DA methods.•Sometimes, a proper normalization can outperform DA techniques in performance.•Results suggest normalization may avoid computationally expensive DA procedures.
AbstractList In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), where bio-signals as Electroencephalographic (EEG) are often used. Indeed, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several solutions are based on transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalization strategies applied together with DA methods. In particular, using SEED, DEAP, and BCI Competition IV 2a EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods. It results that the choice of the normalization strategy plays a key role on the classifier performances in DA scenarios, and, often, the use of only an appropriate normalization schema outperforms the DA technique. For SEED and BCI Competition IV 2a, a proper normalization strategy alone in a cross-subject context allows to reach accuracy of 81.52±7.26% and 68.52±11.35%, respectively. In a cross-session context, the accuracy of 86.56±8.15% and 67.82±12.48% for SEED and BCI Competition can be reached, respectively. For DEAP, the best cross-subject performance achieved using only normalization was 39.33±14.08%. All these results are comparable with the performance obtained by several well-known DA strategies. •We study the impact of data normalization on DA for EEG classification problems.•To the best of our knowledge, this aspect has yet to be extensively investigated.•We show that normalization plays a key role in performance when using DA methods.•Sometimes, a proper normalization can outperform DA techniques in performance.•Results suggest normalization may avoid computationally expensive DA procedures.
ArticleNumber 106205
Author Prevete, Roberto
Apicella, Andrea
Isgrò, Francesco
Pollastro, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-5391-168X
  surname: Apicella
  fullname: Apicella, Andrea
  email: andrea.apicella@unina.it
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0001-9342-5291
  surname: Isgrò
  fullname: Isgrò, Francesco
  email: fisgro@unina.it
– sequence: 3
  givenname: Andrea
  orcidid: 0000-0003-4075-0757
  surname: Pollastro
  fullname: Pollastro, Andrea
  email: andrea.pollastro@unina.it
– sequence: 4
  givenname: Roberto
  orcidid: 0000-0002-3804-1719
  surname: Prevete
  fullname: Prevete, Roberto
  email: rprevete@unina.it
BookMark eNqNkFFLwzAQx4NMcJt-BckX6EyaJW3AB2VsUxjsRZ_DtbloRpeWtCrz09tZffFlwsHBcb__cb8JGYU6ICHXnM044-pmN8PwAk0DfpayVPRDlTJ5RsY8z0SiMqVHZMy0TBOuM3VBJm27Y4yJfK7GZLUNtHtFis5h2bW0dtRCBzTUcQ-V_4TO14G6OlJb78EHChaabpj2tVyuv_cvybmDqsWrnz4lz6vl0-Ih2WzXj4v7TVIKxbok1QVntpBcIzhb5MwVuciFFOlcawCpM4nSFgq5yjVzWS4KV2BqlZMsA4ZiSrIh9y00cPiAqjJN9HuIB8OZOeowO_Orwxx1mEFHT94OZBnrto3oTOmHP7oIvjqNqz_4v-_eDSD2Wt49RtOWHkOJ1sfeuLG1PxXxBd6glAo
CitedBy_id crossref_primary_10_1088_1361_6579_ad7fcb
crossref_primary_10_1016_j_foodres_2025_116096
crossref_primary_10_1088_1741_2552_ad49d7
crossref_primary_10_1186_s40537_024_01042_0
crossref_primary_10_1016_j_gexplo_2025_107701
crossref_primary_10_1016_j_tust_2024_106095
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_3390_computers14040116
crossref_primary_10_1007_s10796_024_10484_z
crossref_primary_10_1109_ACCESS_2024_3462434
crossref_primary_10_29407_intensif_v8i1_21971
crossref_primary_10_3390_app14198774
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_1109_TCDS_2024_3462452
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_3390_en17225571
crossref_primary_10_1016_j_neucom_2024_129010
crossref_primary_10_1016_j_neunet_2024_106665
Cites_doi 10.1109/TCDS.2019.2949306
10.1007/s12559-017-9533-x
10.1007/s12559-021-09941-7
10.1162/089976698300017467
10.3389/fnins.2021.778488
10.1038/s41598-022-09578-y
10.1016/j.ijepes.2021.107391
10.1088/1361-6501/ac3a31
10.1109/TKDE.2009.191
10.1109/TNN.2010.2091281
10.1109/51.395321
10.1177/1475921720980718
10.1109/TCDS.2018.2826840
10.1088/1741-2552/ac74e0
10.1016/j.compbiomed.2016.10.019
10.1109/TPAMI.2019.2945942
10.3390/s19132999
10.1016/j.asoc.2019.105524
10.1109/MSP.2008.4408441
10.1016/j.measurement.2022.111536
10.1109/T-AFFC.2011.15
10.1038/s41598-021-84447-8
10.1109/TCYB.2016.2633306
10.1016/j.patcog.2018.03.005
10.1016/j.engappai.2022.105347
10.3390/s19061423
10.3390/s17051014
10.1109/TIE.2017.2777383
10.1088/1741-2560/10/3/036007
10.1038/s41598-021-00812-7
10.1109/TASLP.2018.2866707
10.3390/s21051792
10.1016/j.neucom.2022.10.057
10.1016/j.clinph.2007.07.023
10.1016/j.patcog.2021.107918
10.1109/TASLP.2020.3036611
10.1109/TBME.2017.2693157
10.1016/j.compbiomed.2021.105048
10.1109/TNSRE.2016.2627016
10.1109/TNNLS.2020.2988928
10.1109/TAMD.2015.2431497
10.1038/nbt1206-1565
10.1109/TNNLS.2020.3010780
10.1016/j.compbiomed.2020.103843
10.1016/j.measurement.2021.109280
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.engappai.2023.106205
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10.1016/j.engappai.2023.106205
10_1016_j_engappai_2023_106205
S0952197623003895
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c360t-29b10db519eafdb80fb8383532499aa5975e5db6e16890f783bfbe2d6f507a0e3
IEDL.DBID UNPAY
ISSN 0952-1976
1873-6769
IngestDate Mon Oct 20 05:41:35 EDT 2025
Sat Oct 25 05:14:42 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Fri Feb 23 02:36:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Scaling
BCI
Data normalization
Pre-processing
EEG
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-29b10db519eafdb80fb8383532499aa5975e5db6e16890f783bfbe2d6f507a0e3
ORCID 0000-0002-5391-168X
0000-0003-4075-0757
0000-0001-9342-5291
0000-0002-3804-1719
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.engappai.2023.106205
ParticipantIDs unpaywall_primary_10_1016_j_engappai_2023_106205
crossref_citationtrail_10_1016_j_engappai_2023_106205
crossref_primary_10_1016_j_engappai_2023_106205
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106205
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bao, Zhuang, Tong, Yan, Shu, Wang, Zeng, Shen (b9) 2020; 14
Lan, Sourina, Wang, Scherer, Müller-Putz (b44) 2018; 11
Ding, Kimura, Fukui, Numao (b18) 2021
Zhang, Wang, Jiang, Xu, Wu, Zhang (b79) 2019
Duan, Jia, Sun, Zhang, Dai, Zhang (b19) 2021; 13
Parsons (b61) 2014
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen, Hämäläinen (b28) 2013; 7
Hagad, Kimura, Fukui, Numao (b32) 2021; 21
Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu, Sriperumbudur (b31) 2012; 25
Fernando, Habrard, Sebban, Tuytelaars (b22) 2013
Yger, Berar, Lotte (b77) 2016; 25
Liyanage, Guan, Zhang, Ang, Xu, Lee (b50) 2013; 10
Van der Maaten, Hinton (b53) 2008; 9
Schölkopf, Smola, Müller (b65) 1997
Ghorvei, Kavianpour, Beheshti, Ramezani (b27) 2023; 517
Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b12) 2008
Cheng, Liang, Liang, Zhao, Huang, Schuller (b17) 2020; 29
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b42) 2011; 3
Zheng, Lu (b81) 2015; 7
Apicella, Arpaia, Mastrati, Moccaldi (b4) 2021; 11
Arpaia, Esposito, Natalizio, Parvis (b7) 2022
Singh, Singh (b68) 2020; 97
Kavianpour, Ramezani, Beheshti (b39) 2022; 199
Roy (b64) 2022; 116
Sun, Feng, Saenko (b72) 2017
Fan, Wade, Key, Warren, Sarkar (b20) 2017; 65
Apicella, Arpaia, Frosolone, Improta, Moccaldi, Pollastro (b2) 2022; 12
Zhao, Zheng, Ma, Li, Zheng (b80) 2020; 32
Tzeng, Hoffman, Zhang, Saenko, Darrell (b75) 2014
Chai, Wang, Zhao, Liu, Bai, Li (b14) 2016; 79
Arpaia, De Benedetto, Duraccio (b6) 2021; 177
Chen, Sun, Li, Yu, Li, Li, Hu (b16) 2021
Kouw, Loog (b43) 2019; 43
Kavianpour, Ghorvei, Kavianpour, Ramezani, Beheshti (b38) 2022
Zheng, Zhang, Zhu, Lu (b82) 2015
Blanco, Garcia, Quiroga, Romanelli, Rosso (b10) 1995; 14
Jia, Zhao, Di, Yang, Lee (b36) 2017; 65
de Souza Nascimento, Ahmed, Oliveira, Palheta, Steinmacher, Conte (b70) 2019
Li, Zheng, Wang, Zong, Cui (b48) 2019
Meltzer, Negishi, Mayes, Constable (b55) 2007; 118
Sun, Feng, Saenko (b71) 2016
Tzeng, Hoffman, Saenko, Darrell (b74) 2017
Jin, Luo, Zheng, Lu (b37) 2017
Blankertz, Tomioka, Lemm, Kawanabe, Muller (b11) 2007; 25
Ma, Li, Zheng, Lu (b52) 2019
Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (b84) 2020; 32
Pan, Tsang, Kwok, Yang (b59) 2010; 22
Pan, Yang (b60) 2009; 22
Chai, Wang, Zhao, Li, Liu, Liu, Bai (b13) 2017; 17
Quinonero-Candela, Sugiyama, Schwaighofer, Lawrence (b63) 2008
Sun, Saenko (b73) 2016
Fernandez, Guttenberg, Witkowski, Pasquali (b21) 2021; 15
Ganin, Lempitsky (b23) 2015
Snoek, Larochelle, Adams (b69) 2012; 25
Chen, Jin, Li, Fan, Li, He (b15) 2021; 15
Ghorvei, Kavianpour, Beheshti, Ramezani (b26) 2022
Noble (b57) 2006; 24
Mishuhina, Jiang (b56) 2021; 115
Malan, Sharma (b54) 2021; 67
Arevalillo-Herráez, Cobos, Roger, García-Pineda (b5) 2019; 19
Yan, Kou, Zhang (b76) 2017; 48
Zhou, Liu, Qiao, Xiang, Loy (b83) 2022
Li, Zhang, He (b47) 2018; 10
Li, Qiu, Du, Wang, He (b45) 2019; 12
Kingma, Ba (b41) 2014
Huang, Zhou, Jiang (b35) 2022
Gretton, Borgwardt, Rasch, Schölkopf, Smola (b29) 2006; 19
Apicella, Arpaia, Frosolone, Moccaldi (b3) 2021; 11
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b24) 2016; 17
Ghorvei, Kavianpour, Beheshti, Ramezani (b25) 2021; 33
Luo, Zhang, Zheng, Lu (b51) 2018
Selim, Tantawi, Shedeed, Badr (b67) 2016
Li, Wang, Shi, Hou, Liu (b46) 2018; 80
Yu, Fu, Ma, Lin, Li (b78) 2021; 20
Gretton, Bousquet, Smola, Schölkopf (b30) 2005
Huang, Yu, Wang, Zhao, Liu, Mo, Liu, Zhang, Shi (b34) 2014
Khan, Das, Iversen, Puthusserypady (b40) 2020; 123
Azab, Toth, Mihaylova, Arvaneh (b8) 2018
Lin, Mak, Chien (b49) 2018; 26
Padfield, Zabalza, Zhao, Masero, Ren (b58) 2019; 19
He, Zhong, Pan (b33) 2022; 141
Peng, Kimmig, Niu, Wang, Liu, Wang, Ovtcharova (b62) 2022; 134
Schölkopf, Smola, Müller (b66) 1998; 10
Ajakan, Germain, Larochelle, Laviolette, Marchand (b1) 2014
Jin (10.1016/j.engappai.2023.106205_b37) 2017
Pan (10.1016/j.engappai.2023.106205_b60) 2009; 22
Quinonero-Candela (10.1016/j.engappai.2023.106205_b63) 2008
Hagad (10.1016/j.engappai.2023.106205_b32) 2021; 21
Kavianpour (10.1016/j.engappai.2023.106205_b38) 2022
He (10.1016/j.engappai.2023.106205_b33) 2022; 141
Schölkopf (10.1016/j.engappai.2023.106205_b65) 1997
Apicella (10.1016/j.engappai.2023.106205_b3) 2021; 11
Blankertz (10.1016/j.engappai.2023.106205_b11) 2007; 25
Zhao (10.1016/j.engappai.2023.106205_b80) 2020; 32
Ghorvei (10.1016/j.engappai.2023.106205_b27) 2023; 517
Zheng (10.1016/j.engappai.2023.106205_b82) 2015
Pan (10.1016/j.engappai.2023.106205_b59) 2010; 22
Luo (10.1016/j.engappai.2023.106205_b51) 2018
Mishuhina (10.1016/j.engappai.2023.106205_b56) 2021; 115
Li (10.1016/j.engappai.2023.106205_b48) 2019
Lan (10.1016/j.engappai.2023.106205_b44) 2018; 11
Chen (10.1016/j.engappai.2023.106205_b16) 2021
Gramfort (10.1016/j.engappai.2023.106205_b28) 2013; 7
Kavianpour (10.1016/j.engappai.2023.106205_b39) 2022; 199
Sun (10.1016/j.engappai.2023.106205_b71) 2016
Kingma (10.1016/j.engappai.2023.106205_b41) 2014
Singh (10.1016/j.engappai.2023.106205_b68) 2020; 97
Koelstra (10.1016/j.engappai.2023.106205_b42) 2011; 3
Cheng (10.1016/j.engappai.2023.106205_b17) 2020; 29
Gretton (10.1016/j.engappai.2023.106205_b30) 2005
Zhu (10.1016/j.engappai.2023.106205_b84) 2020; 32
Fan (10.1016/j.engappai.2023.106205_b20) 2017; 65
Li (10.1016/j.engappai.2023.106205_b47) 2018; 10
Chai (10.1016/j.engappai.2023.106205_b13) 2017; 17
Arevalillo-Herráez (10.1016/j.engappai.2023.106205_b5) 2019; 19
Ding (10.1016/j.engappai.2023.106205_b18) 2021
Ma (10.1016/j.engappai.2023.106205_b52) 2019
Arpaia (10.1016/j.engappai.2023.106205_b7) 2022
Tzeng (10.1016/j.engappai.2023.106205_b74) 2017
Roy (10.1016/j.engappai.2023.106205_b64) 2022; 116
Apicella (10.1016/j.engappai.2023.106205_b2) 2022; 12
Blanco (10.1016/j.engappai.2023.106205_b10) 1995; 14
Liyanage (10.1016/j.engappai.2023.106205_b50) 2013; 10
Zheng (10.1016/j.engappai.2023.106205_b81) 2015; 7
Arpaia (10.1016/j.engappai.2023.106205_b6) 2021; 177
Brunner (10.1016/j.engappai.2023.106205_b12) 2008
Zhang (10.1016/j.engappai.2023.106205_b79) 2019
Lin (10.1016/j.engappai.2023.106205_b49) 2018; 26
Fernandez (10.1016/j.engappai.2023.106205_b21) 2021; 15
Malan (10.1016/j.engappai.2023.106205_b54) 2021; 67
Bao (10.1016/j.engappai.2023.106205_b9) 2020; 14
Meltzer (10.1016/j.engappai.2023.106205_b55) 2007; 118
Chen (10.1016/j.engappai.2023.106205_b15) 2021; 15
Huang (10.1016/j.engappai.2023.106205_b35) 2022
Chai (10.1016/j.engappai.2023.106205_b14) 2016; 79
Yu (10.1016/j.engappai.2023.106205_b78) 2021; 20
Gretton (10.1016/j.engappai.2023.106205_b29) 2006; 19
Van der Maaten (10.1016/j.engappai.2023.106205_b53) 2008; 9
Parsons (10.1016/j.engappai.2023.106205_b61) 2014
Ajakan (10.1016/j.engappai.2023.106205_b1) 2014
Huang (10.1016/j.engappai.2023.106205_b34) 2014
Padfield (10.1016/j.engappai.2023.106205_b58) 2019; 19
Yger (10.1016/j.engappai.2023.106205_b77) 2016; 25
Ganin (10.1016/j.engappai.2023.106205_b24) 2016; 17
Tzeng (10.1016/j.engappai.2023.106205_b75) 2014
Ghorvei (10.1016/j.engappai.2023.106205_b26) 2022
Kouw (10.1016/j.engappai.2023.106205_b43) 2019; 43
Sun (10.1016/j.engappai.2023.106205_b73) 2016
Selim (10.1016/j.engappai.2023.106205_b67) 2016
Fernando (10.1016/j.engappai.2023.106205_b22) 2013
Ganin (10.1016/j.engappai.2023.106205_b23) 2015
de Souza Nascimento (10.1016/j.engappai.2023.106205_b70) 2019
Li (10.1016/j.engappai.2023.106205_b46) 2018; 80
Snoek (10.1016/j.engappai.2023.106205_b69) 2012; 25
Jia (10.1016/j.engappai.2023.106205_b36) 2017; 65
Azab (10.1016/j.engappai.2023.106205_b8) 2018
Apicella (10.1016/j.engappai.2023.106205_b4) 2021; 11
Noble (10.1016/j.engappai.2023.106205_b57) 2006; 24
Yan (10.1016/j.engappai.2023.106205_b76) 2017; 48
Li (10.1016/j.engappai.2023.106205_b45) 2019; 12
Gretton (10.1016/j.engappai.2023.106205_b31) 2012; 25
Peng (10.1016/j.engappai.2023.106205_b62) 2022; 134
Duan (10.1016/j.engappai.2023.106205_b19) 2021; 13
Khan (10.1016/j.engappai.2023.106205_b40) 2020; 123
Schölkopf (10.1016/j.engappai.2023.106205_b66) 1998; 10
Ghorvei (10.1016/j.engappai.2023.106205_b25) 2021; 33
Zhou (10.1016/j.engappai.2023.106205_b83) 2022
Sun (10.1016/j.engappai.2023.106205_b72) 2017
References_xml – volume: 14
  year: 2020
  ident: b9
  article-title: Two-level domain adaptation neural network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
– volume: 115
  year: 2021
  ident: b56
  article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b60
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 81
  year: 2018
  end-page: 98
  ident: b8
  article-title: A review on transfer learning approaches in brain–computer interface
  publication-title: Signal Processing and Machine Learning for Brain-Machine Interfaces
– volume: 177
  year: 2021
  ident: b6
  article-title: Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring
  publication-title: Measurement
– volume: 26
  start-page: 2412
  year: 2018
  end-page: 2422
  ident: b49
  article-title: Multisource i-vectors domain adaptation using maximum mean discrepancy based autoencoders
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 29
  start-page: 41
  year: 2020
  end-page: 53
  ident: b17
  article-title: A deep adaptation network for speech enhancement: Combining a relativistic discriminator with multi-kernel maximum mean discrepancy
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 17
  start-page: 1014
  year: 2017
  ident: b13
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition
  publication-title: Sensors
– volume: 12
  start-page: 1
  year: 2022
  end-page: 13
  ident: b2
  article-title: EEG-based measurement system for monitoring student engagement in learning 4.0
  publication-title: Sci. Rep.
– start-page: 7167
  year: 2017
  end-page: 7176
  ident: b74
  article-title: Adversarial discriminative domain adaptation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 917
  year: 2015
  end-page: 922
  ident: b82
  article-title: Transfer components between subjects for EEG-based emotion recognition
  publication-title: 2015 International Conference on Affective Computing and Intelligent Interaction
– volume: 199
  year: 2022
  ident: b39
  article-title: A class alignment method based on graph convolution neural network for bearing fault diagnosis in presence of missing data and changing working conditions
  publication-title: Measurement
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b23
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International Conference on Machine Learning
– volume: 32
  start-page: 1713
  year: 2020
  end-page: 1722
  ident: b84
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 141
  year: 2022
  ident: b33
  article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b66
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– volume: 10
  year: 2013
  ident: b50
  article-title: Dynamically weighted ensemble classification for non-stationary EEG processing
  publication-title: J. Neural Eng.
– start-page: 153
  year: 2017
  end-page: 171
  ident: b72
  article-title: Correlation alignment for unsupervised domain adaptation
  publication-title: Domain Adaptation in Computer Vision Applications
– volume: 134
  year: 2022
  ident: b62
  article-title: Wind turbine failure prediction and health assessment based on adaptive maximum mean discrepancy
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 9
  year: 2008
  ident: b53
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: b57
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnol.
– start-page: 555
  year: 2016
  end-page: 565
  ident: b67
  article-title: Reducing execution time for real-time motor imagery based BCI systems
  publication-title: International Conference on Advanced Intelligent Systems and Informatics
– start-page: 1
  year: 2019
  end-page: 6
  ident: b70
  article-title: Understanding development process of machine learning systems: Challenges and solutions
  publication-title: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
– volume: 80
  start-page: 109
  year: 2018
  end-page: 117
  ident: b46
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit.
– start-page: 1905
  year: 2014
  end-page: 1908
  ident: b34
  article-title: FOCUS: enhancing children’s engagement in reading by using contextual BCI training sessions
  publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
– volume: 32
  start-page: 535
  year: 2020
  end-page: 545
  ident: b80
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2014
  ident: b41
  article-title: Adam: A method for stochastic optimization
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: b59
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  year: 2016
  ident: b24
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 583
  year: 1997
  end-page: 588
  ident: b65
  article-title: Kernel principal component analysis
  publication-title: International Conference on Artificial Neural Networks
– start-page: 275
  year: 2018
  end-page: 286
  ident: b51
  article-title: WGAN domain adaptation for EEG-based emotion recognition
  publication-title: International Conference on Neural Information Processing
– start-page: 1
  year: 2022
  end-page: 6
  ident: b26
  article-title: Synthetic to real framework based on convolutional multi-head attention and hybrid domain alignment
  publication-title: 2022 8th International Conference on Control, Instrumentation and Automation
– year: 2022
  ident: b7
  article-title: How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art
  publication-title: J. Neural Eng.
– volume: 19
  year: 2006
  ident: b29
  article-title: A kernel method for the two-sample-problem
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 85
  year: 2018
  end-page: 94
  ident: b44
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 13
  ident: b28
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
– year: 2016
  ident: b71
  article-title: Return of frustratingly easy domain adaptation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 19
  start-page: 1423
  year: 2019
  ident: b58
  article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges
  publication-title: Sensors
– start-page: 222
  year: 2017
  end-page: 225
  ident: b37
  article-title: EEG-based emotion recognition using domain adaptation network
  publication-title: 2017 International Conference on Orange Technologies
– year: 2019
  ident: b48
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 19
  start-page: 2999
  year: 2019
  ident: b5
  article-title: Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals
  publication-title: Sensors
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: b14
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2021
  end-page: 8
  ident: b18
  article-title: EEG emotion enhancement using task-specific domain adversarial neural network
  publication-title: 2021 International Joint Conference on Neural Networks
– start-page: 30
  year: 2019
  end-page: 42
  ident: b52
  article-title: Reducing the subject variability of eeg signals with adversarial domain generalization
  publication-title: International Conference on Neural Information Processing
– volume: 97
  year: 2020
  ident: b68
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
– volume: 25
  year: 2012
  ident: b69
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  year: 2021
  ident: b4
  article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions
  publication-title: Sci. Rep.
– volume: 12
  start-page: 344
  year: 2019
  end-page: 353
  ident: b45
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 20
  start-page: 2182
  year: 2021
  end-page: 2198
  ident: b78
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct. Health Monit.
– volume: 65
  start-page: 43
  year: 2017
  end-page: 51
  ident: b20
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2022
  ident: b83
  article-title: Domain generalization: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 1389
  year: 2021
  end-page: 1405
  ident: b19
  article-title: Decoding premovement patterns with task-related component analysis
  publication-title: Cogn. Comput.
– start-page: 443
  year: 2016
  end-page: 450
  ident: b73
  article-title: Deep coral: Correlation alignment for deep domain adaptation
  publication-title: European Conference on Computer Vision
– volume: 517
  start-page: 44
  year: 2023
  end-page: 61
  ident: b27
  article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 118
  start-page: 2419
  year: 2007
  end-page: 2436
  ident: b55
  article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects
  publication-title: Clin. Neurophysiol.
– volume: 48
  start-page: 288
  year: 2017
  end-page: 299
  ident: b76
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybern.
– volume: 33
  year: 2021
  ident: b25
  article-title: An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition
  publication-title: Meas. Sci. Technol.
– volume: 25
  start-page: 41
  year: 2007
  end-page: 56
  ident: b11
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– start-page: 63
  year: 2005
  end-page: 77
  ident: b30
  article-title: Measuring statistical dependence with Hilbert-Schmidt norms
  publication-title: International Conference on Algorithmic Learning Theory
– volume: 10
  start-page: 368
  year: 2018
  end-page: 380
  ident: b47
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cogn. Comput.
– year: 2014
  ident: b1
  article-title: Domain-adversarial neural networks
– year: 2008
  ident: b63
  article-title: Dataset Shift in Machine Learning
– volume: 65
  start-page: 5872
  year: 2017
  end-page: 5881
  ident: b36
  article-title: Assessment of data suitability for machine prognosis using maximum mean discrepancy
  publication-title: IEEE Trans. Ind. Electron.
– volume: 14
  start-page: 395
  year: 1995
  end-page: 399
  ident: b10
  article-title: Stationarity of the EEG series
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b42
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– year: 2021
  ident: b16
  article-title: Personal-zscore: Eliminating individual difference for EEG-based cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 1
  year: 2022
  end-page: 6
  ident: b38
  article-title: An intelligent gearbox fault diagnosis under different operating conditions using adversarial domain adaptation
  publication-title: 2022 8th International Conference on Control, Instrumentation and Automation
– volume: 116
  year: 2022
  ident: b64
  article-title: Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface
  publication-title: Eng. Appl. Artif. Intell.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 9
  ident: b3
  article-title: High-wearable EEG-based distraction detection in motor rehabilitation
  publication-title: Sci. Rep.
– volume: 43
  start-page: 766
  year: 2019
  end-page: 785
  ident: b43
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2014
  end-page: 11
  ident: b61
  article-title: Stratified sampling
  publication-title: Wiley StatsRef: Statistics Reference Online
– start-page: 558
  year: 2019
  end-page: 570
  ident: b79
  article-title: Cross-subject EEG-based emotion recognition with deep domain confusion
  publication-title: Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part I 12
– volume: 67
  year: 2021
  ident: b54
  article-title: Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification
  publication-title: Biomed. Signal Process. Control
– volume: 25
  start-page: 1753
  year: 2016
  end-page: 1762
  ident: b77
  article-title: Riemannian approaches in brain-computer interfaces: a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 2960
  year: 2013
  end-page: 2967
  ident: b22
  article-title: Unsupervised visual domain adaptation using subspace alignment
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 25
  year: 2012
  ident: b31
  article-title: Optimal kernel choice for large-scale two-sample tests
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: b75
  article-title: Deep domain confusion: Maximizing for domain invariance
– volume: 15
  year: 2021
  ident: b15
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b81
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– year: 2008
  ident: b12
  article-title: BCI competition IV - Graz data set A
– volume: 21
  start-page: 1792
  year: 2021
  ident: b32
  article-title: Learning subject-generalized topographical EEG embeddings using deep variational autoencoders and domain-adversarial regularization
  publication-title: Sensors
– volume: 123
  year: 2020
  ident: b40
  article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2022
  end-page: 12
  ident: b35
  article-title: Generator-based domain adaptation method with knowledge free for cross-subject EEG emotion recognition
  publication-title: Cogn. Comput.
– volume: 15
  start-page: 11
  year: 2021
  ident: b21
  article-title: Cross-subject EEG-based emotion recognition through neural networks with stratified normalization
  publication-title: Front. Neurosci.
– year: 2014
  ident: 10.1016/j.engappai.2023.106205_b75
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b35
  article-title: Generator-based domain adaptation method with knowledge free for cross-subject EEG emotion recognition
  publication-title: Cogn. Comput.
– volume: 12
  start-page: 344
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b45
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2949306
– volume: 10
  start-page: 368
  issue: 2
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b47
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9533-x
– volume: 13
  start-page: 1389
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b19
  article-title: Decoding premovement patterns with task-related component analysis
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09941-7
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.engappai.2023.106205_b66
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 15
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b15
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b38
  article-title: An intelligent gearbox fault diagnosis under different operating conditions using adversarial domain adaptation
– volume: 7
  start-page: 1
  issue: 267
  year: 2013
  ident: 10.1016/j.engappai.2023.106205_b28
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b2
  article-title: EEG-based measurement system for monitoring student engagement in learning 4.0
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09578-y
– volume: 134
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b62
  article-title: Wind turbine failure prediction and health assessment based on adaptive maximum mean discrepancy
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107391
– start-page: 153
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b72
  article-title: Correlation alignment for unsupervised domain adaptation
– volume: 33
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b25
  article-title: An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac3a31
– year: 2014
  ident: 10.1016/j.engappai.2023.106205_b1
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.engappai.2023.106205_b60
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 14
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b9
  article-title: Two-level domain adaptation neural network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
– year: 2016
  ident: 10.1016/j.engappai.2023.106205_b71
  article-title: Return of frustratingly easy domain adaptation
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2023.106205_b24
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 67
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b54
  article-title: Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification
  publication-title: Biomed. Signal Process. Control
– year: 2022
  ident: 10.1016/j.engappai.2023.106205_b83
  article-title: Domain generalization: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: 10.1016/j.engappai.2023.106205_b48
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.engappai.2023.106205_b59
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 14
  start-page: 395
  issue: 4
  year: 1995
  ident: 10.1016/j.engappai.2023.106205_b10
  article-title: Stationarity of the EEG series
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.395321
– year: 2008
  ident: 10.1016/j.engappai.2023.106205_b63
– start-page: 222
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b37
  article-title: EEG-based emotion recognition using domain adaptation network
– start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2023.106205_b61
  article-title: Stratified sampling
– volume: 20
  start-page: 2182
  issue: 4
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b78
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720980718
– year: 2021
  ident: 10.1016/j.engappai.2023.106205_b16
  article-title: Personal-zscore: Eliminating individual difference for EEG-based cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 11
  start-page: 85
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b44
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– volume: 25
  year: 2012
  ident: 10.1016/j.engappai.2023.106205_b69
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  year: 2006
  ident: 10.1016/j.engappai.2023.106205_b29
  article-title: A kernel method for the two-sample-problem
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7167
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b74
  article-title: Adversarial discriminative domain adaptation
– start-page: 555
  year: 2016
  ident: 10.1016/j.engappai.2023.106205_b67
  article-title: Reducing execution time for real-time motor imagery based BCI systems
– year: 2014
  ident: 10.1016/j.engappai.2023.106205_b41
– start-page: 63
  year: 2005
  ident: 10.1016/j.engappai.2023.106205_b30
  article-title: Measuring statistical dependence with Hilbert-Schmidt norms
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b18
  article-title: EEG emotion enhancement using task-specific domain adversarial neural network
– year: 2022
  ident: 10.1016/j.engappai.2023.106205_b7
  article-title: How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac74e0
– start-page: 583
  year: 1997
  ident: 10.1016/j.engappai.2023.106205_b65
  article-title: Kernel principal component analysis
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.engappai.2023.106205_b14
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.019
– volume: 43
  start-page: 766
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b43
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2945942
– volume: 19
  start-page: 2999
  issue: 13
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b5
  article-title: Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s19132999
– volume: 97
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b68
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– start-page: 30
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b52
  article-title: Reducing the subject variability of eeg signals with adversarial domain generalization
– volume: 25
  start-page: 41
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2023.106205_b11
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 199
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b39
  article-title: A class alignment method based on graph convolution neural network for bearing fault diagnosis in presence of missing data and changing working conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111536
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2023.106205_b42
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b3
  article-title: High-wearable EEG-based distraction detection in motor rehabilitation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84447-8
– volume: 25
  year: 2012
  ident: 10.1016/j.engappai.2023.106205_b31
  article-title: Optimal kernel choice for large-scale two-sample tests
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 48
  start-page: 288
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b76
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2633306
– volume: 80
  start-page: 109
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b46
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.005
– volume: 116
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b64
  article-title: Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105347
– start-page: 917
  year: 2015
  ident: 10.1016/j.engappai.2023.106205_b82
  article-title: Transfer components between subjects for EEG-based emotion recognition
– start-page: 2960
  year: 2013
  ident: 10.1016/j.engappai.2023.106205_b22
  article-title: Unsupervised visual domain adaptation using subspace alignment
– start-page: 275
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b51
  article-title: WGAN domain adaptation for EEG-based emotion recognition
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.engappai.2023.106205_b53
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1180
  year: 2015
  ident: 10.1016/j.engappai.2023.106205_b23
  article-title: Unsupervised domain adaptation by backpropagation
– start-page: 443
  year: 2016
  ident: 10.1016/j.engappai.2023.106205_b73
  article-title: Deep coral: Correlation alignment for deep domain adaptation
– volume: 19
  start-page: 1423
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b58
  article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges
  publication-title: Sensors
  doi: 10.3390/s19061423
– volume: 17
  start-page: 1014
  issue: 5
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b13
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– volume: 65
  start-page: 5872
  issue: 7
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b36
  article-title: Assessment of data suitability for machine prognosis using maximum mean discrepancy
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2777383
– volume: 10
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2023.106205_b50
  article-title: Dynamically weighted ensemble classification for non-stationary EEG processing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/3/036007
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b4
  article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00812-7
– volume: 26
  start-page: 2412
  issue: 12
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b49
  article-title: Multisource i-vectors domain adaptation using maximum mean discrepancy based autoencoders
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2866707
– volume: 21
  start-page: 1792
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b32
  article-title: Learning subject-generalized topographical EEG embeddings using deep variational autoencoders and domain-adversarial regularization
  publication-title: Sensors
  doi: 10.3390/s21051792
– volume: 517
  start-page: 44
  year: 2023
  ident: 10.1016/j.engappai.2023.106205_b27
  article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.057
– volume: 118
  start-page: 2419
  issue: 11
  year: 2007
  ident: 10.1016/j.engappai.2023.106205_b55
  article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.07.023
– volume: 115
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b56
  article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107918
– volume: 29
  start-page: 41
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b17
  article-title: A deep adaptation network for speech enhancement: Combining a relativistic discriminator with multi-kernel maximum mean discrepancy
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.3036611
– volume: 15
  start-page: 11
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b21
  article-title: Cross-subject EEG-based emotion recognition through neural networks with stratified normalization
  publication-title: Front. Neurosci.
– volume: 65
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2023.106205_b20
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2693157
– volume: 141
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b33
  article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105048
– start-page: 81
  year: 2018
  ident: 10.1016/j.engappai.2023.106205_b8
  article-title: A review on transfer learning approaches in brain–computer interface
– volume: 25
  start-page: 1753
  issue: 10
  year: 2016
  ident: 10.1016/j.engappai.2023.106205_b77
  article-title: Riemannian approaches in brain-computer interfaces: a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627016
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b70
  article-title: Understanding development process of machine learning systems: Challenges and solutions
– volume: 32
  start-page: 1713
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b84
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2988928
– start-page: 558
  year: 2019
  ident: 10.1016/j.engappai.2023.106205_b79
  article-title: Cross-subject EEG-based emotion recognition with deep domain confusion
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2023.106205_b81
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– start-page: 1905
  year: 2014
  ident: 10.1016/j.engappai.2023.106205_b34
  article-title: FOCUS: enhancing children’s engagement in reading by using contextual BCI training sessions
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.106205_b26
  article-title: Synthetic to real framework based on convolutional multi-head attention and hybrid domain alignment
– year: 2008
  ident: 10.1016/j.engappai.2023.106205_b12
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 10.1016/j.engappai.2023.106205_b57
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 32
  start-page: 535
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b80
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3010780
– volume: 123
  year: 2020
  ident: 10.1016/j.engappai.2023.106205_b40
  article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103843
– volume: 177
  year: 2021
  ident: 10.1016/j.engappai.2023.106205_b6
  article-title: Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109280
SSID ssj0003846
Score 2.5718734
Snippet In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106205
SubjectTerms BCI
Data normalization
Domain adaptation
EEG
Pre-processing
Scaling
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jF734Lc4vcvDaNWubNj3K2ByCetDBbiVpEumoWdEN8eLf7suazgnCBKGXPl5Iecl775fmfSB0FUoZawbWjyaB8CIVJB6XlHgsjXSgFUCC3P7vuLuPR-PodkInLdRvcmFsWKWz_bVNX1prR_GdNP2qKPxHAAegbqDMob3eSm2ieRQltotB9_M7zCNkdbIOMHuWey1LeNpV5plXFS-6tok4EOPAtrH73UFtLUzFP955Wa45oOEe2nHIEV_XH7ePWsocoF2HIrHT0TcgNY0aGtohGj4YDEAPu-ANPNPYRoZiYwFr6TIxMcBXLGcvvDCYS17Vd_QYnsHgZsl_hMbDwVN_5LkGCl4exmTuBanoESkApCmupWBECwYnUgogKk05h7MEVVSKWPVilhKdsFBooQJYPUCJnKjwGLXNzKgThCOpBKM5U1wQW1ON5TmcP4UAb0a5ioIOoo3UstxVF7dNLsqsCSObZo20MyvtrJZ2B_mrcVVdX2PjiLRZlOzHTsnACWwcS1ar-MfpTv8x3Rnatm91vOA5as9fF-oCMMxcXC436Rcgcu5V
  priority: 102
  providerName: Elsevier
Title On the effects of data normalization for domain adaptation on EEG data
URI https://dx.doi.org/10.1016/j.engappai.2023.106205
https://doi.org/10.1016/j.engappai.2023.106205
UnpaywallVersion publishedVersion
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbgdPzk-c6MjBa2u_0qbHIZvT4SbicJ5K0qQyrV3RDdGDf7svazqmKJtQKIS-fuSlze817wOhE1cIP6Hw9SOBww1POoHBBLEMGnqJk0hAglj977jq-Z2BdzkkQ20oqliYb-v3Mz8smT2wPGcjUxX6hkbfUSlLqz4B9q6g6qB33bwvEuo5hh3OqsnZNHAN5bu5EBL8-4n-mo02plnO3t9Ymi7MNu0a6pf3WTiZPJnTCTfjjx8pHFd_kC20qcETN4uRso3WZLaDahpCsX7FX6GprPNQtu2idj_DwIlY-37gcYKVYynOFO-mOpATA_1iMX5mowwzwfJiiR_D1mqdz47fQ4N26_asY-j6C0bs-tbEcEJuW4ID40mWCE6thFMwaAkwWBgyBqYIkURwX9o-Da0koC5PuHRA-QCZzJLuPqpk40weIOwJySmJqWTcUinZaByD-co5TIaESc-pI1LqIYp1cnJVIyONSi-0x6jsv0j1X1T0Xx2dzuXyIj3HUomwVHOkIaOAhwg0tlTWmo-LFS93-H-RI1SZvEzlMcDOhDfQuvlpN1C1edHt9NS-e3PXbehx_wXqmf6a
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7GOIwLb8R45sC1W9c2bXpE08aAbRzYpN2qpElRp5JVsAlx4bfjrOkYEhJISD25sVI5sf25sWOErlwh_ISC9SOBwy1POoHFBLEtGnqJk0iABLH-3zEY-r2xdzchkwpql7UwOq3S2P7Cpi-ttaE0jTSbeZo2HwEcgLqBMrv6eCskG2jTI06gI7DGx1eeh0uLah0Ybenha2XC04ZUTyzPWdrQXcSB6Du6j93PHqq2UDl7f2NZtuaBurto20BHfF183R6qSLWPdgyMxEZJX4FUdmooaQeo-6AwID1ssjfwLME6NRQrjVgzU4qJAb9iMXtmqcJMsLw4pMfwdDo3y_GHaNztjNo9y3RQsGLXt-eWE_KWLTigNMkSwamdcAohKQEUFYaMQTBBJBHcly2fhnYSUJcnXDqwfAATmS3dI1RVMyWPEfaE5JTEVDJu60vVaBxDAMo5uDPCpOfUESmlFsXmenHd5SKLyjyyaVRKO9LSjgpp11FzxZcXF2z8yhGWixJ92yoReIFfee3VKv5xupN_THeJar3RoB_1b4f3p2hLvymSB89Qdf6ykOcAaOb8YrlhPwEsy_F4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbAdPzk-cqOTgNbNfadPjkM0huHlwME8laVKZ1qxoh-hf78uajinKJvQU-vrxXtr8XvLyHkIXvpRhxuDvRyNPkEB5EeGSOoTFQeZlCpAgNfMdt8NwMA5uJnRiHUWzF-bb-v0iDkvpR14UfNoxhb6hMfRMytJmSIG9G6g5Ht51H6qEeh5x40U1OZdFPjGxmytbgn-_0F-j0fZcF_zjnef5ymjTb6FR_ZxVkMlzZ16KTvr5I4Xj5i-yi3YseOJu1VP20JbS-6hlIRTbT_wNmuo6D3XbAeqPNAZOxDb2A88ybAJLsTa8m9uNnBjoF8vZC59qzCUvqiV-DEevd704_xCN-737qwGx9RdI6odOSbxYuI4UwHiKZ1IwJxMMHFoKDBbHnIMrQhWVIlRuyGIni5gvMqE8MD5AJneUf4QaeqbVMcKBVILRlCkuHJOSjaUpuK9CwGBIuQq8NqK1HZLUJic3NTLypI5Ce0pq_SVGf0mlvza6XMoVVXqOtRJxbebEQkYFDwlYbK2ss-wXG97u5P8ip6hRvs7VGcBOKc5tD_8CPmn6aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+effects+of+data+normalization+for+domain+adaptation+on+EEG+data&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Apicella%2C+Andrea&rft.au=Isgr%C3%B2%2C+Francesco&rft.au=Pollastro%2C+Andrea&rft.au=Prevete%2C+Roberto&rft.date=2023-08-01&rft.issn=0952-1976&rft.volume=123&rft.spage=106205&rft_id=info:doi/10.1016%2Fj.engappai.2023.106205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon