Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function

Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 188; pp. 386 - 394
Main Authors Li, Xiao-Qing, Wang, Yi, Yang, Shu-Jie, Liu, Yu, Ma, Xiang, Liu, Lu, Li, Si-Hong, Niu, Dong, Duan, Xing
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2022
Online AccessGet full text
ISSN0891-5849
1873-4596
1873-4596
DOI10.1016/j.freeradbiomed.2022.06.243

Cover

Abstract Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies. [Display omitted] •Melatonin restores the maternal diabetes-induced deterioration of oocyte quality.•Melatonin improves the oocyte maturation competency of diabetic oocytes.•Melatonin alleviates maternal diabetes-induced mitochondrial dysfunction.•Melatonin suppresses the oxidative stress-induced DNA damage and apoptosis of diabetic oocytes.
AbstractList Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies. [Display omitted] •Melatonin restores the maternal diabetes-induced deterioration of oocyte quality.•Melatonin improves the oocyte maturation competency of diabetic oocytes.•Melatonin alleviates maternal diabetes-induced mitochondrial dysfunction.•Melatonin suppresses the oxidative stress-induced DNA damage and apoptosis of diabetic oocytes.
Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.
Author Wang, Yi
Liu, Yu
Niu, Dong
Li, Xiao-Qing
Duan, Xing
Ma, Xiang
Li, Si-Hong
Yang, Shu-Jie
Liu, Lu
Author_xml – sequence: 1
  givenname: Xiao-Qing
  surname: Li
  fullname: Li, Xiao-Qing
– sequence: 2
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
– sequence: 3
  givenname: Shu-Jie
  surname: Yang
  fullname: Yang, Shu-Jie
– sequence: 4
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
– sequence: 5
  givenname: Xiang
  surname: Ma
  fullname: Ma, Xiang
– sequence: 6
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
– sequence: 7
  givenname: Si-Hong
  surname: Li
  fullname: Li, Si-Hong
– sequence: 8
  givenname: Dong
  surname: Niu
  fullname: Niu, Dong
  email: dniu@zafu.edu.cn
– sequence: 9
  givenname: Xing
  orcidid: 0000-0002-0538-9102
  surname: Duan
  fullname: Duan, Xing
  email: duanxing@zafu.edu.cn
BookMark eNqNkMFq3DAQhkVJIJs072DopRe7kizbMj2FkKaFlF7asxhLo3QWW0olbSFvX222l_aUwyBG_P8H812ysxADMvZO8E5wMX7Ydz4hJnALxQ1dJ7mUHR87qfo3bCf01LdqmMcztuN6Fu2g1XzBLnPec87V0Osd277iCiUGCs1TigVtyQ08AoVcmg0KpgBr4wgWLJhbyDlaqt-u2ZBiIds49C-l5bnmKZQ6FB6bjUq0P2NwiSrAH4ItFMNbdu5hzXj9971iPz7dfb_93D58u_9ye_PQ2n7kpRWDcJprofTCBV-sVwhS1d1PHqRTYlLz7LQDoaQcl8XPdhphdEPt4QTYX7H3J2696dcBczEbZYvrCgHjIRs56kGpScqhRj-eojbFnBN685Rog_RsBDdHyWZv_pFsjpINH02VXNs3_7UtFTieWhLQ-krG3YmB1chvwmSyJQwWHaWq1rhIr-L8AYtDqM4
CitedBy_id crossref_primary_10_1038_s41387_024_00280_8
crossref_primary_10_1152_ajpcell_00339_2024
crossref_primary_10_3389_fendo_2024_1361289
crossref_primary_10_1515_mr_2022_0031
crossref_primary_10_3390_ijms232113307
crossref_primary_10_1016_j_jep_2023_116890
Cites_doi 10.1038/cdd.2014.150
10.1210/en.2011-1815
10.1186/1477-7827-3-28
10.1155/2016/4987436
10.1007/s40273-015-0268-9
10.1096/fj.202002247RR
10.1111/jpi.12718
10.1210/endo-79-6-1168
10.1111/j.1447-0578.2005.00086.x
10.1007/s00540-013-1755-9
10.1002/jcp.27847
10.3389/fcell.2021.793389
10.1111/jpi.12300
10.1159/000447924
10.1210/me.2009-0033
10.1016/j.scitotenv.2022.153325
10.1111/jpi.12477
10.1155/2019/3187972
10.1016/j.bcp.2015.12.012
10.1111/cpr.12940
10.1016/j.ecoenv.2021.112078
10.1111/jpi.12603
10.1038/s41420-021-00695-7
10.1038/s41574-018-0130-1
10.1038/s41598-022-08758-0
10.1016/j.redox.2019.101327
10.1074/jbc.M109.025353
10.1034/j.1600-079X.2000.290303.x
10.1083/jcb.201401014
10.1530/rep.1.00394
10.1210/jcem-64-4-865
10.3389/fnagi.2022.888292
10.1186/s40104-021-00605-y
10.1038/s41467-019-14068-3
10.1155/2021/9793010
10.18632/oncotarget.9821
10.1007/s43032-020-00241-3
10.1080/15384101.2017.1320004
10.1039/D1FO03770F
10.3389/fcell.2022.811701
10.1038/nrm2952
10.1210/jcem-71-2-493
10.1002/jcp.26450
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.freeradbiomed.2022.06.243
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 394
ExternalDocumentID 10_1016_j_freeradbiomed_2022_06_243
S0891584922004701
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
TEORI
~G-
.GJ
.HR
29H
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SBG
SEW
WUQ
XPP
ZGI
7X8
EFKBS
ID FETCH-LOGICAL-c360t-151d808148b010bcf4ea24814f7fa2d417499d8da14226bbf9c76a6d551de7ae3
IEDL.DBID AIKHN
ISSN 0891-5849
1873-4596
IngestDate Fri Sep 05 09:13:39 EDT 2025
Tue Jul 01 01:11:39 EDT 2025
Thu Apr 24 23:12:05 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-151d808148b010bcf4ea24814f7fa2d417499d8da14226bbf9c76a6d551de7ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0538-9102
PQID 2685447225
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2685447225
crossref_primary_10_1016_j_freeradbiomed_2022_06_243
crossref_citationtrail_10_1016_j_freeradbiomed_2022_06_243
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2022_06_243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Free radical biology & medicine
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rönnberg, Kauppila, Leppäluoto, Martikainen, Vakkuri (bib29) 1990; 71
Sugino (bib13) 2005; 4
Wang, Zhuo, Ma, Liu, Xu, He, Fu, Wang, Ji, Zhang, Liu (bib27) 2021; 9
Duan, Li, Yi, Guo, Wang, Wu, Yang, Mair, Morales, Kalab, Wirtz, Sun, Li (bib33) 2020; 11
Portal-Núñez, Esbrit, Alcaraz, Largo (bib46) 2016; 108
Liu, Zhang, Wang, Li, Qiu, Li, Zhang, Hou, Han, Ge, Li, Gu, Wang (bib9) 2017; 16
Du, Luo, Huang, Zhang (bib10) 2022; 820
Helmke, Heald (bib35) 2014; 206
Luo, Zhuan, Li, Du, Huang, Hou, Fu (bib2) 2020; 27
Yang, Yang, Sun, Han, Xu, Gu, Zhang (bib41) 2022; 12
Leem, Bai, Kim, Oh (bib25) 2019; 67
Prakash, Fauzia, Siddiqui, Yadav, Kumari, Shams, Naeem, Praharaj, Khan, Bhutia, Janowski, Boltze, Raza (bib44) 2022
Wang, Xing, Qian, Sun, Zhong, Chen (bib14) 2021; 214
Xin, Jin, Ge, Huang, Han, Li, Wang, Zhu, Wang (bib6) 2021; 54
Jiang, Zhang, An, He, Kang, Yang, Gu, Zhang, Wang, Gao (bib8) 2016; 39
Cui, Yang, Wang, Ren, Lin, Cui, Song, He, Hu, Wang, Sun (bib19) 2021; 35
Baumgartner, Gerasimenko, Thorne, Ferdek, Pozzan, Tepikin, Petersen, Sutton, Watson, Gerasimenko (bib40) 2009; 284
Wang, Ratchford, Chi, Schoeller, Frolova, Schedl, Moley (bib5) 2009; 23
Karamitri, Jockers (bib17) 2019; 15
Martín Giménez, de Las Heras, Lahera, Tresguerres, Reiter, Manucha (bib30) 2022; 14
Shiomi, Miyamae, Takemura, Kaneda, Inamura, Onishi, Koshinuma, Momota, Minami, Figueredo (bib47) 2014; 28
Vitale, Rossetti, Corrado, Rapisarda, La Vignera, Condorelli, Valenti, Sapia, Laganà, Buscema (bib16) 2016; 2016
Wang, Chi, Moley (bib4) 2012; 153
Kudryavtseva, Krasnov, Dmitriev, Alekseev, Kardymon, Sadritdinova, Fedorova, Pokrovsky, Melnikova, Kaprin, Moskalev, Snezhkina (bib37) 2016; 7
Brzezinski, Seibel, Lynch, Deng, Wurtman (bib28) 1987; 64
Lan, Han, Pan, Wan, Pan, Sun (bib24) 2018; 65
Seuring, Archangelidi, Suhrcke (bib1) 2015; 33
Shang, Li, Li, Zhou, Ma, Liu, Niu, Duan (bib34) 2021; 230
Ou, Zhu, Sun (bib3) 2019; 234
Filomeni, De Zio, Cecconi (bib45) 2015; 22
Cao, Wang, Yang, Li, Qin (bib22) 2021; 70
Lu, Zhao, Zhang, Ji, Chao, Li, Yin, Zhao, Zhao, Sun, Ge (bib31) 2022; 13
Bandyopadhyay, Biswas, Bandyopadhyay, Reiter, Banerjee (bib21) 2000; 29
Chen, Li, Li, Wang, Yang, Kuang, Wang (bib39) 2019; 2019
Sun, Wang, Zeng, Xi, Lin, Han, Chen (bib11) 2021; 7
Dong, Fan, Hu, Jiang, Ma, Yan, Deng, Di, Xin, Wu, Yang, Reiter, Liang (bib23) 2016; 60
Pan, Qazi, Guo, Yang, Qin, Lv, Zang, Zhang, Zeng, Meng, Han, Zhou (bib26) 2021; 12
Roth, Hansen (bib36) 2005; 129
Reiter, Hester (bib15) 1966; 79
Zhang, Lu, Chen, Zhang, Xiong (bib20) 2020; 28
Wang, Li, Bao, Chen, Li, Lu, Chen, Huang, Zhang, Gao, Shi (bib18) 2021; 2021
Agarwal, Gupta, Sharma (bib12) 2005; 3
Chandra, Lagnado, Farr, Schleusner, Monroe, Saul, Passos, Khosla, Pignolo (bib42) 2022
Park, Lee (bib43) 2022; 10
Ge, Zhang, Tang, Hu, Hou, Sun, Han, Wang (bib7) 2021; 9
Duan, Zhang, Chen, Zhang, Wu, Liu, Wang, Sun (bib32) 2018; 233
Tait, Green (bib38) 2010; 11
Leem (10.1016/j.freeradbiomed.2022.06.243_bib25) 2019; 67
Wang (10.1016/j.freeradbiomed.2022.06.243_bib5) 2009; 23
Lu (10.1016/j.freeradbiomed.2022.06.243_bib31) 2022; 13
Ge (10.1016/j.freeradbiomed.2022.06.243_bib7) 2021; 9
Agarwal (10.1016/j.freeradbiomed.2022.06.243_bib12) 2005; 3
Filomeni (10.1016/j.freeradbiomed.2022.06.243_bib45) 2015; 22
Shiomi (10.1016/j.freeradbiomed.2022.06.243_bib47) 2014; 28
Luo (10.1016/j.freeradbiomed.2022.06.243_bib2) 2020; 27
Wang (10.1016/j.freeradbiomed.2022.06.243_bib14) 2021; 214
Brzezinski (10.1016/j.freeradbiomed.2022.06.243_bib28) 1987; 64
Chen (10.1016/j.freeradbiomed.2022.06.243_bib39) 2019; 2019
Pan (10.1016/j.freeradbiomed.2022.06.243_bib26) 2021; 12
Sugino (10.1016/j.freeradbiomed.2022.06.243_bib13) 2005; 4
Martín Giménez (10.1016/j.freeradbiomed.2022.06.243_bib30) 2022; 14
Yang (10.1016/j.freeradbiomed.2022.06.243_bib41) 2022; 12
Sun (10.1016/j.freeradbiomed.2022.06.243_bib11) 2021; 7
Portal-Núñez (10.1016/j.freeradbiomed.2022.06.243_bib46) 2016; 108
Duan (10.1016/j.freeradbiomed.2022.06.243_bib33) 2020; 11
Wang (10.1016/j.freeradbiomed.2022.06.243_bib18) 2021; 2021
Wang (10.1016/j.freeradbiomed.2022.06.243_bib4) 2012; 153
Reiter (10.1016/j.freeradbiomed.2022.06.243_bib15) 1966; 79
Park (10.1016/j.freeradbiomed.2022.06.243_bib43) 2022; 10
Chandra (10.1016/j.freeradbiomed.2022.06.243_bib42) 2022
Liu (10.1016/j.freeradbiomed.2022.06.243_bib9) 2017; 16
Rönnberg (10.1016/j.freeradbiomed.2022.06.243_bib29) 1990; 71
Kudryavtseva (10.1016/j.freeradbiomed.2022.06.243_bib37) 2016; 7
Seuring (10.1016/j.freeradbiomed.2022.06.243_bib1) 2015; 33
Jiang (10.1016/j.freeradbiomed.2022.06.243_bib8) 2016; 39
Xin (10.1016/j.freeradbiomed.2022.06.243_bib6) 2021; 54
Zhang (10.1016/j.freeradbiomed.2022.06.243_bib20) 2020; 28
Cao (10.1016/j.freeradbiomed.2022.06.243_bib22) 2021; 70
Dong (10.1016/j.freeradbiomed.2022.06.243_bib23) 2016; 60
Bandyopadhyay (10.1016/j.freeradbiomed.2022.06.243_bib21) 2000; 29
Vitale (10.1016/j.freeradbiomed.2022.06.243_bib16) 2016; 2016
Lan (10.1016/j.freeradbiomed.2022.06.243_bib24) 2018; 65
Wang (10.1016/j.freeradbiomed.2022.06.243_bib27) 2021; 9
Helmke (10.1016/j.freeradbiomed.2022.06.243_bib35) 2014; 206
Duan (10.1016/j.freeradbiomed.2022.06.243_bib32) 2018; 233
Du (10.1016/j.freeradbiomed.2022.06.243_bib10) 2022; 820
Karamitri (10.1016/j.freeradbiomed.2022.06.243_bib17) 2019; 15
Tait (10.1016/j.freeradbiomed.2022.06.243_bib38) 2010; 11
Prakash (10.1016/j.freeradbiomed.2022.06.243_bib44) 2022
Shang (10.1016/j.freeradbiomed.2022.06.243_bib34) 2021; 230
Cui (10.1016/j.freeradbiomed.2022.06.243_bib19) 2021; 35
Roth (10.1016/j.freeradbiomed.2022.06.243_bib36) 2005; 129
Baumgartner (10.1016/j.freeradbiomed.2022.06.243_bib40) 2009; 284
Ou (10.1016/j.freeradbiomed.2022.06.243_bib3) 2019; 234
References_xml – volume: 35
  year: 2021
  ident: bib19
  article-title: Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway
  publication-title: Faseb. J. : Off. Publicat. Federation Am. Soc. Exper. Biol.
– volume: 29
  start-page: 143
  year: 2000
  end-page: 151
  ident: bib21
  article-title: Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical
  publication-title: J. Pineal Res.
– volume: 64
  start-page: 865
  year: 1987
  end-page: 867
  ident: bib28
  article-title: Melatonin in human preovulatory follicular fluid
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 54
  year: 2021
  ident: bib6
  article-title: Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis
  publication-title: Cell Prolif
– volume: 820
  year: 2022
  ident: bib10
  article-title: Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 1603
  year: 2009
  end-page: 1612
  ident: bib5
  article-title: Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes
  publication-title: Molecular endocrinology (Baltimore, Md.)
– volume: 22
  start-page: 377
  year: 2015
  end-page: 388
  ident: bib45
  article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs
  publication-title: Cell Death Differ.
– volume: 15
  start-page: 105
  year: 2019
  end-page: 125
  ident: bib17
  article-title: Melatonin in type 2 diabetes mellitus and obesity
  publication-title: Nat. Rev. Endocrinol.
– volume: 13
  start-page: 5396
  year: 2022
  end-page: 5405
  ident: bib31
  article-title: Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality
  publication-title: Food Funct.
– year: 2022
  ident: bib42
  article-title: Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence
  publication-title: Journal of Bone and Mineral Research : the Official Journal
– volume: 65
  year: 2018
  ident: bib24
  article-title: Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation
  publication-title: J. Pineal Res.
– volume: 2019
  year: 2019
  ident: bib39
  article-title: SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway
  publication-title: Oxid. Med. Cell. Longev.
– volume: 2021
  year: 2021
  ident: bib18
  article-title: Melatonin attenuates diabetic Myocardial microvascular injury through activating the AMPK/SIRT1 signaling pathway
  publication-title: Oxid. Med. Cell. Longev.
– volume: 233
  start-page: 6088
  year: 2018
  end-page: 6097
  ident: bib32
  article-title: The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis
  publication-title: J. Cell. Physiol.
– volume: 33
  start-page: 811
  year: 2015
  end-page: 831
  ident: bib1
  article-title: The economic costs of type 2 diabetes: a global systematic review
  publication-title: Pharmacoeconomics
– volume: 14
  year: 2022
  ident: bib30
  article-title: Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases
  publication-title: Front. Aging Neurosci.
– volume: 10
  year: 2022
  ident: bib43
  article-title: Current status of autophagy enhancers in metabolic disorders and other diseases
  publication-title: Front. Cell Dev. Biol.
– volume: 28
  year: 2020
  ident: bib20
  article-title: Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes
  publication-title: Redox Biol.
– volume: 60
  start-page: 253
  year: 2016
  end-page: 262
  ident: bib23
  article-title: Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling
  publication-title: J. Pineal Res.
– volume: 28
  start-page: 593
  year: 2014
  end-page: 600
  ident: bib47
  article-title: Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated Guinea pig hearts
  publication-title: J. Anesth.
– volume: 234
  start-page: 7847
  year: 2019
  end-page: 7855
  ident: bib3
  article-title: Effects of obesity and diabetes on the epigenetic modification of mammalian gametes
  publication-title: J. Cell. Physiol.
– volume: 12
  start-page: 4762
  year: 2022
  ident: bib41
  article-title: Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae
  publication-title: Sci. Rep.
– volume: 9
  year: 2021
  ident: bib7
  article-title: Loss of PDK1 induces meiotic defects in oocytes from diabetic mice
  publication-title: Front. Cell Dev. Biol.
– volume: 153
  start-page: 1984
  year: 2012
  end-page: 1989
  ident: bib4
  article-title: Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice
  publication-title: Endocrinology
– volume: 108
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib46
  article-title: Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis
  publication-title: Biochem. Pharmacol.
– volume: 214
  year: 2021
  ident: bib14
  article-title: Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 16
  start-page: 1302
  year: 2017
  end-page: 1308
  ident: bib9
  article-title: Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice
  publication-title: Cell Cycle
– volume: 79
  start-page: 1168
  year: 1966
  end-page: 1170
  ident: bib15
  article-title: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters
  publication-title: Endocrinology
– volume: 2016
  year: 2016
  ident: bib16
  article-title: How to achieve high-quality oocytes? The key role of Myo-inositol and melatonin
  publication-title: Int. J. Endocrinol.
– volume: 39
  start-page: 2320
  year: 2016
  end-page: 2330
  ident: bib8
  article-title: Effect of type I diabetes on the proteome of mouse oocytes
  publication-title: Cell. Physiol. Biochem. : Int. J. Exper. Cellular Physiol. Biochem. Pharmacol.
– volume: 11
  start-page: 277
  year: 2020
  ident: bib33
  article-title: Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes
  publication-title: Nat. Commun.
– volume: 284
  start-page: 20796
  year: 2009
  end-page: 20803
  ident: bib40
  article-title: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening
  publication-title: J. Biol. Chem.
– volume: 71
  start-page: 492
  year: 1990
  end-page: 496
  ident: bib29
  article-title: Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 230
  year: 2021
  ident: bib34
  article-title: Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 11
  start-page: 621
  year: 2010
  end-page: 632
  ident: bib38
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 67
  year: 2019
  ident: bib25
  article-title: Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair
  publication-title: J. Pineal Res.
– volume: 4
  start-page: 31
  year: 2005
  end-page: 44
  ident: bib13
  article-title: Reactive oxygen species in ovarian physiology
  publication-title: Reproductive Med. Biol.
– volume: 27
  start-page: 2211
  year: 2020
  end-page: 2222
  ident: bib2
  article-title: Procyanidin B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function
  publication-title: Reprod. Sci.
– volume: 3
  start-page: 28
  year: 2005
  ident: bib12
  article-title: Role of oxidative stress in female reproduction
  publication-title: Reprod. Biol. Endocrinol. : RBE (Rev. Bras. Entomol.)
– volume: 129
  start-page: 235
  year: 2005
  end-page: 244
  ident: bib36
  article-title: Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation
  publication-title: Reproduction (Cambridge, England)
– volume: 9
  year: 2021
  ident: bib27
  article-title: Melatonin alleviates the suppressive effect of hypoxanthine on oocyte nuclear maturation and restores meiosis via the melatonin receptor 1 (MT1)-Mediated pathway
  publication-title: Front. Cell Dev. Biol.
– volume: 206
  start-page: 385
  year: 2014
  end-page: 393
  ident: bib35
  article-title: TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 304
  year: 2021
  ident: bib11
  article-title: SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway
  publication-title: Cell Death Dis.
– volume: 12
  start-page: 84
  year: 2021
  ident: bib26
  article-title: Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression
  publication-title: J. Anim. Sci. Biotechnol.
– year: 2022
  ident: bib44
  article-title: Oxidative Stress-Induced Autophagy Compromises Stem Cell Viability
– volume: 70
  year: 2021
  ident: bib22
  article-title: Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway
  publication-title: J. Pineal Res.
– volume: 7
  start-page: 44879
  year: 2016
  end-page: 44905
  ident: bib37
  article-title: Mitochondrial dysfunction and oxidative stress in aging and cancer
  publication-title: Oncotarget
– volume: 22
  start-page: 377
  issue: 3
  year: 2015
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib45
  article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.150
– volume: 153
  start-page: 1984
  issue: 4
  year: 2012
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib4
  article-title: Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice
  publication-title: Endocrinology
  doi: 10.1210/en.2011-1815
– volume: 3
  start-page: 28
  year: 2005
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib12
  article-title: Role of oxidative stress in female reproduction
  publication-title: Reprod. Biol. Endocrinol. : RBE (Rev. Bras. Entomol.)
  doi: 10.1186/1477-7827-3-28
– volume: 2016
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib16
  article-title: How to achieve high-quality oocytes? The key role of Myo-inositol and melatonin
  publication-title: Int. J. Endocrinol.
  doi: 10.1155/2016/4987436
– volume: 33
  start-page: 811
  issue: 8
  year: 2015
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib1
  article-title: The economic costs of type 2 diabetes: a global systematic review
  publication-title: Pharmacoeconomics
  doi: 10.1007/s40273-015-0268-9
– volume: 35
  issue: 4
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib19
  article-title: Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway
  publication-title: Faseb. J. : Off. Publicat. Federation Am. Soc. Exper. Biol.
  doi: 10.1096/fj.202002247RR
– volume: 70
  issue: 3
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib22
  article-title: Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12718
– volume: 79
  start-page: 1168
  issue: 6
  year: 1966
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib15
  article-title: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters
  publication-title: Endocrinology
  doi: 10.1210/endo-79-6-1168
– volume: 4
  start-page: 31
  issue: 1
  year: 2005
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib13
  article-title: Reactive oxygen species in ovarian physiology
  publication-title: Reproductive Med. Biol.
  doi: 10.1111/j.1447-0578.2005.00086.x
– volume: 28
  start-page: 593
  issue: 4
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib47
  article-title: Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated Guinea pig hearts
  publication-title: J. Anesth.
  doi: 10.1007/s00540-013-1755-9
– volume: 234
  start-page: 7847
  issue: 6
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib3
  article-title: Effects of obesity and diabetes on the epigenetic modification of mammalian gametes
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27847
– volume: 9
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib7
  article-title: Loss of PDK1 induces meiotic defects in oocytes from diabetic mice
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.793389
– volume: 60
  start-page: 253
  issue: 3
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib23
  article-title: Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12300
– volume: 39
  start-page: 2320
  issue: 6
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib8
  article-title: Effect of type I diabetes on the proteome of mouse oocytes
  publication-title: Cell. Physiol. Biochem. : Int. J. Exper. Cellular Physiol. Biochem. Pharmacol.
  doi: 10.1159/000447924
– volume: 23
  start-page: 1603
  issue: 10
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib5
  article-title: Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes
  publication-title: Molecular endocrinology (Baltimore, Md.)
  doi: 10.1210/me.2009-0033
– volume: 820
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib10
  article-title: Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153325
– volume: 65
  issue: 1
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib24
  article-title: Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12477
– volume: 2019
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib39
  article-title: SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/3187972
– volume: 108
  start-page: 1
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib46
  article-title: Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2015.12.012
– volume: 54
  issue: 1
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib6
  article-title: Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis
  publication-title: Cell Prolif
  doi: 10.1111/cpr.12940
– volume: 214
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib14
  article-title: Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112078
– volume: 67
  issue: 4
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib25
  article-title: Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12603
– volume: 7
  start-page: 304
  issue: 1
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib11
  article-title: SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/s41420-021-00695-7
– volume: 15
  start-page: 105
  issue: 2
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib17
  article-title: Melatonin in type 2 diabetes mellitus and obesity
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-018-0130-1
– volume: 12
  start-page: 4762
  issue: 1
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib41
  article-title: Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08758-0
– volume: 28
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib20
  article-title: Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101327
– volume: 284
  start-page: 20796
  issue: 31
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib40
  article-title: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.025353
– year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib44
– volume: 29
  start-page: 143
  issue: 3
  year: 2000
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib21
  article-title: Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical
  publication-title: J. Pineal Res.
  doi: 10.1034/j.1600-079X.2000.290303.x
– volume: 206
  start-page: 385
  issue: 3
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib35
  article-title: TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201401014
– volume: 129
  start-page: 235
  issue: 2
  year: 2005
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib36
  article-title: Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation
  publication-title: Reproduction (Cambridge, England)
  doi: 10.1530/rep.1.00394
– volume: 64
  start-page: 865
  issue: 4
  year: 1987
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib28
  article-title: Melatonin in human preovulatory follicular fluid
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-64-4-865
– volume: 14
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib30
  article-title: Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.888292
– volume: 12
  start-page: 84
  issue: 1
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib26
  article-title: Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression
  publication-title: J. Anim. Sci. Biotechnol.
  doi: 10.1186/s40104-021-00605-y
– volume: 11
  start-page: 277
  issue: 1
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib33
  article-title: Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14068-3
– volume: 2021
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib18
  article-title: Melatonin attenuates diabetic Myocardial microvascular injury through activating the AMPK/SIRT1 signaling pathway
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2021/9793010
– volume: 9
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib27
  article-title: Melatonin alleviates the suppressive effect of hypoxanthine on oocyte nuclear maturation and restores meiosis via the melatonin receptor 1 (MT1)-Mediated pathway
  publication-title: Front. Cell Dev. Biol.
– volume: 7
  start-page: 44879
  issue: 29
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib37
  article-title: Mitochondrial dysfunction and oxidative stress in aging and cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9821
– volume: 27
  start-page: 2211
  issue: 12
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib2
  article-title: Procyanidin B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function
  publication-title: Reprod. Sci.
  doi: 10.1007/s43032-020-00241-3
– volume: 16
  start-page: 1302
  issue: 13
  year: 2017
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib9
  article-title: Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2017.1320004
– volume: 13
  start-page: 5396
  issue: 9
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib31
  article-title: Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality
  publication-title: Food Funct.
  doi: 10.1039/D1FO03770F
– volume: 10
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib43
  article-title: Current status of autophagy enhancers in metabolic disorders and other diseases
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.811701
– volume: 230
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib34
  article-title: Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 11
  start-page: 621
  issue: 9
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib38
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2952
– volume: 71
  start-page: 492
  issue: 2
  year: 1990
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib29
  article-title: Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-71-2-493
– volume: 233
  start-page: 6088
  issue: 8
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib32
  article-title: The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26450
– year: 2022
  ident: 10.1016/j.freeradbiomed.2022.06.243_bib42
  article-title: Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence
SSID ssj0004538
Score 2.4484286
Snippet Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 386
Title Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function
URI https://dx.doi.org/10.1016/j.freeradbiomed.2022.06.243
https://www.proquest.com/docview/2685447225
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB62G1pyCXm05I1CS2_uerWy1sohsISGTUpyaQO5CcmSg0PWG5Ldw17y2zMjy3kUCoEeZSTL6JO_mZHmAfBN5K6fl5IQ6PMEW1liCsMTa3JnDNJfEz52fiHHl-LsKrvqwHEbC0NulZH7G04PbB2f9OJq9u6qqvc7zVUfxafiBPSQYriWOEr7vAtLo9Nf44tXScNDQWvqn9CAT_D1xc2rvPeebq1DsDvai5xTPk8uBv8SVH9RdpBDJ6uwEhVINmq-cQ06vl6HjVGNxvNkwb6z4NIZzsrX4WNTaXKxAZNzcnqjo1cWMzM8MHNtKlQOGeqsIRE0a89hExMx845NfDXFmZjzwe-D2QX2r-pZU1iCTZAQkEBrR_uYkZAkoD_D5cnPP8fjJFZaSIqBTGcJin1HJThEbtE-s0UpvOEC2-WwNNwJNFuUcoheCLy1tlTFUBrpUN1yfmj84At062ntN4GJVFiXSyWt4MKqwiqTFhSnrSTq8ZnZgsN2WXUR05BTNYxb3fqb3eg3mGjCRKdSIyZbIJ4H3zXZON437KjFT7_ZXBrlxvtecNCirvH3ozsVU_vp_EFzmWeCEm5m2_87yQ4sU6vxLtyF7ux-7vdQ45nZffjw47G_H_f1E6-jBLc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUAvVXmp0AdGVNyizXodb9wD0goVLY_dS0HiZtmxg1J1swiWw_57ZhyHRyUkpB6d2Enkz5mHPfMNwA-Ru15eSkKgxxNsZYkpDE-syZ0xKP6a9LHxRI6uxNl1dr0Ex20uDIVVRtnfyPQgreOVbpzN7m1VdX-nueqh-lScgB5QDteyoKLWHVgenp6PJi9Iw0NBa-qf0IBVOHgO8yrvvKdT65Dsjv4i58TnyUX_LUX1j8gOeujkE3yMBiQbNt-4Dku-3oDNYY3O83TBDlkI6Qx75Ruw0lSaXGzCdExBb7T1yiIzwz0zN6ZC45ChzRqIoFm7D5uYiJl3bOqrGb6JOR_iPphdYP-qnjeFJdgUBQIK0NrROmakJAnoLbg6-XV5PEpipYWk6Mt0nqDad1SCQ-QW_TNblMIbLrBdDkrDnUC3RSmH6IXEW2tLVQykkQ7NLecHxve3oVPPav8ZmEiFdblU0gourCqsMmlBedpKoh2fmR342U6rLiINOVXD-KvbeLM_-hUmmjDRqdSIyQ6Ip8G3DRvH-4YdtfjpV4tLo9543wP2W9Q1_n50pmJqP3u411zmmSDCzWz3f1-yB2ujy_GFvjidnH-BD3SniTT8Cp353YP_htbP3H6Pq_sR02UGnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+protects+against+maternal+diabetes-associated+meiotic+defects+by+maintaining+mitochondrial+function&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Li%2C+Xiao-Qing&rft.au=Wang%2C+Yi&rft.au=Yang%2C+Shu-Jie&rft.au=Liu%2C+Yu&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=188&rft.spage=386&rft.epage=394&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2022.06.243&rft.externalDocID=S0891584922004701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon