Prediction of preterm pre‐eclampsia at midpregnancy using a multivariable screening algorithm
Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine arte...
Saved in:
| Published in | Australian & New Zealand journal of obstetrics & gynaecology Vol. 60; no. 5; pp. 675 - 682 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Australia
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0004-8666 1479-828X 1479-828X |
| DOI | 10.1111/ajo.13113 |
Cover
| Abstract | Background
Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms‐like tyrosine kinase‐1 (sFlt‐1) level in MoM.
Aims
To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre‐eclampsia. The outcome measured was preterm pre‐eclampsia.
Materials and Methods
This is a prospective study including singleton pregnancies at 19–22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt‐1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.
Results
Five hundred and twelve patients were included. Incidence of preterm pre‐eclampsia was 1.6%. Using predicted risk of pre‐eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre‐eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9–13.5, respectively. Addition of sFlt‐1 to the algorithm did not appear to improve performance. sFlt‐1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.
Conclusions
Second trimester combined screening for preterm pre‐eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population. |
|---|---|
| AbstractList | Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19
and 24
weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.
To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia.
This is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.
Five hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.
Second trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population. Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.BACKGROUNDCompeting risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia.AIMSTo assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia.This is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.MATERIALS AND METHODSThis is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.Five hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.RESULTSFive hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.Second trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.CONCLUSIONSSecond trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population. Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms‐like tyrosine kinase‐1 (sFlt‐1) level in MoM. Aims To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre‐eclampsia. The outcome measured was preterm pre‐eclampsia. Materials and Methods This is a prospective study including singleton pregnancies at 19–22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt‐1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced. Results Five hundred and twelve patients were included. Incidence of preterm pre‐eclampsia was 1.6%. Using predicted risk of pre‐eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre‐eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9–13.5, respectively. Addition of sFlt‐1 to the algorithm did not appear to improve performance. sFlt‐1 MoM and PlGF MoM values obtained on the different platforms performed very similarly. Conclusions Second trimester combined screening for preterm pre‐eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population. |
| Author | Brennecke, Shaun Al‐Amin, Ahmed Da Silva Costa, Fabricio Rolnik, Daniel Lorber Stolarek, Caroline Black, Carin Kane, Stefan C. White, Adrienne |
| Author_xml | – sequence: 1 givenname: Carin orcidid: 0000-0002-1541-106X surname: Black fullname: Black, Carin email: carinblack@gmail.com organization: The University of Melbourne – sequence: 2 givenname: Daniel Lorber orcidid: 0000-0002-2263-3592 surname: Rolnik fullname: Rolnik, Daniel Lorber organization: Monash University – sequence: 3 givenname: Ahmed surname: Al‐Amin fullname: Al‐Amin, Ahmed organization: Monash Ultrasound for Women – sequence: 4 givenname: Stefan C. orcidid: 0000-0002-5172-3263 surname: Kane fullname: Kane, Stefan C. organization: Royal Women's Hospital – sequence: 5 givenname: Caroline surname: Stolarek fullname: Stolarek, Caroline organization: Royal Women's Hospital – sequence: 6 givenname: Adrienne surname: White fullname: White, Adrienne organization: Royal Women's Hospital – sequence: 7 givenname: Fabricio surname: Da Silva Costa fullname: Da Silva Costa, Fabricio organization: University of São Paulo – sequence: 8 givenname: Shaun surname: Brennecke fullname: Brennecke, Shaun organization: The University of Melbourne |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32124434$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM9O3DAQh60KVJZtD30BlGNbKaz_beIcESotCAkOVOrNmnXGi5HjpHYC2huPwDPyJE1Y4FAJfBnJ881vRt8-2QltQEK-MHrIxreAm_aQCcbEBzJjsqxyxdWfHTKjlMpcFUWxR_ZTuqGUVUsmP5I9wRmXUsgZ0ZcRa2d614astVkXscfYTPXx_gGNh6ZLDjLos8bV4-86QDCbbEgurDPImsH37haig5XHLJmIGJ46ft1G1183n8iuBZ_w83Odk98nP66Of-XnFz9Pj4_OcyMKKnIQxoCsLU4HopQcOedC2ZJbhYURpShXqrZVVdm6hKKUSuHSripWMmVExcWcfN_mDqGDzR14r7voGogbzaieLOnRkn6yNMJft3AX278Dpl43Lhn0HgK2Q9JclHQpqCym3INndFg1WL-GvhgcgW9bwMQ2pYj23b2L_1jjepjc9xGcf2_iznncvB2tj84uthP_AD2koQc |
| CitedBy_id | crossref_primary_10_1038_s41572_023_00417_6 crossref_primary_10_3389_fphys_2022_1035726 crossref_primary_10_3233_THC_218017 crossref_primary_10_1016_j_ajog_2023_03_032 crossref_primary_10_1016_j_cpcardiol_2023_101982 |
| Cites_doi | 10.1159/000335366 10.1159/000338470 10.1159/000341264 10.1002/uog.13435 10.1161/HYPERTENSIONAHA.117.10803 10.1159/000336662 10.1016/j.jbi.2008.08.010 10.1186/s12884-016-1195-2 10.1016/j.ajog.2013.08.034 10.1002/uog.5157 10.1002/uog.7628 10.1111/ajo.12689 10.1002/uog.19099 10.1002/pd.2660 10.1016/j.preghy.2014.02.001 10.1016/j.preghy.2019.03.009 10.3109/10641950109152635 10.1016/S0140-6736(83)91970-0 10.1016/j.ajog.2018.11.1087 10.1373/clinchem.2009.134080 10.1111/ajo.12126 10.1056/NEJMoa1704559 10.1002/uog.17455 10.1016/S0140-6736(06)68397-9 |
| ContentType | Journal Article |
| Copyright | 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists. |
| Copyright_xml | – notice: 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists – notice: 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1111/ajo.13113 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1479-828X |
| EndPage | 682 |
| ExternalDocumentID | 10.1111/ajo.13113 32124434 10_1111_ajo_13113 AJO13113 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DUUFO EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3603-a3cca4dfe9514e442e22238f72f8e6c3737b8df999fd7a67488e5fb91718c3923 |
| IEDL.DBID | DR2 |
| ISSN | 0004-8666 1479-828X |
| IngestDate | Wed Oct 01 16:48:09 EDT 2025 Fri Sep 05 09:30:17 EDT 2025 Thu Apr 03 07:10:31 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Wed Oct 01 02:53:41 EDT 2025 Wed Jan 22 16:31:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | prediction placental growth factor (PlGF) pre-eclampsia multivariable algorithm second trimester |
| Language | English |
| License | 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3603-a3cca4dfe9514e442e22238f72f8e6c3737b8df999fd7a67488e5fb91718c3923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5172-3263 0000-0002-2263-3592 0000-0002-1541-106X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajo.13113 |
| PMID | 32124434 |
| PQID | 2370530462 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1111_ajo_13113 proquest_miscellaneous_2370530462 pubmed_primary_32124434 crossref_primary_10_1111_ajo_13113 crossref_citationtrail_10_1111_ajo_13113 wiley_primary_10_1111_ajo_13113_AJO13113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Australia |
| PublicationPlace_xml | – name: Australia |
| PublicationTitle | Australian & New Zealand journal of obstetrics & gynaecology |
| PublicationTitleAlternate | Aust N Z J Obstet Gynaecol |
| PublicationYear | 2020 |
| References | 2010; 56 2018; 220 2009; 42 2010; 35 2010 2017; 49 1983; 1 2011; 31 2013; 122 2019; 16 2007; 30 2014; 210 2017; 377 2012; 32 2012; 31 2014; 44 2001; 20 2014; 4 2013; 33 2015; 214 2017; 17 2013; 53 2018; 52 2016; 214 2018; 72 2014 2006; 367 2018; 58 e_1_2_5_28_1 Lowe SA (e_1_2_5_30_1) 2014 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Gallo DM (e_1_2_5_12_1) 2015; 214 e_1_2_5_29_1 e_1_2_5_20_1 O'Gorman N (e_1_2_5_13_1) 2016; 214 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_5_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 American College of Obstetricians and Gynecologists (ACOG) (e_1_2_5_27_1) 2013; 122 National Institute for Health and Clinical Excellence (NICE) Clinical Guideline, No 107. Hypertension in Pregnancy (e_1_2_5_26_1) 2010 e_1_2_5_31_1 |
| References_xml | – volume: 31 start-page: 66 year: 2011 end-page: 74 article-title: Prediction of early, intermediate and late pre‐eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks publication-title: Prenat Diagn – volume: 214 start-page: e1 issue: 619 year: 2015 end-page: e17 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks' gestation publication-title: Am J Obstet Gynecol – volume: 31 start-page: 42 year: 2012 end-page: 48 article-title: Protocol for measurement of mean arterial pressure at 11–13 weeks' gestation publication-title: Fetal Diagn Ther – volume: 58 start-page: 192 year: 2018 end-page: 196 article-title: Accuracy of second trimester prediction of preterm preeclampsia by three different screening algorithms publication-title: Aust N Z J Obstet Gynaecol – volume: 1 start-page: 675 year: 1983 end-page: 677 article-title: New doppler technique for assessing uteroplacental blood flow publication-title: Lancet – volume: 214 start-page: e1 issue: 103 year: 2016 end-page: e12 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation publication-title: Am J Obstet Gynecol – volume: 30 start-page: 742 year: 2007 end-page: 9 article-title: Uterine artery Doppler at 11 + 0 to 13 + 6 weeks in the prediction of pre‐eclampsia publication-title: Ultrasound Obstet Gynecol – volume: 49 start-page: 756 year: 2017 end-page: 760 article-title: Multicenter screening for pre‐eclampsia by maternal factors and biomarkers at 11–13 weeks' gestation: comparison with NICE guidelines and ACOG recommendations publication-title: Ultrasound Obstet Gynecol – volume: 56 start-page: 361 year: 2010 end-page: 375 article-title: Combining biochemical and ultrasonographic markers in predicting preeclampsia: a systematic review publication-title: Clin Chem – volume: 377 start-page: 613 year: 2017 end-page: 622 article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia publication-title: N Engl J Med – volume: 32 start-page: 171 year: 2012 end-page: 178 article-title: A competing risks model in early screening for preeclampsia publication-title: Fetal Diagn Ther – volume: 367 start-page: 1066 year: 2006 end-page: 1074 article-title: WHO analysis of causes of maternal death: a systematic review publication-title: Lancet – year: 2014 – year: 2010 – volume: 210 start-page: 173 year: 2014 end-page: 174 article-title: The incidence of preeclampsia and eclampsia in Australia: 2000 through 2008 publication-title: Am J Obstet Gynecol – volume: 4 start-page: 97 year: 2014 end-page: 104 article-title: The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP publication-title: Pregnancy Hypertens – volume: 17 start-page: 12 year: 2017 article-title: Perspectives, preferences and needs regarding early prediction of preeclampsia in Dutch pregnant women: a qualitative study publication-title: BMC Pregnancy Childbirth – volume: 33 start-page: 8 year: 2013 end-page: 15 article-title: Competing risks model in early screening for preeclampsia by biophysical and biochemical markers publication-title: Fetal Diagn Ther – volume: 35 start-page: 662 year: 2010 end-page: 670 article-title: Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11–13 weeks publication-title: Ultrasound Obstet Gynecol – volume: 16 start-page: 112 year: 2019 end-page: 119 article-title: Midpregnancy prediction of pre‐eclampsia using serum biomarkers sFlt‐1 and PlGF publication-title: Pregnancy hypertens – volume: 44 start-page: 279 year: 2014 end-page: 285 article-title: First‐trimester prediction of pre‐eclampsia: external validity of algorithms in a prospectively enrolled cohort publication-title: Ultrasound Obstet Gynecol – volume: 220 start-page: 199.e1 year: 2018 article-title: Predictive performance of the competing risk model in screening for preeclampsia publication-title: Am J Obstet Gynecol – volume: 52 start-page: 365 year: 2018 end-page: 372 article-title: Management of pregnancies after combined screening for pre‐eclampsia at 19–24 weeks' gestation publication-title: Ultrasound Obstet Gynecol – volume: 42 start-page: 377 year: 2009 end-page: 381 article-title: Research electronic data capture (REDCap)–a metadata‐driven methodology and workflow process for providing translational research informatics support publication-title: J Biomed Inform – volume: 72 start-page: 24 year: 2018 end-page: 43 article-title: The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice publication-title: Pregnancy Hypertens – volume: 122 start-page: 1122 year: 2013 end-page: 31 article-title: Hypertension in pregnancy. Report of the American college of obstetricians and Gynecologists' task force on hypertension in pregnancy publication-title: Obstet Gynecol – volume: 53 start-page: 532 year: 2013 end-page: 539 article-title: Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy publication-title: Aust N Z J Obstet Gynaecol – volume: 31 start-page: 141 year: 2012 end-page: 146 article-title: Early administration of low‐dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta‐analysis publication-title: Fetal Diagn Ther – volume: 20 start-page: ix year: 2001 end-page: xiv article-title: The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP) publication-title: Hypertens Pregnancy – ident: e_1_2_5_19_1 doi: 10.1159/000335366 – ident: e_1_2_5_9_1 doi: 10.1159/000338470 – ident: e_1_2_5_25_1 doi: 10.1159/000341264 – ident: e_1_2_5_11_1 doi: 10.1002/uog.13435 – ident: e_1_2_5_17_1 doi: 10.1161/HYPERTENSIONAHA.117.10803 – ident: e_1_2_5_4_1 doi: 10.1159/000336662 – ident: e_1_2_5_15_1 doi: 10.1016/j.jbi.2008.08.010 – volume: 214 start-page: e1 issue: 103 year: 2016 ident: e_1_2_5_13_1 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation publication-title: Am J Obstet Gynecol – ident: e_1_2_5_29_1 doi: 10.1186/s12884-016-1195-2 – ident: e_1_2_5_2_1 doi: 10.1016/j.ajog.2013.08.034 – ident: e_1_2_5_21_1 doi: 10.1002/uog.5157 – ident: e_1_2_5_23_1 doi: 10.1002/uog.7628 – ident: e_1_2_5_8_1 doi: 10.1111/ajo.12689 – ident: e_1_2_5_31_1 doi: 10.1002/uog.19099 – ident: e_1_2_5_24_1 doi: 10.1002/pd.2660 – ident: e_1_2_5_18_1 doi: 10.1016/j.preghy.2014.02.001 – volume: 214 start-page: e1 issue: 619 year: 2015 ident: e_1_2_5_12_1 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks' gestation publication-title: Am J Obstet Gynecol – ident: e_1_2_5_28_1 doi: 10.1016/j.preghy.2019.03.009 – volume-title: Guideline for the Management of Hypertensive Disorders of Pregnancy. Society of Obstetric Medicine of Australia and year: 2014 ident: e_1_2_5_30_1 – ident: e_1_2_5_16_1 doi: 10.3109/10641950109152635 – ident: e_1_2_5_20_1 doi: 10.1016/S0140-6736(83)91970-0 – volume-title: The Management of Hypertensive Disorders During Pregnancy. National Collaborating Centre for Women's and Children's Health (UK) year: 2010 ident: e_1_2_5_26_1 – ident: e_1_2_5_6_1 – ident: e_1_2_5_14_1 doi: 10.1016/j.ajog.2018.11.1087 – ident: e_1_2_5_22_1 doi: 10.1373/clinchem.2009.134080 – ident: e_1_2_5_10_1 doi: 10.1111/ajo.12126 – ident: e_1_2_5_5_1 doi: 10.1056/NEJMoa1704559 – ident: e_1_2_5_7_1 doi: 10.1002/uog.17455 – ident: e_1_2_5_3_1 doi: 10.1016/S0140-6736(06)68397-9 – volume: 122 start-page: 1122 year: 2013 ident: e_1_2_5_27_1 article-title: Hypertension in pregnancy. Report of the American college of obstetricians and Gynecologists' task force on hypertension in pregnancy publication-title: Obstet Gynecol |
| SSID | ssj0019514 |
| Score | 2.2818794 |
| Snippet | Background
Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate... Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 675 |
| SubjectTerms | Algorithms Biomarkers Female Humans Infant, Newborn multivariable algorithm Placenta Growth Factor placental growth factor (PlGF) Pre-Eclampsia - diagnosis prediction Predictive Value of Tests Pregnancy pre‐eclampsia Prospective Studies second trimester Vascular Endothelial Growth Factor Receptor-1 |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH5qg9SKQzcKpGqr6XLg4pB6xh7nGFVFCAnKoZHSk5k1hCZ2FBwqOPET-hv5JbznJVLagir15JE9Htvzlvme5y0AH6WJlJJRL0BLxwbCGxOo0NlAU4EabxAwl7FVh0fx_kAcDKNhXeeUYmGq_BDLH24kGaW-JgGfWV_p-UbUd9VZ3qF8MfwhrMURgvEWrA2OjvvfK9ArgiSOq_gi2aOA6WGdW2jl3tUV6Q-YuQ6PF9lMXf5Uk8kqgi2XoL2ncNK8fOV58qOzKHTHXP2W1_E_vu4ZPKnhKetX_PQcHrjsBTw6rDfgNyA9nlObqMlyz8hbEVU7HW-ufzmD7DU7HyumCjYdWzw7onwel4y860dMsdJ98QLNcwrYYqix0Iour0xG-XxcnE5fwmDvy7fP-0FdoyEwPO7yQHFkAWG9Q6QmnBChI8CReBn6xMWGSy51Yj3CUG-losomiYu8RiPxU2IQm_FNaGV55raBUX51aXXUdVIL4aMeV4my2luVGK-7cRt2Gjqlpk5gTnU0JmljyOCEpeWEteH9suusytrxt07vGmKnKFO0UaIyly_O05BL1E0UttuGrYoLlsPwkBARF234sGSL-56xU1L57h5p_-Br2Xj1TwO-hlYxX7g3iIQK_bbm9ltNcwrt priority: 102 providerName: Unpaywall |
| Title | Prediction of preterm pre‐eclampsia at midpregnancy using a multivariable screening algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fajo.13113 https://www.ncbi.nlm.nih.gov/pubmed/32124434 https://www.proquest.com/docview/2370530462 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajo.13113 |
| UnpaywallVersion | publishedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0004-8666 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1479-828X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019514 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CAm1zSJ9JnLZh-zjkImNrJa1MT6Y0hEDSUGpIoSD26ThxJGPLLcmpP6G_sb-kM6sHTV-UnrRIK620M7P7jXb2G4CXQsdSingQoKdjgshpHcjQmkBRghqnETD7vVVHx8nBKDo8jU9X4FWzF6bih2h_uJFl-PGaDFyqxQ9GLs-LLnHFENNnnyfenXrXUkf1BzWvNwVapNhkzSpEUTztnTfnol8A5jrcXuYzefVZTqc3sauffPbvwsfmtauYk4vuslRdff0To-N_ftc92KhBKRtWWnQfVmz-AG4d1cvuDyE7mVOZZMgKxyhGEQd0On778tVqVKrZYiKZLNnlxODZMbF4XDGKqR8zyXzQ4id0ymmbFsNxCn1nf2U6LuaT8uzyEYz237x_fRDUmRkCzZMeDyRHwUfGWeplG0WhJZiROhG61CaaCy5UahyCT2eEpHwmqY2dQtewn2pEZHwTVvMit9vAiFVdGBX3rFBR5OIBl6k0yhmZaqd6SQf2GhlluqYtp-wZ06xxX7DDMt9hHXjeVp1VXB2_q_SsEXSGlkTLIzK3xXKRhVzgiESbdTuwVWlA-xgeEg7iUQdetCrxtzb2vIT_XCMbHr71hZ1_r_oY7oTk7PtIwiewWs6X9ikiolLtetXfhbXR8cnww3fkFwno |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlF44D6W0xwPfclqGztxVuKlQlRL6RaEWqkvKPK5bLtNVtssqDzxE_iN_BJmnEOUS4inRIkTJ54Z-xt7_A3AM2kSpWQyjNDTsZHwxkQqdjbSlKDGGwTMYW_VeDcd7Yvtg-RgBZ63e2Fqfohuwo0sI_TXZOA0If2DlavDsk9kMfwcnBcp-ikEid515FEbw4bZm0ItMqy04RWiOJ7u0bOj0S8Q8xKsLYu5Ov2kZrOz6DUMP1tX4H374XXUyVF_Wem--fwTp-P__tlVuNzgUrZZK9I1WHHFdbgwblbeb0D-dkHnJEZWekZhitin0_Hbl6_OoF7NT6aKqYodTy1enRCRxymjsPoJUyzELX5Ev5x2ajHsqtB9Dndmk3IxrT4c34T9rZd7L0ZRk5whMjwd8EhxlL2w3lEzOyFiR0gj8zL2mUsNl1zqzHrEn95KRSlNMpd4jd7hRmYQlPFbsFqUhbsDjIjVpdXJwEkthE-GXGXKam9VZrwepD1Yb4WUm4a5nBJozPLWg8EGy0OD9eBJV3Re03X8rtDjVtI5GhOtkKjClcuTPOYSOyXar9uD27UKdK_hMUEhLnrwtNOJv9WxHkT85xL55vabcHL334s-grXR3ngn33m1-_oeXIzJ9w-BhfdhtVos3QMESJV-GOzgOx1xDFk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKtH20BctbFta93HYS1ZL7Ky9Ui-osKK0UFQViQuK_NwuLMlqybaiJ34Cv5Ffgsd5qPQl1FOsxIkTz4z9TTz-BuAN14mUPOlH3tMxEXNaRzK2JlKYoMZpD5jD3qrtnd7mHtvaT_bn4G29F6bkh2h-uKFlhPEaDdxOjPvJyuVh3kGyGHoDbrKkLzCgb_1zQx612q-YvTHUQvhGK14hjONpbr06G_0GMe_ArVk2kaff5Xh8Fb2G6WdwDw7qFy-jTo46s0J19I9fOB3_98vuw90Kl5K1UpEewJzNHsLCdrXyvgjp7hTLKEaSO4Jhin5Mx-PF2bnVXq8mJyNJZEGOR8afHSKRxynBsPohkSTELX7zfjnu1CJ-qPLuc7gyHubTUfH1-BHsDTa-vNuMquQMkaa9Lo0k9bJnxlnsZstYbBFpCMdjJ2xPU065EsZ5_OkMl5jSRNjEKe8drgrtQRl9DPNZntllIEiszo1KupYrxlzSp1JIo5yRQjvV7bWgXQsp1RVzOSbQGKe1B-M7LA0d1oJXTdVJSdfxp0ova0mn3phwhURmNp-dpDHlflDC_botWCpVoHkMjREKUdaC141O_KuNdhDx32uka1ufQuHJ9au-gIXd9UH68f3Oh6dwO0bXP8QVPoP5YjqzKx4fFep5MINLtj0L3Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH5qg9SKQzcKpGqr6XLg4pB6xh7nGFVFCAnKoZHSk5k1hCZ2FBwqOPET-hv5JbznJVLagir15JE9Htvzlvme5y0AH6WJlJJRL0BLxwbCGxOo0NlAU4EabxAwl7FVh0fx_kAcDKNhXeeUYmGq_BDLH24kGaW-JgGfWV_p-UbUd9VZ3qF8MfwhrMURgvEWrA2OjvvfK9ArgiSOq_gi2aOA6WGdW2jl3tUV6Q-YuQ6PF9lMXf5Uk8kqgi2XoL2ncNK8fOV58qOzKHTHXP2W1_E_vu4ZPKnhKetX_PQcHrjsBTw6rDfgNyA9nlObqMlyz8hbEVU7HW-ufzmD7DU7HyumCjYdWzw7onwel4y860dMsdJ98QLNcwrYYqix0Iour0xG-XxcnE5fwmDvy7fP-0FdoyEwPO7yQHFkAWG9Q6QmnBChI8CReBn6xMWGSy51Yj3CUG-losomiYu8RiPxU2IQm_FNaGV55raBUX51aXXUdVIL4aMeV4my2luVGK-7cRt2Gjqlpk5gTnU0JmljyOCEpeWEteH9suusytrxt07vGmKnKFO0UaIyly_O05BL1E0UttuGrYoLlsPwkBARF234sGSL-56xU1L57h5p_-Br2Xj1TwO-hlYxX7g3iIQK_bbm9ltNcwrt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+preterm+pre%E2%80%90eclampsia+at+midpregnancy+using+a+multivariable+screening+algorithm&rft.jtitle=Australian+%26+New+Zealand+journal+of+obstetrics+%26+gynaecology&rft.au=Black%2C+Carin&rft.au=Rolnik%2C+Daniel+Lorber&rft.au=Al%E2%80%90Amin%2C+Ahmed&rft.au=Kane%2C+Stefan+C.&rft.date=2020-10-01&rft.issn=0004-8666&rft.eissn=1479-828X&rft.volume=60&rft.issue=5&rft.spage=675&rft.epage=682&rft_id=info:doi/10.1111%2Fajo.13113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ajo_13113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-8666&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-8666&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-8666&client=summon |