Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function
Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and...
Saved in:
Published in | Free radical biology & medicine Vol. 188; pp. 386 - 394 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2022
|
Online Access | Get full text |
ISSN | 0891-5849 1873-4596 1873-4596 |
DOI | 10.1016/j.freeradbiomed.2022.06.243 |
Cover
Abstract | Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.
[Display omitted]
•Melatonin restores the maternal diabetes-induced deterioration of oocyte quality.•Melatonin improves the oocyte maturation competency of diabetic oocytes.•Melatonin alleviates maternal diabetes-induced mitochondrial dysfunction.•Melatonin suppresses the oxidative stress-induced DNA damage and apoptosis of diabetic oocytes. |
---|---|
AbstractList | Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.
[Display omitted]
•Melatonin restores the maternal diabetes-induced deterioration of oocyte quality.•Melatonin improves the oocyte maturation competency of diabetic oocytes.•Melatonin alleviates maternal diabetes-induced mitochondrial dysfunction.•Melatonin suppresses the oxidative stress-induced DNA damage and apoptosis of diabetic oocytes. Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies. |
Author | Wang, Yi Liu, Yu Niu, Dong Li, Xiao-Qing Duan, Xing Ma, Xiang Li, Si-Hong Yang, Shu-Jie Liu, Lu |
Author_xml | – sequence: 1 givenname: Xiao-Qing surname: Li fullname: Li, Xiao-Qing – sequence: 2 givenname: Yi surname: Wang fullname: Wang, Yi – sequence: 3 givenname: Shu-Jie surname: Yang fullname: Yang, Shu-Jie – sequence: 4 givenname: Yu surname: Liu fullname: Liu, Yu – sequence: 5 givenname: Xiang surname: Ma fullname: Ma, Xiang – sequence: 6 givenname: Lu surname: Liu fullname: Liu, Lu – sequence: 7 givenname: Si-Hong surname: Li fullname: Li, Si-Hong – sequence: 8 givenname: Dong surname: Niu fullname: Niu, Dong email: dniu@zafu.edu.cn – sequence: 9 givenname: Xing orcidid: 0000-0002-0538-9102 surname: Duan fullname: Duan, Xing email: duanxing@zafu.edu.cn |
BookMark | eNqNkMFq3DAQhkVJIJs072DopRe7kizbMj2FkKaFlF7asxhLo3QWW0olbSFvX222l_aUwyBG_P8H812ysxADMvZO8E5wMX7Ydz4hJnALxQ1dJ7mUHR87qfo3bCf01LdqmMcztuN6Fu2g1XzBLnPec87V0Osd277iCiUGCs1TigVtyQ08AoVcmg0KpgBr4wgWLJhbyDlaqt-u2ZBiIds49C-l5bnmKZQ6FB6bjUq0P2NwiSrAH4ItFMNbdu5hzXj9971iPz7dfb_93D58u_9ye_PQ2n7kpRWDcJprofTCBV-sVwhS1d1PHqRTYlLz7LQDoaQcl8XPdhphdEPt4QTYX7H3J2696dcBczEbZYvrCgHjIRs56kGpScqhRj-eojbFnBN685Rog_RsBDdHyWZv_pFsjpINH02VXNs3_7UtFTieWhLQ-krG3YmB1chvwmSyJQwWHaWq1rhIr-L8AYtDqM4 |
CitedBy_id | crossref_primary_10_1038_s41387_024_00280_8 crossref_primary_10_1152_ajpcell_00339_2024 crossref_primary_10_3389_fendo_2024_1361289 crossref_primary_10_1515_mr_2022_0031 crossref_primary_10_3390_ijms232113307 crossref_primary_10_1016_j_jep_2023_116890 |
Cites_doi | 10.1038/cdd.2014.150 10.1210/en.2011-1815 10.1186/1477-7827-3-28 10.1155/2016/4987436 10.1007/s40273-015-0268-9 10.1096/fj.202002247RR 10.1111/jpi.12718 10.1210/endo-79-6-1168 10.1111/j.1447-0578.2005.00086.x 10.1007/s00540-013-1755-9 10.1002/jcp.27847 10.3389/fcell.2021.793389 10.1111/jpi.12300 10.1159/000447924 10.1210/me.2009-0033 10.1016/j.scitotenv.2022.153325 10.1111/jpi.12477 10.1155/2019/3187972 10.1016/j.bcp.2015.12.012 10.1111/cpr.12940 10.1016/j.ecoenv.2021.112078 10.1111/jpi.12603 10.1038/s41420-021-00695-7 10.1038/s41574-018-0130-1 10.1038/s41598-022-08758-0 10.1016/j.redox.2019.101327 10.1074/jbc.M109.025353 10.1034/j.1600-079X.2000.290303.x 10.1083/jcb.201401014 10.1530/rep.1.00394 10.1210/jcem-64-4-865 10.3389/fnagi.2022.888292 10.1186/s40104-021-00605-y 10.1038/s41467-019-14068-3 10.1155/2021/9793010 10.18632/oncotarget.9821 10.1007/s43032-020-00241-3 10.1080/15384101.2017.1320004 10.1039/D1FO03770F 10.3389/fcell.2022.811701 10.1038/nrm2952 10.1210/jcem-71-2-493 10.1002/jcp.26450 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.freeradbiomed.2022.06.243 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 394 |
ExternalDocumentID | 10_1016_j_freeradbiomed_2022_06_243 S0891584922004701 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SPCBC SSH SSU SSZ T5K TEORI ~G- .GJ .HR 29H 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEA HLW HMK HMO HVGLF HX~ HZ~ R2- RIG SBG SEW WUQ XPP ZGI 7X8 EFKBS |
ID | FETCH-LOGICAL-c360t-151d808148b010bcf4ea24814f7fa2d417499d8da14226bbf9c76a6d551de7ae3 |
IEDL.DBID | AIKHN |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Sep 05 09:13:39 EDT 2025 Tue Jul 01 01:11:39 EDT 2025 Thu Apr 24 23:12:05 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-151d808148b010bcf4ea24814f7fa2d417499d8da14226bbf9c76a6d551de7ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0538-9102 |
PQID | 2685447225 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2685447225 crossref_primary_10_1016_j_freeradbiomed_2022_06_243 crossref_citationtrail_10_1016_j_freeradbiomed_2022_06_243 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2022_06_243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Free radical biology & medicine |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Rönnberg, Kauppila, Leppäluoto, Martikainen, Vakkuri (bib29) 1990; 71 Sugino (bib13) 2005; 4 Wang, Zhuo, Ma, Liu, Xu, He, Fu, Wang, Ji, Zhang, Liu (bib27) 2021; 9 Duan, Li, Yi, Guo, Wang, Wu, Yang, Mair, Morales, Kalab, Wirtz, Sun, Li (bib33) 2020; 11 Portal-Núñez, Esbrit, Alcaraz, Largo (bib46) 2016; 108 Liu, Zhang, Wang, Li, Qiu, Li, Zhang, Hou, Han, Ge, Li, Gu, Wang (bib9) 2017; 16 Du, Luo, Huang, Zhang (bib10) 2022; 820 Helmke, Heald (bib35) 2014; 206 Luo, Zhuan, Li, Du, Huang, Hou, Fu (bib2) 2020; 27 Yang, Yang, Sun, Han, Xu, Gu, Zhang (bib41) 2022; 12 Leem, Bai, Kim, Oh (bib25) 2019; 67 Prakash, Fauzia, Siddiqui, Yadav, Kumari, Shams, Naeem, Praharaj, Khan, Bhutia, Janowski, Boltze, Raza (bib44) 2022 Wang, Xing, Qian, Sun, Zhong, Chen (bib14) 2021; 214 Xin, Jin, Ge, Huang, Han, Li, Wang, Zhu, Wang (bib6) 2021; 54 Jiang, Zhang, An, He, Kang, Yang, Gu, Zhang, Wang, Gao (bib8) 2016; 39 Cui, Yang, Wang, Ren, Lin, Cui, Song, He, Hu, Wang, Sun (bib19) 2021; 35 Baumgartner, Gerasimenko, Thorne, Ferdek, Pozzan, Tepikin, Petersen, Sutton, Watson, Gerasimenko (bib40) 2009; 284 Wang, Ratchford, Chi, Schoeller, Frolova, Schedl, Moley (bib5) 2009; 23 Karamitri, Jockers (bib17) 2019; 15 Martín Giménez, de Las Heras, Lahera, Tresguerres, Reiter, Manucha (bib30) 2022; 14 Shiomi, Miyamae, Takemura, Kaneda, Inamura, Onishi, Koshinuma, Momota, Minami, Figueredo (bib47) 2014; 28 Vitale, Rossetti, Corrado, Rapisarda, La Vignera, Condorelli, Valenti, Sapia, Laganà, Buscema (bib16) 2016; 2016 Wang, Chi, Moley (bib4) 2012; 153 Kudryavtseva, Krasnov, Dmitriev, Alekseev, Kardymon, Sadritdinova, Fedorova, Pokrovsky, Melnikova, Kaprin, Moskalev, Snezhkina (bib37) 2016; 7 Brzezinski, Seibel, Lynch, Deng, Wurtman (bib28) 1987; 64 Lan, Han, Pan, Wan, Pan, Sun (bib24) 2018; 65 Seuring, Archangelidi, Suhrcke (bib1) 2015; 33 Shang, Li, Li, Zhou, Ma, Liu, Niu, Duan (bib34) 2021; 230 Ou, Zhu, Sun (bib3) 2019; 234 Filomeni, De Zio, Cecconi (bib45) 2015; 22 Cao, Wang, Yang, Li, Qin (bib22) 2021; 70 Lu, Zhao, Zhang, Ji, Chao, Li, Yin, Zhao, Zhao, Sun, Ge (bib31) 2022; 13 Bandyopadhyay, Biswas, Bandyopadhyay, Reiter, Banerjee (bib21) 2000; 29 Chen, Li, Li, Wang, Yang, Kuang, Wang (bib39) 2019; 2019 Sun, Wang, Zeng, Xi, Lin, Han, Chen (bib11) 2021; 7 Dong, Fan, Hu, Jiang, Ma, Yan, Deng, Di, Xin, Wu, Yang, Reiter, Liang (bib23) 2016; 60 Pan, Qazi, Guo, Yang, Qin, Lv, Zang, Zhang, Zeng, Meng, Han, Zhou (bib26) 2021; 12 Roth, Hansen (bib36) 2005; 129 Reiter, Hester (bib15) 1966; 79 Zhang, Lu, Chen, Zhang, Xiong (bib20) 2020; 28 Wang, Li, Bao, Chen, Li, Lu, Chen, Huang, Zhang, Gao, Shi (bib18) 2021; 2021 Agarwal, Gupta, Sharma (bib12) 2005; 3 Chandra, Lagnado, Farr, Schleusner, Monroe, Saul, Passos, Khosla, Pignolo (bib42) 2022 Park, Lee (bib43) 2022; 10 Ge, Zhang, Tang, Hu, Hou, Sun, Han, Wang (bib7) 2021; 9 Duan, Zhang, Chen, Zhang, Wu, Liu, Wang, Sun (bib32) 2018; 233 Tait, Green (bib38) 2010; 11 Leem (10.1016/j.freeradbiomed.2022.06.243_bib25) 2019; 67 Wang (10.1016/j.freeradbiomed.2022.06.243_bib5) 2009; 23 Lu (10.1016/j.freeradbiomed.2022.06.243_bib31) 2022; 13 Ge (10.1016/j.freeradbiomed.2022.06.243_bib7) 2021; 9 Agarwal (10.1016/j.freeradbiomed.2022.06.243_bib12) 2005; 3 Filomeni (10.1016/j.freeradbiomed.2022.06.243_bib45) 2015; 22 Shiomi (10.1016/j.freeradbiomed.2022.06.243_bib47) 2014; 28 Luo (10.1016/j.freeradbiomed.2022.06.243_bib2) 2020; 27 Wang (10.1016/j.freeradbiomed.2022.06.243_bib14) 2021; 214 Brzezinski (10.1016/j.freeradbiomed.2022.06.243_bib28) 1987; 64 Chen (10.1016/j.freeradbiomed.2022.06.243_bib39) 2019; 2019 Pan (10.1016/j.freeradbiomed.2022.06.243_bib26) 2021; 12 Sugino (10.1016/j.freeradbiomed.2022.06.243_bib13) 2005; 4 Martín Giménez (10.1016/j.freeradbiomed.2022.06.243_bib30) 2022; 14 Yang (10.1016/j.freeradbiomed.2022.06.243_bib41) 2022; 12 Sun (10.1016/j.freeradbiomed.2022.06.243_bib11) 2021; 7 Portal-Núñez (10.1016/j.freeradbiomed.2022.06.243_bib46) 2016; 108 Duan (10.1016/j.freeradbiomed.2022.06.243_bib33) 2020; 11 Wang (10.1016/j.freeradbiomed.2022.06.243_bib18) 2021; 2021 Wang (10.1016/j.freeradbiomed.2022.06.243_bib4) 2012; 153 Reiter (10.1016/j.freeradbiomed.2022.06.243_bib15) 1966; 79 Park (10.1016/j.freeradbiomed.2022.06.243_bib43) 2022; 10 Chandra (10.1016/j.freeradbiomed.2022.06.243_bib42) 2022 Liu (10.1016/j.freeradbiomed.2022.06.243_bib9) 2017; 16 Rönnberg (10.1016/j.freeradbiomed.2022.06.243_bib29) 1990; 71 Kudryavtseva (10.1016/j.freeradbiomed.2022.06.243_bib37) 2016; 7 Seuring (10.1016/j.freeradbiomed.2022.06.243_bib1) 2015; 33 Jiang (10.1016/j.freeradbiomed.2022.06.243_bib8) 2016; 39 Xin (10.1016/j.freeradbiomed.2022.06.243_bib6) 2021; 54 Zhang (10.1016/j.freeradbiomed.2022.06.243_bib20) 2020; 28 Cao (10.1016/j.freeradbiomed.2022.06.243_bib22) 2021; 70 Dong (10.1016/j.freeradbiomed.2022.06.243_bib23) 2016; 60 Bandyopadhyay (10.1016/j.freeradbiomed.2022.06.243_bib21) 2000; 29 Vitale (10.1016/j.freeradbiomed.2022.06.243_bib16) 2016; 2016 Lan (10.1016/j.freeradbiomed.2022.06.243_bib24) 2018; 65 Wang (10.1016/j.freeradbiomed.2022.06.243_bib27) 2021; 9 Helmke (10.1016/j.freeradbiomed.2022.06.243_bib35) 2014; 206 Duan (10.1016/j.freeradbiomed.2022.06.243_bib32) 2018; 233 Du (10.1016/j.freeradbiomed.2022.06.243_bib10) 2022; 820 Karamitri (10.1016/j.freeradbiomed.2022.06.243_bib17) 2019; 15 Tait (10.1016/j.freeradbiomed.2022.06.243_bib38) 2010; 11 Prakash (10.1016/j.freeradbiomed.2022.06.243_bib44) 2022 Shang (10.1016/j.freeradbiomed.2022.06.243_bib34) 2021; 230 Cui (10.1016/j.freeradbiomed.2022.06.243_bib19) 2021; 35 Roth (10.1016/j.freeradbiomed.2022.06.243_bib36) 2005; 129 Baumgartner (10.1016/j.freeradbiomed.2022.06.243_bib40) 2009; 284 Ou (10.1016/j.freeradbiomed.2022.06.243_bib3) 2019; 234 |
References_xml | – volume: 35 year: 2021 ident: bib19 article-title: Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway publication-title: Faseb. J. : Off. Publicat. Federation Am. Soc. Exper. Biol. – volume: 29 start-page: 143 year: 2000 end-page: 151 ident: bib21 article-title: Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical publication-title: J. Pineal Res. – volume: 64 start-page: 865 year: 1987 end-page: 867 ident: bib28 article-title: Melatonin in human preovulatory follicular fluid publication-title: J. Clin. Endocrinol. Metab. – volume: 54 year: 2021 ident: bib6 article-title: Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis publication-title: Cell Prolif – volume: 820 year: 2022 ident: bib10 article-title: Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats publication-title: Sci. Total Environ. – volume: 23 start-page: 1603 year: 2009 end-page: 1612 ident: bib5 article-title: Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes publication-title: Molecular endocrinology (Baltimore, Md.) – volume: 22 start-page: 377 year: 2015 end-page: 388 ident: bib45 article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs publication-title: Cell Death Differ. – volume: 15 start-page: 105 year: 2019 end-page: 125 ident: bib17 article-title: Melatonin in type 2 diabetes mellitus and obesity publication-title: Nat. Rev. Endocrinol. – volume: 13 start-page: 5396 year: 2022 end-page: 5405 ident: bib31 article-title: Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality publication-title: Food Funct. – year: 2022 ident: bib42 article-title: Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence publication-title: Journal of Bone and Mineral Research : the Official Journal – volume: 65 year: 2018 ident: bib24 article-title: Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation publication-title: J. Pineal Res. – volume: 2019 year: 2019 ident: bib39 article-title: SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway publication-title: Oxid. Med. Cell. Longev. – volume: 2021 year: 2021 ident: bib18 article-title: Melatonin attenuates diabetic Myocardial microvascular injury through activating the AMPK/SIRT1 signaling pathway publication-title: Oxid. Med. Cell. Longev. – volume: 233 start-page: 6088 year: 2018 end-page: 6097 ident: bib32 article-title: The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis publication-title: J. Cell. Physiol. – volume: 33 start-page: 811 year: 2015 end-page: 831 ident: bib1 article-title: The economic costs of type 2 diabetes: a global systematic review publication-title: Pharmacoeconomics – volume: 14 year: 2022 ident: bib30 article-title: Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases publication-title: Front. Aging Neurosci. – volume: 10 year: 2022 ident: bib43 article-title: Current status of autophagy enhancers in metabolic disorders and other diseases publication-title: Front. Cell Dev. Biol. – volume: 28 year: 2020 ident: bib20 article-title: Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes publication-title: Redox Biol. – volume: 60 start-page: 253 year: 2016 end-page: 262 ident: bib23 article-title: Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling publication-title: J. Pineal Res. – volume: 28 start-page: 593 year: 2014 end-page: 600 ident: bib47 article-title: Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated Guinea pig hearts publication-title: J. Anesth. – volume: 234 start-page: 7847 year: 2019 end-page: 7855 ident: bib3 article-title: Effects of obesity and diabetes on the epigenetic modification of mammalian gametes publication-title: J. Cell. Physiol. – volume: 12 start-page: 4762 year: 2022 ident: bib41 article-title: Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae publication-title: Sci. Rep. – volume: 9 year: 2021 ident: bib7 article-title: Loss of PDK1 induces meiotic defects in oocytes from diabetic mice publication-title: Front. Cell Dev. Biol. – volume: 153 start-page: 1984 year: 2012 end-page: 1989 ident: bib4 article-title: Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice publication-title: Endocrinology – volume: 108 start-page: 1 year: 2016 end-page: 10 ident: bib46 article-title: Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis publication-title: Biochem. Pharmacol. – volume: 214 year: 2021 ident: bib14 article-title: Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction publication-title: Ecotoxicol. Environ. Saf. – volume: 16 start-page: 1302 year: 2017 end-page: 1308 ident: bib9 article-title: Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice publication-title: Cell Cycle – volume: 79 start-page: 1168 year: 1966 end-page: 1170 ident: bib15 article-title: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters publication-title: Endocrinology – volume: 2016 year: 2016 ident: bib16 article-title: How to achieve high-quality oocytes? The key role of Myo-inositol and melatonin publication-title: Int. J. Endocrinol. – volume: 39 start-page: 2320 year: 2016 end-page: 2330 ident: bib8 article-title: Effect of type I diabetes on the proteome of mouse oocytes publication-title: Cell. Physiol. Biochem. : Int. J. Exper. Cellular Physiol. Biochem. Pharmacol. – volume: 11 start-page: 277 year: 2020 ident: bib33 article-title: Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes publication-title: Nat. Commun. – volume: 284 start-page: 20796 year: 2009 end-page: 20803 ident: bib40 article-title: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening publication-title: J. Biol. Chem. – volume: 71 start-page: 492 year: 1990 end-page: 496 ident: bib29 article-title: Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration publication-title: J. Clin. Endocrinol. Metab. – volume: 230 year: 2021 ident: bib34 article-title: Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage publication-title: Ecotoxicol. Environ. Saf. – volume: 11 start-page: 621 year: 2010 end-page: 632 ident: bib38 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat. Rev. Mol. Cell Biol. – volume: 67 year: 2019 ident: bib25 article-title: Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair publication-title: J. Pineal Res. – volume: 4 start-page: 31 year: 2005 end-page: 44 ident: bib13 article-title: Reactive oxygen species in ovarian physiology publication-title: Reproductive Med. Biol. – volume: 27 start-page: 2211 year: 2020 end-page: 2222 ident: bib2 article-title: Procyanidin B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function publication-title: Reprod. Sci. – volume: 3 start-page: 28 year: 2005 ident: bib12 article-title: Role of oxidative stress in female reproduction publication-title: Reprod. Biol. Endocrinol. : RBE (Rev. Bras. Entomol.) – volume: 129 start-page: 235 year: 2005 end-page: 244 ident: bib36 article-title: Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation publication-title: Reproduction (Cambridge, England) – volume: 9 year: 2021 ident: bib27 article-title: Melatonin alleviates the suppressive effect of hypoxanthine on oocyte nuclear maturation and restores meiosis via the melatonin receptor 1 (MT1)-Mediated pathway publication-title: Front. Cell Dev. Biol. – volume: 206 start-page: 385 year: 2014 end-page: 393 ident: bib35 article-title: TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts publication-title: J. Cell Biol. – volume: 7 start-page: 304 year: 2021 ident: bib11 article-title: SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway publication-title: Cell Death Dis. – volume: 12 start-page: 84 year: 2021 ident: bib26 article-title: Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression publication-title: J. Anim. Sci. Biotechnol. – year: 2022 ident: bib44 article-title: Oxidative Stress-Induced Autophagy Compromises Stem Cell Viability – volume: 70 year: 2021 ident: bib22 article-title: Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway publication-title: J. Pineal Res. – volume: 7 start-page: 44879 year: 2016 end-page: 44905 ident: bib37 article-title: Mitochondrial dysfunction and oxidative stress in aging and cancer publication-title: Oncotarget – volume: 22 start-page: 377 issue: 3 year: 2015 ident: 10.1016/j.freeradbiomed.2022.06.243_bib45 article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.150 – volume: 153 start-page: 1984 issue: 4 year: 2012 ident: 10.1016/j.freeradbiomed.2022.06.243_bib4 article-title: Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice publication-title: Endocrinology doi: 10.1210/en.2011-1815 – volume: 3 start-page: 28 year: 2005 ident: 10.1016/j.freeradbiomed.2022.06.243_bib12 article-title: Role of oxidative stress in female reproduction publication-title: Reprod. Biol. Endocrinol. : RBE (Rev. Bras. Entomol.) doi: 10.1186/1477-7827-3-28 – volume: 2016 year: 2016 ident: 10.1016/j.freeradbiomed.2022.06.243_bib16 article-title: How to achieve high-quality oocytes? The key role of Myo-inositol and melatonin publication-title: Int. J. Endocrinol. doi: 10.1155/2016/4987436 – volume: 33 start-page: 811 issue: 8 year: 2015 ident: 10.1016/j.freeradbiomed.2022.06.243_bib1 article-title: The economic costs of type 2 diabetes: a global systematic review publication-title: Pharmacoeconomics doi: 10.1007/s40273-015-0268-9 – volume: 35 issue: 4 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib19 article-title: Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway publication-title: Faseb. J. : Off. Publicat. Federation Am. Soc. Exper. Biol. doi: 10.1096/fj.202002247RR – volume: 70 issue: 3 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib22 article-title: Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway publication-title: J. Pineal Res. doi: 10.1111/jpi.12718 – volume: 79 start-page: 1168 issue: 6 year: 1966 ident: 10.1016/j.freeradbiomed.2022.06.243_bib15 article-title: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters publication-title: Endocrinology doi: 10.1210/endo-79-6-1168 – volume: 4 start-page: 31 issue: 1 year: 2005 ident: 10.1016/j.freeradbiomed.2022.06.243_bib13 article-title: Reactive oxygen species in ovarian physiology publication-title: Reproductive Med. Biol. doi: 10.1111/j.1447-0578.2005.00086.x – volume: 28 start-page: 593 issue: 4 year: 2014 ident: 10.1016/j.freeradbiomed.2022.06.243_bib47 article-title: Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated Guinea pig hearts publication-title: J. Anesth. doi: 10.1007/s00540-013-1755-9 – volume: 234 start-page: 7847 issue: 6 year: 2019 ident: 10.1016/j.freeradbiomed.2022.06.243_bib3 article-title: Effects of obesity and diabetes on the epigenetic modification of mammalian gametes publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27847 – volume: 9 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib7 article-title: Loss of PDK1 induces meiotic defects in oocytes from diabetic mice publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.793389 – volume: 60 start-page: 253 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2022.06.243_bib23 article-title: Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling publication-title: J. Pineal Res. doi: 10.1111/jpi.12300 – volume: 39 start-page: 2320 issue: 6 year: 2016 ident: 10.1016/j.freeradbiomed.2022.06.243_bib8 article-title: Effect of type I diabetes on the proteome of mouse oocytes publication-title: Cell. Physiol. Biochem. : Int. J. Exper. Cellular Physiol. Biochem. Pharmacol. doi: 10.1159/000447924 – volume: 23 start-page: 1603 issue: 10 year: 2009 ident: 10.1016/j.freeradbiomed.2022.06.243_bib5 article-title: Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes publication-title: Molecular endocrinology (Baltimore, Md.) doi: 10.1210/me.2009-0033 – volume: 820 year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib10 article-title: Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153325 – volume: 65 issue: 1 year: 2018 ident: 10.1016/j.freeradbiomed.2022.06.243_bib24 article-title: Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation publication-title: J. Pineal Res. doi: 10.1111/jpi.12477 – volume: 2019 year: 2019 ident: 10.1016/j.freeradbiomed.2022.06.243_bib39 article-title: SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/3187972 – volume: 108 start-page: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2022.06.243_bib46 article-title: Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2015.12.012 – volume: 54 issue: 1 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib6 article-title: Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis publication-title: Cell Prolif doi: 10.1111/cpr.12940 – volume: 214 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib14 article-title: Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112078 – volume: 67 issue: 4 year: 2019 ident: 10.1016/j.freeradbiomed.2022.06.243_bib25 article-title: Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair publication-title: J. Pineal Res. doi: 10.1111/jpi.12603 – volume: 7 start-page: 304 issue: 1 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib11 article-title: SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway publication-title: Cell Death Dis. doi: 10.1038/s41420-021-00695-7 – volume: 15 start-page: 105 issue: 2 year: 2019 ident: 10.1016/j.freeradbiomed.2022.06.243_bib17 article-title: Melatonin in type 2 diabetes mellitus and obesity publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-018-0130-1 – volume: 12 start-page: 4762 issue: 1 year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib41 article-title: Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae publication-title: Sci. Rep. doi: 10.1038/s41598-022-08758-0 – volume: 28 year: 2020 ident: 10.1016/j.freeradbiomed.2022.06.243_bib20 article-title: Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101327 – volume: 284 start-page: 20796 issue: 31 year: 2009 ident: 10.1016/j.freeradbiomed.2022.06.243_bib40 article-title: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.025353 – year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib44 – volume: 29 start-page: 143 issue: 3 year: 2000 ident: 10.1016/j.freeradbiomed.2022.06.243_bib21 article-title: Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical publication-title: J. Pineal Res. doi: 10.1034/j.1600-079X.2000.290303.x – volume: 206 start-page: 385 issue: 3 year: 2014 ident: 10.1016/j.freeradbiomed.2022.06.243_bib35 article-title: TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts publication-title: J. Cell Biol. doi: 10.1083/jcb.201401014 – volume: 129 start-page: 235 issue: 2 year: 2005 ident: 10.1016/j.freeradbiomed.2022.06.243_bib36 article-title: Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation publication-title: Reproduction (Cambridge, England) doi: 10.1530/rep.1.00394 – volume: 64 start-page: 865 issue: 4 year: 1987 ident: 10.1016/j.freeradbiomed.2022.06.243_bib28 article-title: Melatonin in human preovulatory follicular fluid publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-64-4-865 – volume: 14 year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib30 article-title: Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.888292 – volume: 12 start-page: 84 issue: 1 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib26 article-title: Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-021-00605-y – volume: 11 start-page: 277 issue: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2022.06.243_bib33 article-title: Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes publication-title: Nat. Commun. doi: 10.1038/s41467-019-14068-3 – volume: 2021 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib18 article-title: Melatonin attenuates diabetic Myocardial microvascular injury through activating the AMPK/SIRT1 signaling pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2021/9793010 – volume: 9 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib27 article-title: Melatonin alleviates the suppressive effect of hypoxanthine on oocyte nuclear maturation and restores meiosis via the melatonin receptor 1 (MT1)-Mediated pathway publication-title: Front. Cell Dev. Biol. – volume: 7 start-page: 44879 issue: 29 year: 2016 ident: 10.1016/j.freeradbiomed.2022.06.243_bib37 article-title: Mitochondrial dysfunction and oxidative stress in aging and cancer publication-title: Oncotarget doi: 10.18632/oncotarget.9821 – volume: 27 start-page: 2211 issue: 12 year: 2020 ident: 10.1016/j.freeradbiomed.2022.06.243_bib2 article-title: Procyanidin B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function publication-title: Reprod. Sci. doi: 10.1007/s43032-020-00241-3 – volume: 16 start-page: 1302 issue: 13 year: 2017 ident: 10.1016/j.freeradbiomed.2022.06.243_bib9 article-title: Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice publication-title: Cell Cycle doi: 10.1080/15384101.2017.1320004 – volume: 13 start-page: 5396 issue: 9 year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib31 article-title: Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality publication-title: Food Funct. doi: 10.1039/D1FO03770F – volume: 10 year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib43 article-title: Current status of autophagy enhancers in metabolic disorders and other diseases publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.811701 – volume: 230 year: 2021 ident: 10.1016/j.freeradbiomed.2022.06.243_bib34 article-title: Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage publication-title: Ecotoxicol. Environ. Saf. – volume: 11 start-page: 621 issue: 9 year: 2010 ident: 10.1016/j.freeradbiomed.2022.06.243_bib38 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2952 – volume: 71 start-page: 492 issue: 2 year: 1990 ident: 10.1016/j.freeradbiomed.2022.06.243_bib29 article-title: Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-71-2-493 – volume: 233 start-page: 6088 issue: 8 year: 2018 ident: 10.1016/j.freeradbiomed.2022.06.243_bib32 article-title: The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26450 – year: 2022 ident: 10.1016/j.freeradbiomed.2022.06.243_bib42 article-title: Bone marrow adiposity in models of radiation- and aging-related bone loss is dependent on cellular senescence |
SSID | ssj0004538 |
Score | 2.4484286 |
Snippet | Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 386 |
Title | Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2022.06.243 https://www.proquest.com/docview/2685447225 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB62G1pyCXm05I1CS2_uerWy1sohsISGTUpyaQO5CcmSg0PWG5Ldw17y2zMjy3kUCoEeZSTL6JO_mZHmAfBN5K6fl5IQ6PMEW1liCsMTa3JnDNJfEz52fiHHl-LsKrvqwHEbC0NulZH7G04PbB2f9OJq9u6qqvc7zVUfxafiBPSQYriWOEr7vAtLo9Nf44tXScNDQWvqn9CAT_D1xc2rvPeebq1DsDvai5xTPk8uBv8SVH9RdpBDJ6uwEhVINmq-cQ06vl6HjVGNxvNkwb6z4NIZzsrX4WNTaXKxAZNzcnqjo1cWMzM8MHNtKlQOGeqsIRE0a89hExMx845NfDXFmZjzwe-D2QX2r-pZU1iCTZAQkEBrR_uYkZAkoD_D5cnPP8fjJFZaSIqBTGcJin1HJThEbtE-s0UpvOEC2-WwNNwJNFuUcoheCLy1tlTFUBrpUN1yfmj84At062ntN4GJVFiXSyWt4MKqwiqTFhSnrSTq8ZnZgsN2WXUR05BTNYxb3fqb3eg3mGjCRKdSIyZbIJ4H3zXZON437KjFT7_ZXBrlxvtecNCirvH3ozsVU_vp_EFzmWeCEm5m2_87yQ4sU6vxLtyF7ux-7vdQ45nZffjw47G_H_f1E6-jBLc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUAvVXmp0AdGVNyizXodb9wD0goVLY_dS0HiZtmxg1J1swiWw_57ZhyHRyUkpB6d2Enkz5mHPfMNwA-Ru15eSkKgxxNsZYkpDE-syZ0xKP6a9LHxRI6uxNl1dr0Ex20uDIVVRtnfyPQgreOVbpzN7m1VdX-nueqh-lScgB5QDteyoKLWHVgenp6PJi9Iw0NBa-qf0IBVOHgO8yrvvKdT65Dsjv4i58TnyUX_LUX1j8gOeujkE3yMBiQbNt-4Dku-3oDNYY3O83TBDlkI6Qx75Ruw0lSaXGzCdExBb7T1yiIzwz0zN6ZC45ChzRqIoFm7D5uYiJl3bOqrGb6JOR_iPphdYP-qnjeFJdgUBQIK0NrROmakJAnoLbg6-XV5PEpipYWk6Mt0nqDad1SCQ-QW_TNblMIbLrBdDkrDnUC3RSmH6IXEW2tLVQykkQ7NLecHxve3oVPPav8ZmEiFdblU0gourCqsMmlBedpKoh2fmR342U6rLiINOVXD-KvbeLM_-hUmmjDRqdSIyQ6Ip8G3DRvH-4YdtfjpV4tLo9543wP2W9Q1_n50pmJqP3u411zmmSDCzWz3f1-yB2ujy_GFvjidnH-BD3SniTT8Cp353YP_htbP3H6Pq_sR02UGnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+protects+against+maternal+diabetes-associated+meiotic+defects+by+maintaining+mitochondrial+function&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Li%2C+Xiao-Qing&rft.au=Wang%2C+Yi&rft.au=Yang%2C+Shu-Jie&rft.au=Liu%2C+Yu&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=188&rft.spage=386&rft.epage=394&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2022.06.243&rft.externalDocID=S0891584922004701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |