On the effects of data normalization for domain adaptation on EEG data
In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), whe...
        Saved in:
      
    
          | Published in | Engineering applications of artificial intelligence Vol. 123; p. 106205 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0952-1976 1873-6769 1873-6769  | 
| DOI | 10.1016/j.engappai.2023.106205 | 
Cover
| Abstract | In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), where bio-signals as Electroencephalographic (EEG) are often used. Indeed, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several solutions are based on transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalization strategies applied together with DA methods. In particular, using SEED, DEAP, and BCI Competition IV 2a EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods. It results that the choice of the normalization strategy plays a key role on the classifier performances in DA scenarios, and, often, the use of only an appropriate normalization schema outperforms the DA technique. For SEED and BCI Competition IV 2a, a proper normalization strategy alone in a cross-subject context allows to reach accuracy of 81.52±7.26% and 68.52±11.35%, respectively. In a cross-session context, the accuracy of 86.56±8.15% and 67.82±12.48% for SEED and BCI Competition can be reached, respectively. For DEAP, the best cross-subject performance achieved using only normalization was 39.33±14.08%. All these results are comparable with the performance obtained by several well-known DA strategies.
•We study the impact of data normalization on DA for EEG classification problems.•To the best of our knowledge, this aspect has yet to be extensively investigated.•We show that normalization plays a key role in performance when using DA methods.•Sometimes, a proper normalization can outperform DA techniques in performance.•Results suggest normalization may avoid computationally expensive DA procedures. | 
    
|---|---|
| AbstractList | In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalization performances. This problem is intensely felt in Brain-Computer Interfaces (BCIs), where bio-signals as Electroencephalographic (EEG) are often used. Indeed, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several solutions are based on transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalization strategies applied together with DA methods. In particular, using SEED, DEAP, and BCI Competition IV 2a EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods. It results that the choice of the normalization strategy plays a key role on the classifier performances in DA scenarios, and, often, the use of only an appropriate normalization schema outperforms the DA technique. For SEED and BCI Competition IV 2a, a proper normalization strategy alone in a cross-subject context allows to reach accuracy of 81.52±7.26% and 68.52±11.35%, respectively. In a cross-session context, the accuracy of 86.56±8.15% and 67.82±12.48% for SEED and BCI Competition can be reached, respectively. For DEAP, the best cross-subject performance achieved using only normalization was 39.33±14.08%. All these results are comparable with the performance obtained by several well-known DA strategies.
•We study the impact of data normalization on DA for EEG classification problems.•To the best of our knowledge, this aspect has yet to be extensively investigated.•We show that normalization plays a key role in performance when using DA methods.•Sometimes, a proper normalization can outperform DA techniques in performance.•Results suggest normalization may avoid computationally expensive DA procedures. | 
    
| ArticleNumber | 106205 | 
    
| Author | Prevete, Roberto Apicella, Andrea Isgrò, Francesco Pollastro, Andrea  | 
    
| Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-5391-168X surname: Apicella fullname: Apicella, Andrea email: andrea.apicella@unina.it – sequence: 2 givenname: Francesco orcidid: 0000-0001-9342-5291 surname: Isgrò fullname: Isgrò, Francesco email: fisgro@unina.it – sequence: 3 givenname: Andrea orcidid: 0000-0003-4075-0757 surname: Pollastro fullname: Pollastro, Andrea email: andrea.pollastro@unina.it – sequence: 4 givenname: Roberto orcidid: 0000-0002-3804-1719 surname: Prevete fullname: Prevete, Roberto email: rprevete@unina.it  | 
    
| BookMark | eNqNkFFLwzAQx4NMcJt-BckX6EyaJW3AB2VsUxjsRZ_DtbloRpeWtCrz09tZffFlwsHBcb__cb8JGYU6ICHXnM044-pmN8PwAk0DfpayVPRDlTJ5RsY8z0SiMqVHZMy0TBOuM3VBJm27Y4yJfK7GZLUNtHtFis5h2bW0dtRCBzTUcQ-V_4TO14G6OlJb78EHChaabpj2tVyuv_cvybmDqsWrnz4lz6vl0-Ih2WzXj4v7TVIKxbok1QVntpBcIzhb5MwVuciFFOlcawCpM4nSFgq5yjVzWS4KV2BqlZMsA4ZiSrIh9y00cPiAqjJN9HuIB8OZOeowO_Orwxx1mEFHT94OZBnrto3oTOmHP7oIvjqNqz_4v-_eDSD2Wt49RtOWHkOJ1sfeuLG1PxXxBd6glAo | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6579_ad7fcb crossref_primary_10_1016_j_foodres_2025_116096 crossref_primary_10_1088_1741_2552_ad49d7 crossref_primary_10_1186_s40537_024_01042_0 crossref_primary_10_1016_j_gexplo_2025_107701 crossref_primary_10_1016_j_tust_2024_106095 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_3390_computers14040116 crossref_primary_10_1007_s10796_024_10484_z crossref_primary_10_1109_ACCESS_2024_3462434 crossref_primary_10_29407_intensif_v8i1_21971 crossref_primary_10_3390_app14198774 crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_1109_TCDS_2024_3462452 crossref_primary_10_1016_j_nicl_2023_103482 crossref_primary_10_3390_en17225571 crossref_primary_10_1016_j_neucom_2024_129010 crossref_primary_10_1016_j_neunet_2024_106665  | 
    
| Cites_doi | 10.1109/TCDS.2019.2949306 10.1007/s12559-017-9533-x 10.1007/s12559-021-09941-7 10.1162/089976698300017467 10.3389/fnins.2021.778488 10.1038/s41598-022-09578-y 10.1016/j.ijepes.2021.107391 10.1088/1361-6501/ac3a31 10.1109/TKDE.2009.191 10.1109/TNN.2010.2091281 10.1109/51.395321 10.1177/1475921720980718 10.1109/TCDS.2018.2826840 10.1088/1741-2552/ac74e0 10.1016/j.compbiomed.2016.10.019 10.1109/TPAMI.2019.2945942 10.3390/s19132999 10.1016/j.asoc.2019.105524 10.1109/MSP.2008.4408441 10.1016/j.measurement.2022.111536 10.1109/T-AFFC.2011.15 10.1038/s41598-021-84447-8 10.1109/TCYB.2016.2633306 10.1016/j.patcog.2018.03.005 10.1016/j.engappai.2022.105347 10.3390/s19061423 10.3390/s17051014 10.1109/TIE.2017.2777383 10.1088/1741-2560/10/3/036007 10.1038/s41598-021-00812-7 10.1109/TASLP.2018.2866707 10.3390/s21051792 10.1016/j.neucom.2022.10.057 10.1016/j.clinph.2007.07.023 10.1016/j.patcog.2021.107918 10.1109/TASLP.2020.3036611 10.1109/TBME.2017.2693157 10.1016/j.compbiomed.2021.105048 10.1109/TNSRE.2016.2627016 10.1109/TNNLS.2020.2988928 10.1109/TAMD.2015.2431497 10.1038/nbt1206-1565 10.1109/TNNLS.2020.3010780 10.1016/j.compbiomed.2020.103843 10.1016/j.measurement.2021.109280  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors | 
    
| Copyright_xml | – notice: 2023 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.engappai.2023.106205 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1873-6769 | 
    
| ExternalDocumentID | 10.1016/j.engappai.2023.106205 10_1016_j_engappai_2023_106205 S0952197623003895  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c360t-29b10db519eafdb80fb8383532499aa5975e5db6e16890f783bfbe2d6f507a0e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0952-1976 1873-6769  | 
    
| IngestDate | Mon Oct 20 05:41:35 EDT 2025 Sat Oct 25 05:14:42 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Fri Feb 23 02:36:11 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Domain adaptation Scaling BCI Data normalization Pre-processing EEG  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c360t-29b10db519eafdb80fb8383532499aa5975e5db6e16890f783bfbe2d6f507a0e3 | 
    
| ORCID | 0000-0002-5391-168X 0000-0003-4075-0757 0000-0001-9342-5291 0000-0002-3804-1719  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.engappai.2023.106205 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_engappai_2023_106205 crossref_citationtrail_10_1016_j_engappai_2023_106205 crossref_primary_10_1016_j_engappai_2023_106205 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106205  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2023 2023-08-00  | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering applications of artificial intelligence | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Bao, Zhuang, Tong, Yan, Shu, Wang, Zeng, Shen (b9) 2020; 14 Lan, Sourina, Wang, Scherer, Müller-Putz (b44) 2018; 11 Ding, Kimura, Fukui, Numao (b18) 2021 Zhang, Wang, Jiang, Xu, Wu, Zhang (b79) 2019 Duan, Jia, Sun, Zhang, Dai, Zhang (b19) 2021; 13 Parsons (b61) 2014 Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen, Hämäläinen (b28) 2013; 7 Hagad, Kimura, Fukui, Numao (b32) 2021; 21 Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu, Sriperumbudur (b31) 2012; 25 Fernando, Habrard, Sebban, Tuytelaars (b22) 2013 Yger, Berar, Lotte (b77) 2016; 25 Liyanage, Guan, Zhang, Ang, Xu, Lee (b50) 2013; 10 Van der Maaten, Hinton (b53) 2008; 9 Schölkopf, Smola, Müller (b65) 1997 Ghorvei, Kavianpour, Beheshti, Ramezani (b27) 2023; 517 Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b12) 2008 Cheng, Liang, Liang, Zhao, Huang, Schuller (b17) 2020; 29 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b42) 2011; 3 Zheng, Lu (b81) 2015; 7 Apicella, Arpaia, Mastrati, Moccaldi (b4) 2021; 11 Arpaia, Esposito, Natalizio, Parvis (b7) 2022 Singh, Singh (b68) 2020; 97 Kavianpour, Ramezani, Beheshti (b39) 2022; 199 Roy (b64) 2022; 116 Sun, Feng, Saenko (b72) 2017 Fan, Wade, Key, Warren, Sarkar (b20) 2017; 65 Apicella, Arpaia, Frosolone, Improta, Moccaldi, Pollastro (b2) 2022; 12 Zhao, Zheng, Ma, Li, Zheng (b80) 2020; 32 Tzeng, Hoffman, Zhang, Saenko, Darrell (b75) 2014 Chai, Wang, Zhao, Liu, Bai, Li (b14) 2016; 79 Arpaia, De Benedetto, Duraccio (b6) 2021; 177 Chen, Sun, Li, Yu, Li, Li, Hu (b16) 2021 Kouw, Loog (b43) 2019; 43 Kavianpour, Ghorvei, Kavianpour, Ramezani, Beheshti (b38) 2022 Zheng, Zhang, Zhu, Lu (b82) 2015 Blanco, Garcia, Quiroga, Romanelli, Rosso (b10) 1995; 14 Jia, Zhao, Di, Yang, Lee (b36) 2017; 65 de Souza Nascimento, Ahmed, Oliveira, Palheta, Steinmacher, Conte (b70) 2019 Li, Zheng, Wang, Zong, Cui (b48) 2019 Meltzer, Negishi, Mayes, Constable (b55) 2007; 118 Sun, Feng, Saenko (b71) 2016 Tzeng, Hoffman, Saenko, Darrell (b74) 2017 Jin, Luo, Zheng, Lu (b37) 2017 Blankertz, Tomioka, Lemm, Kawanabe, Muller (b11) 2007; 25 Ma, Li, Zheng, Lu (b52) 2019 Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (b84) 2020; 32 Pan, Tsang, Kwok, Yang (b59) 2010; 22 Pan, Yang (b60) 2009; 22 Chai, Wang, Zhao, Li, Liu, Liu, Bai (b13) 2017; 17 Quinonero-Candela, Sugiyama, Schwaighofer, Lawrence (b63) 2008 Sun, Saenko (b73) 2016 Fernandez, Guttenberg, Witkowski, Pasquali (b21) 2021; 15 Ganin, Lempitsky (b23) 2015 Snoek, Larochelle, Adams (b69) 2012; 25 Chen, Jin, Li, Fan, Li, He (b15) 2021; 15 Ghorvei, Kavianpour, Beheshti, Ramezani (b26) 2022 Noble (b57) 2006; 24 Mishuhina, Jiang (b56) 2021; 115 Malan, Sharma (b54) 2021; 67 Arevalillo-Herráez, Cobos, Roger, García-Pineda (b5) 2019; 19 Yan, Kou, Zhang (b76) 2017; 48 Zhou, Liu, Qiao, Xiang, Loy (b83) 2022 Li, Zhang, He (b47) 2018; 10 Li, Qiu, Du, Wang, He (b45) 2019; 12 Kingma, Ba (b41) 2014 Huang, Zhou, Jiang (b35) 2022 Gretton, Borgwardt, Rasch, Schölkopf, Smola (b29) 2006; 19 Apicella, Arpaia, Frosolone, Moccaldi (b3) 2021; 11 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b24) 2016; 17 Ghorvei, Kavianpour, Beheshti, Ramezani (b25) 2021; 33 Luo, Zhang, Zheng, Lu (b51) 2018 Selim, Tantawi, Shedeed, Badr (b67) 2016 Li, Wang, Shi, Hou, Liu (b46) 2018; 80 Yu, Fu, Ma, Lin, Li (b78) 2021; 20 Gretton, Bousquet, Smola, Schölkopf (b30) 2005 Huang, Yu, Wang, Zhao, Liu, Mo, Liu, Zhang, Shi (b34) 2014 Khan, Das, Iversen, Puthusserypady (b40) 2020; 123 Azab, Toth, Mihaylova, Arvaneh (b8) 2018 Lin, Mak, Chien (b49) 2018; 26 Padfield, Zabalza, Zhao, Masero, Ren (b58) 2019; 19 He, Zhong, Pan (b33) 2022; 141 Peng, Kimmig, Niu, Wang, Liu, Wang, Ovtcharova (b62) 2022; 134 Schölkopf, Smola, Müller (b66) 1998; 10 Ajakan, Germain, Larochelle, Laviolette, Marchand (b1) 2014 Jin (10.1016/j.engappai.2023.106205_b37) 2017 Pan (10.1016/j.engappai.2023.106205_b60) 2009; 22 Quinonero-Candela (10.1016/j.engappai.2023.106205_b63) 2008 Hagad (10.1016/j.engappai.2023.106205_b32) 2021; 21 Kavianpour (10.1016/j.engappai.2023.106205_b38) 2022 He (10.1016/j.engappai.2023.106205_b33) 2022; 141 Schölkopf (10.1016/j.engappai.2023.106205_b65) 1997 Apicella (10.1016/j.engappai.2023.106205_b3) 2021; 11 Blankertz (10.1016/j.engappai.2023.106205_b11) 2007; 25 Zhao (10.1016/j.engappai.2023.106205_b80) 2020; 32 Ghorvei (10.1016/j.engappai.2023.106205_b27) 2023; 517 Zheng (10.1016/j.engappai.2023.106205_b82) 2015 Pan (10.1016/j.engappai.2023.106205_b59) 2010; 22 Luo (10.1016/j.engappai.2023.106205_b51) 2018 Mishuhina (10.1016/j.engappai.2023.106205_b56) 2021; 115 Li (10.1016/j.engappai.2023.106205_b48) 2019 Lan (10.1016/j.engappai.2023.106205_b44) 2018; 11 Chen (10.1016/j.engappai.2023.106205_b16) 2021 Gramfort (10.1016/j.engappai.2023.106205_b28) 2013; 7 Kavianpour (10.1016/j.engappai.2023.106205_b39) 2022; 199 Sun (10.1016/j.engappai.2023.106205_b71) 2016 Kingma (10.1016/j.engappai.2023.106205_b41) 2014 Singh (10.1016/j.engappai.2023.106205_b68) 2020; 97 Koelstra (10.1016/j.engappai.2023.106205_b42) 2011; 3 Cheng (10.1016/j.engappai.2023.106205_b17) 2020; 29 Gretton (10.1016/j.engappai.2023.106205_b30) 2005 Zhu (10.1016/j.engappai.2023.106205_b84) 2020; 32 Fan (10.1016/j.engappai.2023.106205_b20) 2017; 65 Li (10.1016/j.engappai.2023.106205_b47) 2018; 10 Chai (10.1016/j.engappai.2023.106205_b13) 2017; 17 Arevalillo-Herráez (10.1016/j.engappai.2023.106205_b5) 2019; 19 Ding (10.1016/j.engappai.2023.106205_b18) 2021 Ma (10.1016/j.engappai.2023.106205_b52) 2019 Arpaia (10.1016/j.engappai.2023.106205_b7) 2022 Tzeng (10.1016/j.engappai.2023.106205_b74) 2017 Roy (10.1016/j.engappai.2023.106205_b64) 2022; 116 Apicella (10.1016/j.engappai.2023.106205_b2) 2022; 12 Blanco (10.1016/j.engappai.2023.106205_b10) 1995; 14 Liyanage (10.1016/j.engappai.2023.106205_b50) 2013; 10 Zheng (10.1016/j.engappai.2023.106205_b81) 2015; 7 Arpaia (10.1016/j.engappai.2023.106205_b6) 2021; 177 Brunner (10.1016/j.engappai.2023.106205_b12) 2008 Zhang (10.1016/j.engappai.2023.106205_b79) 2019 Lin (10.1016/j.engappai.2023.106205_b49) 2018; 26 Fernandez (10.1016/j.engappai.2023.106205_b21) 2021; 15 Malan (10.1016/j.engappai.2023.106205_b54) 2021; 67 Bao (10.1016/j.engappai.2023.106205_b9) 2020; 14 Meltzer (10.1016/j.engappai.2023.106205_b55) 2007; 118 Chen (10.1016/j.engappai.2023.106205_b15) 2021; 15 Huang (10.1016/j.engappai.2023.106205_b35) 2022 Chai (10.1016/j.engappai.2023.106205_b14) 2016; 79 Yu (10.1016/j.engappai.2023.106205_b78) 2021; 20 Gretton (10.1016/j.engappai.2023.106205_b29) 2006; 19 Van der Maaten (10.1016/j.engappai.2023.106205_b53) 2008; 9 Parsons (10.1016/j.engappai.2023.106205_b61) 2014 Ajakan (10.1016/j.engappai.2023.106205_b1) 2014 Huang (10.1016/j.engappai.2023.106205_b34) 2014 Padfield (10.1016/j.engappai.2023.106205_b58) 2019; 19 Yger (10.1016/j.engappai.2023.106205_b77) 2016; 25 Ganin (10.1016/j.engappai.2023.106205_b24) 2016; 17 Tzeng (10.1016/j.engappai.2023.106205_b75) 2014 Ghorvei (10.1016/j.engappai.2023.106205_b26) 2022 Kouw (10.1016/j.engappai.2023.106205_b43) 2019; 43 Sun (10.1016/j.engappai.2023.106205_b73) 2016 Selim (10.1016/j.engappai.2023.106205_b67) 2016 Fernando (10.1016/j.engappai.2023.106205_b22) 2013 Ganin (10.1016/j.engappai.2023.106205_b23) 2015 de Souza Nascimento (10.1016/j.engappai.2023.106205_b70) 2019 Li (10.1016/j.engappai.2023.106205_b46) 2018; 80 Snoek (10.1016/j.engappai.2023.106205_b69) 2012; 25 Jia (10.1016/j.engappai.2023.106205_b36) 2017; 65 Azab (10.1016/j.engappai.2023.106205_b8) 2018 Apicella (10.1016/j.engappai.2023.106205_b4) 2021; 11 Noble (10.1016/j.engappai.2023.106205_b57) 2006; 24 Yan (10.1016/j.engappai.2023.106205_b76) 2017; 48 Li (10.1016/j.engappai.2023.106205_b45) 2019; 12 Gretton (10.1016/j.engappai.2023.106205_b31) 2012; 25 Peng (10.1016/j.engappai.2023.106205_b62) 2022; 134 Duan (10.1016/j.engappai.2023.106205_b19) 2021; 13 Khan (10.1016/j.engappai.2023.106205_b40) 2020; 123 Schölkopf (10.1016/j.engappai.2023.106205_b66) 1998; 10 Ghorvei (10.1016/j.engappai.2023.106205_b25) 2021; 33 Zhou (10.1016/j.engappai.2023.106205_b83) 2022 Sun (10.1016/j.engappai.2023.106205_b72) 2017  | 
    
| References_xml | – volume: 14 year: 2020 ident: b9 article-title: Two-level domain adaptation neural network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. – volume: 115 year: 2021 ident: b56 article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface publication-title: Pattern Recognit. – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: b60 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 81 year: 2018 end-page: 98 ident: b8 article-title: A review on transfer learning approaches in brain–computer interface publication-title: Signal Processing and Machine Learning for Brain-Machine Interfaces – volume: 177 year: 2021 ident: b6 article-title: Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring publication-title: Measurement – volume: 26 start-page: 2412 year: 2018 end-page: 2422 ident: b49 article-title: Multisource i-vectors domain adaptation using maximum mean discrepancy based autoencoders publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – volume: 29 start-page: 41 year: 2020 end-page: 53 ident: b17 article-title: A deep adaptation network for speech enhancement: Combining a relativistic discriminator with multi-kernel maximum mean discrepancy publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – volume: 17 start-page: 1014 year: 2017 ident: b13 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition publication-title: Sensors – volume: 12 start-page: 1 year: 2022 end-page: 13 ident: b2 article-title: EEG-based measurement system for monitoring student engagement in learning 4.0 publication-title: Sci. Rep. – start-page: 7167 year: 2017 end-page: 7176 ident: b74 article-title: Adversarial discriminative domain adaptation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 917 year: 2015 end-page: 922 ident: b82 article-title: Transfer components between subjects for EEG-based emotion recognition publication-title: 2015 International Conference on Affective Computing and Intelligent Interaction – volume: 199 year: 2022 ident: b39 article-title: A class alignment method based on graph convolution neural network for bearing fault diagnosis in presence of missing data and changing working conditions publication-title: Measurement – start-page: 1180 year: 2015 end-page: 1189 ident: b23 article-title: Unsupervised domain adaptation by backpropagation publication-title: International Conference on Machine Learning – volume: 32 start-page: 1713 year: 2020 end-page: 1722 ident: b84 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 141 year: 2022 ident: b33 article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition publication-title: Comput. Biol. Med. – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b66 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. – volume: 10 year: 2013 ident: b50 article-title: Dynamically weighted ensemble classification for non-stationary EEG processing publication-title: J. Neural Eng. – start-page: 153 year: 2017 end-page: 171 ident: b72 article-title: Correlation alignment for unsupervised domain adaptation publication-title: Domain Adaptation in Computer Vision Applications – volume: 134 year: 2022 ident: b62 article-title: Wind turbine failure prediction and health assessment based on adaptive maximum mean discrepancy publication-title: Int. J. Electr. Power Energy Syst. – volume: 9 year: 2008 ident: b53 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: b57 article-title: What is a support vector machine? publication-title: Nature Biotechnol. – start-page: 555 year: 2016 end-page: 565 ident: b67 article-title: Reducing execution time for real-time motor imagery based BCI systems publication-title: International Conference on Advanced Intelligent Systems and Informatics – start-page: 1 year: 2019 end-page: 6 ident: b70 article-title: Understanding development process of machine learning systems: Challenges and solutions publication-title: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement – volume: 80 start-page: 109 year: 2018 end-page: 117 ident: b46 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. – start-page: 1905 year: 2014 end-page: 1908 ident: b34 article-title: FOCUS: enhancing children’s engagement in reading by using contextual BCI training sessions publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – volume: 32 start-page: 535 year: 2020 end-page: 545 ident: b80 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2014 ident: b41 article-title: Adam: A method for stochastic optimization – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b59 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 17 year: 2016 ident: b24 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 583 year: 1997 end-page: 588 ident: b65 article-title: Kernel principal component analysis publication-title: International Conference on Artificial Neural Networks – start-page: 275 year: 2018 end-page: 286 ident: b51 article-title: WGAN domain adaptation for EEG-based emotion recognition publication-title: International Conference on Neural Information Processing – start-page: 1 year: 2022 end-page: 6 ident: b26 article-title: Synthetic to real framework based on convolutional multi-head attention and hybrid domain alignment publication-title: 2022 8th International Conference on Control, Instrumentation and Automation – year: 2022 ident: b7 article-title: How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art publication-title: J. Neural Eng. – volume: 19 year: 2006 ident: b29 article-title: A kernel method for the two-sample-problem publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 85 year: 2018 end-page: 94 ident: b44 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 7 start-page: 1 year: 2013 end-page: 13 ident: b28 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neurosci. – year: 2016 ident: b71 article-title: Return of frustratingly easy domain adaptation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 19 start-page: 1423 year: 2019 ident: b58 article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges publication-title: Sensors – start-page: 222 year: 2017 end-page: 225 ident: b37 article-title: EEG-based emotion recognition using domain adaptation network publication-title: 2017 International Conference on Orange Technologies – year: 2019 ident: b48 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 19 start-page: 2999 year: 2019 ident: b5 article-title: Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals publication-title: Sensors – volume: 79 start-page: 205 year: 2016 end-page: 214 ident: b14 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. – start-page: 1 year: 2021 end-page: 8 ident: b18 article-title: EEG emotion enhancement using task-specific domain adversarial neural network publication-title: 2021 International Joint Conference on Neural Networks – start-page: 30 year: 2019 end-page: 42 ident: b52 article-title: Reducing the subject variability of eeg signals with adversarial domain generalization publication-title: International Conference on Neural Information Processing – volume: 97 year: 2020 ident: b68 article-title: Investigating the impact of data normalization on classification performance publication-title: Appl. Soft Comput. – volume: 25 year: 2012 ident: b69 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 year: 2021 ident: b4 article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions publication-title: Sci. Rep. – volume: 12 start-page: 344 year: 2019 end-page: 353 ident: b45 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 20 start-page: 2182 year: 2021 end-page: 2198 ident: b78 article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis publication-title: Struct. Health Monit. – volume: 65 start-page: 43 year: 2017 end-page: 51 ident: b20 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Trans. Biomed. Eng. – year: 2022 ident: b83 article-title: Domain generalization: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 1389 year: 2021 end-page: 1405 ident: b19 article-title: Decoding premovement patterns with task-related component analysis publication-title: Cogn. Comput. – start-page: 443 year: 2016 end-page: 450 ident: b73 article-title: Deep coral: Correlation alignment for deep domain adaptation publication-title: European Conference on Computer Vision – volume: 517 start-page: 44 year: 2023 end-page: 61 ident: b27 article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis publication-title: Neurocomputing – volume: 118 start-page: 2419 year: 2007 end-page: 2436 ident: b55 article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects publication-title: Clin. Neurophysiol. – volume: 48 start-page: 288 year: 2017 end-page: 299 ident: b76 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybern. – volume: 33 year: 2021 ident: b25 article-title: An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition publication-title: Meas. Sci. Technol. – volume: 25 start-page: 41 year: 2007 end-page: 56 ident: b11 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – start-page: 63 year: 2005 end-page: 77 ident: b30 article-title: Measuring statistical dependence with Hilbert-Schmidt norms publication-title: International Conference on Algorithmic Learning Theory – volume: 10 start-page: 368 year: 2018 end-page: 380 ident: b47 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cogn. Comput. – year: 2014 ident: b1 article-title: Domain-adversarial neural networks – year: 2008 ident: b63 article-title: Dataset Shift in Machine Learning – volume: 65 start-page: 5872 year: 2017 end-page: 5881 ident: b36 article-title: Assessment of data suitability for machine prognosis using maximum mean discrepancy publication-title: IEEE Trans. Ind. Electron. – volume: 14 start-page: 395 year: 1995 end-page: 399 ident: b10 article-title: Stationarity of the EEG series publication-title: IEEE Eng. Med. Biol. Mag. – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b42 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. – year: 2021 ident: b16 article-title: Personal-zscore: Eliminating individual difference for EEG-based cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – start-page: 1 year: 2022 end-page: 6 ident: b38 article-title: An intelligent gearbox fault diagnosis under different operating conditions using adversarial domain adaptation publication-title: 2022 8th International Conference on Control, Instrumentation and Automation – volume: 116 year: 2022 ident: b64 article-title: Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface publication-title: Eng. Appl. Artif. Intell. – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: b3 article-title: High-wearable EEG-based distraction detection in motor rehabilitation publication-title: Sci. Rep. – volume: 43 start-page: 766 year: 2019 end-page: 785 ident: b43 article-title: A review of domain adaptation without target labels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2014 end-page: 11 ident: b61 article-title: Stratified sampling publication-title: Wiley StatsRef: Statistics Reference Online – start-page: 558 year: 2019 end-page: 570 ident: b79 article-title: Cross-subject EEG-based emotion recognition with deep domain confusion publication-title: Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part I 12 – volume: 67 year: 2021 ident: b54 article-title: Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification publication-title: Biomed. Signal Process. Control – volume: 25 start-page: 1753 year: 2016 end-page: 1762 ident: b77 article-title: Riemannian approaches in brain-computer interfaces: a review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 2960 year: 2013 end-page: 2967 ident: b22 article-title: Unsupervised visual domain adaptation using subspace alignment publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 25 year: 2012 ident: b31 article-title: Optimal kernel choice for large-scale two-sample tests publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: b75 article-title: Deep domain confusion: Maximizing for domain invariance – volume: 15 year: 2021 ident: b15 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b81 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – year: 2008 ident: b12 article-title: BCI competition IV - Graz data set A – volume: 21 start-page: 1792 year: 2021 ident: b32 article-title: Learning subject-generalized topographical EEG embeddings using deep variational autoencoders and domain-adversarial regularization publication-title: Sensors – volume: 123 year: 2020 ident: b40 article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application publication-title: Comput. Biol. Med. – start-page: 1 year: 2022 end-page: 12 ident: b35 article-title: Generator-based domain adaptation method with knowledge free for cross-subject EEG emotion recognition publication-title: Cogn. Comput. – volume: 15 start-page: 11 year: 2021 ident: b21 article-title: Cross-subject EEG-based emotion recognition through neural networks with stratified normalization publication-title: Front. Neurosci. – year: 2014 ident: 10.1016/j.engappai.2023.106205_b75 – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2023.106205_b35 article-title: Generator-based domain adaptation method with knowledge free for cross-subject EEG emotion recognition publication-title: Cogn. Comput. – volume: 12 start-page: 344 issue: 2 year: 2019 ident: 10.1016/j.engappai.2023.106205_b45 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2949306 – volume: 10 start-page: 368 issue: 2 year: 2018 ident: 10.1016/j.engappai.2023.106205_b47 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9533-x – volume: 13 start-page: 1389 issue: 5 year: 2021 ident: 10.1016/j.engappai.2023.106205_b19 article-title: Decoding premovement patterns with task-related component analysis publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09941-7 – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 10.1016/j.engappai.2023.106205_b66 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 15 year: 2021 ident: 10.1016/j.engappai.2023.106205_b15 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.778488 – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2023.106205_b38 article-title: An intelligent gearbox fault diagnosis under different operating conditions using adversarial domain adaptation – volume: 7 start-page: 1 issue: 267 year: 2013 ident: 10.1016/j.engappai.2023.106205_b28 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neurosci. – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.engappai.2023.106205_b2 article-title: EEG-based measurement system for monitoring student engagement in learning 4.0 publication-title: Sci. Rep. doi: 10.1038/s41598-022-09578-y – volume: 134 year: 2022 ident: 10.1016/j.engappai.2023.106205_b62 article-title: Wind turbine failure prediction and health assessment based on adaptive maximum mean discrepancy publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107391 – start-page: 153 year: 2017 ident: 10.1016/j.engappai.2023.106205_b72 article-title: Correlation alignment for unsupervised domain adaptation – volume: 33 issue: 2 year: 2021 ident: 10.1016/j.engappai.2023.106205_b25 article-title: An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac3a31 – year: 2014 ident: 10.1016/j.engappai.2023.106205_b1 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 10.1016/j.engappai.2023.106205_b60 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 14 year: 2020 ident: 10.1016/j.engappai.2023.106205_b9 article-title: Two-level domain adaptation neural network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. – year: 2016 ident: 10.1016/j.engappai.2023.106205_b71 article-title: Return of frustratingly easy domain adaptation – volume: 17 issue: 1 year: 2016 ident: 10.1016/j.engappai.2023.106205_b24 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 67 year: 2021 ident: 10.1016/j.engappai.2023.106205_b54 article-title: Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification publication-title: Biomed. Signal Process. Control – year: 2022 ident: 10.1016/j.engappai.2023.106205_b83 article-title: Domain generalization: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 ident: 10.1016/j.engappai.2023.106205_b48 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.engappai.2023.106205_b59 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 14 start-page: 395 issue: 4 year: 1995 ident: 10.1016/j.engappai.2023.106205_b10 article-title: Stationarity of the EEG series publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.395321 – year: 2008 ident: 10.1016/j.engappai.2023.106205_b63 – start-page: 222 year: 2017 ident: 10.1016/j.engappai.2023.106205_b37 article-title: EEG-based emotion recognition using domain adaptation network – start-page: 1 year: 2014 ident: 10.1016/j.engappai.2023.106205_b61 article-title: Stratified sampling – volume: 20 start-page: 2182 issue: 4 year: 2021 ident: 10.1016/j.engappai.2023.106205_b78 article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis publication-title: Struct. Health Monit. doi: 10.1177/1475921720980718 – year: 2021 ident: 10.1016/j.engappai.2023.106205_b16 article-title: Personal-zscore: Eliminating individual difference for EEG-based cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 11 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.engappai.2023.106205_b44 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – volume: 25 year: 2012 ident: 10.1016/j.engappai.2023.106205_b69 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 year: 2006 ident: 10.1016/j.engappai.2023.106205_b29 article-title: A kernel method for the two-sample-problem publication-title: Adv. Neural Inf. Process. Syst. – start-page: 7167 year: 2017 ident: 10.1016/j.engappai.2023.106205_b74 article-title: Adversarial discriminative domain adaptation – start-page: 555 year: 2016 ident: 10.1016/j.engappai.2023.106205_b67 article-title: Reducing execution time for real-time motor imagery based BCI systems – year: 2014 ident: 10.1016/j.engappai.2023.106205_b41 – start-page: 63 year: 2005 ident: 10.1016/j.engappai.2023.106205_b30 article-title: Measuring statistical dependence with Hilbert-Schmidt norms – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106205_b18 article-title: EEG emotion enhancement using task-specific domain adversarial neural network – year: 2022 ident: 10.1016/j.engappai.2023.106205_b7 article-title: How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac74e0 – start-page: 583 year: 1997 ident: 10.1016/j.engappai.2023.106205_b65 article-title: Kernel principal component analysis – volume: 79 start-page: 205 year: 2016 ident: 10.1016/j.engappai.2023.106205_b14 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.019 – volume: 43 start-page: 766 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.106205_b43 article-title: A review of domain adaptation without target labels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2945942 – volume: 19 start-page: 2999 issue: 13 year: 2019 ident: 10.1016/j.engappai.2023.106205_b5 article-title: Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals publication-title: Sensors doi: 10.3390/s19132999 – volume: 97 year: 2020 ident: 10.1016/j.engappai.2023.106205_b68 article-title: Investigating the impact of data normalization on classification performance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – start-page: 30 year: 2019 ident: 10.1016/j.engappai.2023.106205_b52 article-title: Reducing the subject variability of eeg signals with adversarial domain generalization – volume: 25 start-page: 41 issue: 1 year: 2007 ident: 10.1016/j.engappai.2023.106205_b11 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 199 year: 2022 ident: 10.1016/j.engappai.2023.106205_b39 article-title: A class alignment method based on graph convolution neural network for bearing fault diagnosis in presence of missing data and changing working conditions publication-title: Measurement doi: 10.1016/j.measurement.2022.111536 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.engappai.2023.106205_b42 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.106205_b3 article-title: High-wearable EEG-based distraction detection in motor rehabilitation publication-title: Sci. Rep. doi: 10.1038/s41598-021-84447-8 – volume: 25 year: 2012 ident: 10.1016/j.engappai.2023.106205_b31 article-title: Optimal kernel choice for large-scale two-sample tests publication-title: Adv. Neural Inf. Process. Syst. – volume: 48 start-page: 288 issue: 1 year: 2017 ident: 10.1016/j.engappai.2023.106205_b76 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2633306 – volume: 80 start-page: 109 year: 2018 ident: 10.1016/j.engappai.2023.106205_b46 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.005 – volume: 116 year: 2022 ident: 10.1016/j.engappai.2023.106205_b64 article-title: Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105347 – start-page: 917 year: 2015 ident: 10.1016/j.engappai.2023.106205_b82 article-title: Transfer components between subjects for EEG-based emotion recognition – start-page: 2960 year: 2013 ident: 10.1016/j.engappai.2023.106205_b22 article-title: Unsupervised visual domain adaptation using subspace alignment – start-page: 275 year: 2018 ident: 10.1016/j.engappai.2023.106205_b51 article-title: WGAN domain adaptation for EEG-based emotion recognition – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.engappai.2023.106205_b53 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 1180 year: 2015 ident: 10.1016/j.engappai.2023.106205_b23 article-title: Unsupervised domain adaptation by backpropagation – start-page: 443 year: 2016 ident: 10.1016/j.engappai.2023.106205_b73 article-title: Deep coral: Correlation alignment for deep domain adaptation – volume: 19 start-page: 1423 issue: 6 year: 2019 ident: 10.1016/j.engappai.2023.106205_b58 article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges publication-title: Sensors doi: 10.3390/s19061423 – volume: 17 start-page: 1014 issue: 5 year: 2017 ident: 10.1016/j.engappai.2023.106205_b13 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition publication-title: Sensors doi: 10.3390/s17051014 – volume: 65 start-page: 5872 issue: 7 year: 2017 ident: 10.1016/j.engappai.2023.106205_b36 article-title: Assessment of data suitability for machine prognosis using maximum mean discrepancy publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2777383 – volume: 10 issue: 3 year: 2013 ident: 10.1016/j.engappai.2023.106205_b50 article-title: Dynamically weighted ensemble classification for non-stationary EEG processing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/3/036007 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.106205_b4 article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions publication-title: Sci. Rep. doi: 10.1038/s41598-021-00812-7 – volume: 26 start-page: 2412 issue: 12 year: 2018 ident: 10.1016/j.engappai.2023.106205_b49 article-title: Multisource i-vectors domain adaptation using maximum mean discrepancy based autoencoders publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2866707 – volume: 21 start-page: 1792 issue: 5 year: 2021 ident: 10.1016/j.engappai.2023.106205_b32 article-title: Learning subject-generalized topographical EEG embeddings using deep variational autoencoders and domain-adversarial regularization publication-title: Sensors doi: 10.3390/s21051792 – volume: 517 start-page: 44 year: 2023 ident: 10.1016/j.engappai.2023.106205_b27 article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.057 – volume: 118 start-page: 2419 issue: 11 year: 2007 ident: 10.1016/j.engappai.2023.106205_b55 article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.07.023 – volume: 115 year: 2021 ident: 10.1016/j.engappai.2023.106205_b56 article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107918 – volume: 29 start-page: 41 year: 2020 ident: 10.1016/j.engappai.2023.106205_b17 article-title: A deep adaptation network for speech enhancement: Combining a relativistic discriminator with multi-kernel maximum mean discrepancy publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.3036611 – volume: 15 start-page: 11 year: 2021 ident: 10.1016/j.engappai.2023.106205_b21 article-title: Cross-subject EEG-based emotion recognition through neural networks with stratified normalization publication-title: Front. Neurosci. – volume: 65 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.engappai.2023.106205_b20 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2693157 – volume: 141 year: 2022 ident: 10.1016/j.engappai.2023.106205_b33 article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105048 – start-page: 81 year: 2018 ident: 10.1016/j.engappai.2023.106205_b8 article-title: A review on transfer learning approaches in brain–computer interface – volume: 25 start-page: 1753 issue: 10 year: 2016 ident: 10.1016/j.engappai.2023.106205_b77 article-title: Riemannian approaches in brain-computer interfaces: a review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627016 – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2023.106205_b70 article-title: Understanding development process of machine learning systems: Challenges and solutions – volume: 32 start-page: 1713 issue: 4 year: 2020 ident: 10.1016/j.engappai.2023.106205_b84 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2988928 – start-page: 558 year: 2019 ident: 10.1016/j.engappai.2023.106205_b79 article-title: Cross-subject EEG-based emotion recognition with deep domain confusion – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.engappai.2023.106205_b81 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – start-page: 1905 year: 2014 ident: 10.1016/j.engappai.2023.106205_b34 article-title: FOCUS: enhancing children’s engagement in reading by using contextual BCI training sessions – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2023.106205_b26 article-title: Synthetic to real framework based on convolutional multi-head attention and hybrid domain alignment – year: 2008 ident: 10.1016/j.engappai.2023.106205_b12 – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.engappai.2023.106205_b57 article-title: What is a support vector machine? publication-title: Nature Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 32 start-page: 535 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106205_b80 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3010780 – volume: 123 year: 2020 ident: 10.1016/j.engappai.2023.106205_b40 article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103843 – volume: 177 year: 2021 ident: 10.1016/j.engappai.2023.106205_b6 article-title: Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring publication-title: Measurement doi: 10.1016/j.measurement.2021.109280  | 
    
| SSID | ssj0003846 | 
    
| Score | 2.5718734 | 
    
| Snippet | In Machine Learning (ML), a well-known problem is the Dataset Shift problem where the data in the training and test sets can follow different probability... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 106205 | 
    
| SubjectTerms | BCI Data normalization Domain adaptation EEG Pre-processing Scaling  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jF734Lc4vcvDaNWubNj3K2ByCetDBbiVpEumoWdEN8eLf7suazgnCBKGXPl5Iecl775fmfSB0FUoZawbWjyaB8CIVJB6XlHgsjXSgFUCC3P7vuLuPR-PodkInLdRvcmFsWKWz_bVNX1prR_GdNP2qKPxHAAegbqDMob3eSm2ieRQltotB9_M7zCNkdbIOMHuWey1LeNpV5plXFS-6tok4EOPAtrH73UFtLUzFP955Wa45oOEe2nHIEV_XH7ePWsocoF2HIrHT0TcgNY0aGtohGj4YDEAPu-ANPNPYRoZiYwFr6TIxMcBXLGcvvDCYS17Vd_QYnsHgZsl_hMbDwVN_5LkGCl4exmTuBanoESkApCmupWBECwYnUgogKk05h7MEVVSKWPVilhKdsFBooQJYPUCJnKjwGLXNzKgThCOpBKM5U1wQW1ON5TmcP4UAb0a5ioIOoo3UstxVF7dNLsqsCSObZo20MyvtrJZ2B_mrcVVdX2PjiLRZlOzHTsnACWwcS1ar-MfpTv8x3Rnatm91vOA5as9fF-oCMMxcXC436Rcgcu5V priority: 102 providerName: Elsevier  | 
    
| Title | On the effects of data normalization for domain adaptation on EEG data | 
    
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106205 https://doi.org/10.1016/j.engappai.2023.106205  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 123 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbgdPzk-c6MjBa2u_0qbHIZvT4SbicJ5K0qQyrV3RDdGDf7svazqmKJtQKIS-fuSlze817wOhE1cIP6Hw9SOBww1POoHBBLEMGnqJk0hAglj977jq-Z2BdzkkQ20oqliYb-v3Mz8smT2wPGcjUxX6hkbfUSlLqz4B9q6g6qB33bwvEuo5hh3OqsnZNHAN5bu5EBL8-4n-mo02plnO3t9Ymi7MNu0a6pf3WTiZPJnTCTfjjx8pHFd_kC20qcETN4uRso3WZLaDahpCsX7FX6GprPNQtu2idj_DwIlY-37gcYKVYynOFO-mOpATA_1iMX5mowwzwfJiiR_D1mqdz47fQ4N26_asY-j6C0bs-tbEcEJuW4ID40mWCE6thFMwaAkwWBgyBqYIkURwX9o-Da0koC5PuHRA-QCZzJLuPqpk40weIOwJySmJqWTcUinZaByD-co5TIaESc-pI1LqIYp1cnJVIyONSi-0x6jsv0j1X1T0Xx2dzuXyIj3HUomwVHOkIaOAhwg0tlTWmo-LFS93-H-RI1SZvEzlMcDOhDfQuvlpN1C1edHt9NS-e3PXbehx_wXqmf6a | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7GOIwLb8R45sC1W9c2bXpE08aAbRzYpN2qpElRp5JVsAlx4bfjrOkYEhJISD25sVI5sf25sWOErlwh_ISC9SOBwy1POoHFBLEtGnqJk0iABLH-3zEY-r2xdzchkwpql7UwOq3S2P7Cpi-ttaE0jTSbeZo2HwEcgLqBMrv6eCskG2jTI06gI7DGx1eeh0uLah0Ybenha2XC04ZUTyzPWdrQXcSB6Du6j93PHqq2UDl7f2NZtuaBurto20BHfF183R6qSLWPdgyMxEZJX4FUdmooaQeo-6AwID1ssjfwLME6NRQrjVgzU4qJAb9iMXtmqcJMsLw4pMfwdDo3y_GHaNztjNo9y3RQsGLXt-eWE_KWLTigNMkSwamdcAohKQEUFYaMQTBBJBHcly2fhnYSUJcnXDqwfAATmS3dI1RVMyWPEfaE5JTEVDJu60vVaBxDAMo5uDPCpOfUESmlFsXmenHd5SKLyjyyaVRKO9LSjgpp11FzxZcXF2z8yhGWixJ92yoReIFfee3VKv5xupN_THeJar3RoB_1b4f3p2hLvymSB89Qdf6ykOcAaOb8YrlhPwEsy_F4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbAdPzk-cqOTgNbNfadPjkM0huHlwME8laVKZ1qxoh-hf78uajinKJvQU-vrxXtr8XvLyHkIXvpRhxuDvRyNPkEB5EeGSOoTFQeZlCpAgNfMdt8NwMA5uJnRiHUWzF-bb-v0iDkvpR14UfNoxhb6hMfRMytJmSIG9G6g5Ht51H6qEeh5x40U1OZdFPjGxmytbgn-_0F-j0fZcF_zjnef5ymjTb6FR_ZxVkMlzZ16KTvr5I4Xj5i-yi3YseOJu1VP20JbS-6hlIRTbT_wNmuo6D3XbAeqPNAZOxDb2A88ybAJLsTa8m9uNnBjoF8vZC59qzCUvqiV-DEevd704_xCN-737qwGx9RdI6odOSbxYuI4UwHiKZ1IwJxMMHFoKDBbHnIMrQhWVIlRuyGIni5gvMqE8MD5AJneUf4QaeqbVMcKBVILRlCkuHJOSjaUpuK9CwGBIuQq8NqK1HZLUJic3NTLypI5Ce0pq_SVGf0mlvza6XMoVVXqOtRJxbebEQkYFDwlYbK2ss-wXG97u5P8ip6hRvs7VGcBOKc5tD_8CPmn6aw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+effects+of+data+normalization+for+domain+adaptation+on+EEG+data&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Apicella%2C+Andrea&rft.au=Isgr%C3%B2%2C+Francesco&rft.au=Pollastro%2C+Andrea&rft.au=Prevete%2C+Roberto&rft.date=2023-08-01&rft.issn=0952-1976&rft.volume=123&rft.spage=106205&rft_id=info:doi/10.1016%2Fj.engappai.2023.106205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106205 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |