Prediction of preterm pre‐eclampsia at midpregnancy using a multivariable screening algorithm

Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine arte...

Full description

Saved in:
Bibliographic Details
Published inAustralian & New Zealand journal of obstetrics & gynaecology Vol. 60; no. 5; pp. 675 - 682
Main Authors Black, Carin, Rolnik, Daniel Lorber, Al‐Amin, Ahmed, Kane, Stefan C., Stolarek, Caroline, White, Adrienne, Da Silva Costa, Fabricio, Brennecke, Shaun
Format Journal Article
LanguageEnglish
Published Australia 01.10.2020
Subjects
Online AccessGet full text
ISSN0004-8666
1479-828X
1479-828X
DOI10.1111/ajo.13113

Cover

Abstract Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms‐like tyrosine kinase‐1 (sFlt‐1) level in MoM. Aims To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre‐eclampsia. The outcome measured was preterm pre‐eclampsia. Materials and Methods This is a prospective study including singleton pregnancies at 19–22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt‐1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced. Results Five hundred and twelve patients were included. Incidence of preterm pre‐eclampsia was 1.6%. Using predicted risk of pre‐eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre‐eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9–13.5, respectively. Addition of sFlt‐1 to the algorithm did not appear to improve performance. sFlt‐1 MoM and PlGF MoM values obtained on the different platforms performed very similarly. Conclusions Second trimester combined screening for preterm pre‐eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.
AbstractList Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19 and 24  weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM. To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia. This is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced. Five hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly. Second trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.
Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.BACKGROUNDCompeting risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia.AIMSTo assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre-eclampsia. The outcome measured was preterm pre-eclampsia.This is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.MATERIALS AND METHODSThis is a prospective study including singleton pregnancies at 19-22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.Five hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.RESULTSFive hundred and twelve patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.Second trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.CONCLUSIONSSecond trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.
Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms‐like tyrosine kinase‐1 (sFlt‐1) level in MoM. Aims To assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks) pre‐eclampsia. The outcome measured was preterm pre‐eclampsia. Materials and Methods This is a prospective study including singleton pregnancies at 19–22 weeks gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt‐1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced. Results Five hundred and twelve patients were included. Incidence of preterm pre‐eclampsia was 1.6%. Using predicted risk of pre‐eclampsia of one in 60 or more and one in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre‐eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DRs of 100% and 100%, respectively, and FPRs of 9.3 for all platforms and 12.9–13.5, respectively. Addition of sFlt‐1 to the algorithm did not appear to improve performance. sFlt‐1 MoM and PlGF MoM values obtained on the different platforms performed very similarly. Conclusions Second trimester combined screening for preterm pre‐eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.
Author Brennecke, Shaun
Al‐Amin, Ahmed
Da Silva Costa, Fabricio
Rolnik, Daniel Lorber
Stolarek, Caroline
Black, Carin
Kane, Stefan C.
White, Adrienne
Author_xml – sequence: 1
  givenname: Carin
  orcidid: 0000-0002-1541-106X
  surname: Black
  fullname: Black, Carin
  email: carinblack@gmail.com
  organization: The University of Melbourne
– sequence: 2
  givenname: Daniel Lorber
  orcidid: 0000-0002-2263-3592
  surname: Rolnik
  fullname: Rolnik, Daniel Lorber
  organization: Monash University
– sequence: 3
  givenname: Ahmed
  surname: Al‐Amin
  fullname: Al‐Amin, Ahmed
  organization: Monash Ultrasound for Women
– sequence: 4
  givenname: Stefan C.
  orcidid: 0000-0002-5172-3263
  surname: Kane
  fullname: Kane, Stefan C.
  organization: Royal Women's Hospital
– sequence: 5
  givenname: Caroline
  surname: Stolarek
  fullname: Stolarek, Caroline
  organization: Royal Women's Hospital
– sequence: 6
  givenname: Adrienne
  surname: White
  fullname: White, Adrienne
  organization: Royal Women's Hospital
– sequence: 7
  givenname: Fabricio
  surname: Da Silva Costa
  fullname: Da Silva Costa, Fabricio
  organization: University of São Paulo
– sequence: 8
  givenname: Shaun
  surname: Brennecke
  fullname: Brennecke, Shaun
  organization: The University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32124434$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9O3DAQh60KVJZtD30BlGNbKaz_beIcESotCAkOVOrNmnXGi5HjpHYC2huPwDPyJE1Y4FAJfBnJ881vRt8-2QltQEK-MHrIxreAm_aQCcbEBzJjsqxyxdWfHTKjlMpcFUWxR_ZTuqGUVUsmP5I9wRmXUsgZ0ZcRa2d614astVkXscfYTPXx_gGNh6ZLDjLos8bV4-86QDCbbEgurDPImsH37haig5XHLJmIGJ46ft1G1183n8iuBZ_w83Odk98nP66Of-XnFz9Pj4_OcyMKKnIQxoCsLU4HopQcOedC2ZJbhYURpShXqrZVVdm6hKKUSuHSripWMmVExcWcfN_mDqGDzR14r7voGogbzaieLOnRkn6yNMJft3AX278Dpl43Lhn0HgK2Q9JclHQpqCym3INndFg1WL-GvhgcgW9bwMQ2pYj23b2L_1jjepjc9xGcf2_iznncvB2tj84uthP_AD2koQc
CitedBy_id crossref_primary_10_1038_s41572_023_00417_6
crossref_primary_10_3389_fphys_2022_1035726
crossref_primary_10_3233_THC_218017
crossref_primary_10_1016_j_ajog_2023_03_032
crossref_primary_10_1016_j_cpcardiol_2023_101982
Cites_doi 10.1159/000335366
10.1159/000338470
10.1159/000341264
10.1002/uog.13435
10.1161/HYPERTENSIONAHA.117.10803
10.1159/000336662
10.1016/j.jbi.2008.08.010
10.1186/s12884-016-1195-2
10.1016/j.ajog.2013.08.034
10.1002/uog.5157
10.1002/uog.7628
10.1111/ajo.12689
10.1002/uog.19099
10.1002/pd.2660
10.1016/j.preghy.2014.02.001
10.1016/j.preghy.2019.03.009
10.3109/10641950109152635
10.1016/S0140-6736(83)91970-0
10.1016/j.ajog.2018.11.1087
10.1373/clinchem.2009.134080
10.1111/ajo.12126
10.1056/NEJMoa1704559
10.1002/uog.17455
10.1016/S0140-6736(06)68397-9
ContentType Journal Article
Copyright 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists
2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Copyright_xml – notice: 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists
– notice: 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1111/ajo.13113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-828X
EndPage 682
ExternalDocumentID 10.1111/ajo.13113
32124434
10_1111_ajo_13113
AJO13113
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3603-a3cca4dfe9514e442e22238f72f8e6c3737b8df999fd7a67488e5fb91718c3923
IEDL.DBID DR2
ISSN 0004-8666
1479-828X
IngestDate Wed Oct 01 16:48:09 EDT 2025
Fri Sep 05 09:30:17 EDT 2025
Thu Apr 03 07:10:31 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Oct 01 02:53:41 EDT 2025
Wed Jan 22 16:31:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords prediction
placental growth factor (PlGF)
pre-eclampsia
multivariable algorithm
second trimester
Language English
License 2020 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3603-a3cca4dfe9514e442e22238f72f8e6c3737b8df999fd7a67488e5fb91718c3923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5172-3263
0000-0002-2263-3592
0000-0002-1541-106X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajo.13113
PMID 32124434
PQID 2370530462
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1111_ajo_13113
proquest_miscellaneous_2370530462
pubmed_primary_32124434
crossref_primary_10_1111_ajo_13113
crossref_citationtrail_10_1111_ajo_13113
wiley_primary_10_1111_ajo_13113_AJO13113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
PublicationTitle Australian & New Zealand journal of obstetrics & gynaecology
PublicationTitleAlternate Aust N Z J Obstet Gynaecol
PublicationYear 2020
References 2010; 56
2018; 220
2009; 42
2010; 35
2010
2017; 49
1983; 1
2011; 31
2013; 122
2019; 16
2007; 30
2014; 210
2017; 377
2012; 32
2012; 31
2014; 44
2001; 20
2014; 4
2013; 33
2015; 214
2017; 17
2013; 53
2018; 52
2016; 214
2018; 72
2014
2006; 367
2018; 58
e_1_2_5_28_1
Lowe SA (e_1_2_5_30_1) 2014
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Gallo DM (e_1_2_5_12_1) 2015; 214
e_1_2_5_29_1
e_1_2_5_20_1
O'Gorman N (e_1_2_5_13_1) 2016; 214
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_5_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
American College of Obstetricians and Gynecologists (ACOG) (e_1_2_5_27_1) 2013; 122
National Institute for Health and Clinical Excellence (NICE) Clinical Guideline, No 107. Hypertension in Pregnancy (e_1_2_5_26_1) 2010
e_1_2_5_31_1
References_xml – volume: 31
  start-page: 66
  year: 2011
  end-page: 74
  article-title: Prediction of early, intermediate and late pre‐eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks
  publication-title: Prenat Diagn
– volume: 214
  start-page: e1
  issue: 619
  year: 2015
  end-page: e17
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks' gestation
  publication-title: Am J Obstet Gynecol
– volume: 31
  start-page: 42
  year: 2012
  end-page: 48
  article-title: Protocol for measurement of mean arterial pressure at 11–13 weeks' gestation
  publication-title: Fetal Diagn Ther
– volume: 58
  start-page: 192
  year: 2018
  end-page: 196
  article-title: Accuracy of second trimester prediction of preterm preeclampsia by three different screening algorithms
  publication-title: Aust N Z J Obstet Gynaecol
– volume: 1
  start-page: 675
  year: 1983
  end-page: 677
  article-title: New doppler technique for assessing uteroplacental blood flow
  publication-title: Lancet
– volume: 214
  start-page: e1
  issue: 103
  year: 2016
  end-page: e12
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation
  publication-title: Am J Obstet Gynecol
– volume: 30
  start-page: 742
  year: 2007
  end-page: 9
  article-title: Uterine artery Doppler at 11 + 0 to 13 + 6 weeks in the prediction of pre‐eclampsia
  publication-title: Ultrasound Obstet Gynecol
– volume: 49
  start-page: 756
  year: 2017
  end-page: 760
  article-title: Multicenter screening for pre‐eclampsia by maternal factors and biomarkers at 11–13 weeks' gestation: comparison with NICE guidelines and ACOG recommendations
  publication-title: Ultrasound Obstet Gynecol
– volume: 56
  start-page: 361
  year: 2010
  end-page: 375
  article-title: Combining biochemical and ultrasonographic markers in predicting preeclampsia: a systematic review
  publication-title: Clin Chem
– volume: 377
  start-page: 613
  year: 2017
  end-page: 622
  article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia
  publication-title: N Engl J Med
– volume: 32
  start-page: 171
  year: 2012
  end-page: 178
  article-title: A competing risks model in early screening for preeclampsia
  publication-title: Fetal Diagn Ther
– volume: 367
  start-page: 1066
  year: 2006
  end-page: 1074
  article-title: WHO analysis of causes of maternal death: a systematic review
  publication-title: Lancet
– year: 2014
– year: 2010
– volume: 210
  start-page: 173
  year: 2014
  end-page: 174
  article-title: The incidence of preeclampsia and eclampsia in Australia: 2000 through 2008
  publication-title: Am J Obstet Gynecol
– volume: 4
  start-page: 97
  year: 2014
  end-page: 104
  article-title: The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP
  publication-title: Pregnancy Hypertens
– volume: 17
  start-page: 12
  year: 2017
  article-title: Perspectives, preferences and needs regarding early prediction of preeclampsia in Dutch pregnant women: a qualitative study
  publication-title: BMC Pregnancy Childbirth
– volume: 33
  start-page: 8
  year: 2013
  end-page: 15
  article-title: Competing risks model in early screening for preeclampsia by biophysical and biochemical markers
  publication-title: Fetal Diagn Ther
– volume: 35
  start-page: 662
  year: 2010
  end-page: 670
  article-title: Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11–13 weeks
  publication-title: Ultrasound Obstet Gynecol
– volume: 16
  start-page: 112
  year: 2019
  end-page: 119
  article-title: Midpregnancy prediction of pre‐eclampsia using serum biomarkers sFlt‐1 and PlGF
  publication-title: Pregnancy hypertens
– volume: 44
  start-page: 279
  year: 2014
  end-page: 285
  article-title: First‐trimester prediction of pre‐eclampsia: external validity of algorithms in a prospectively enrolled cohort
  publication-title: Ultrasound Obstet Gynecol
– volume: 220
  start-page: 199.e1
  year: 2018
  article-title: Predictive performance of the competing risk model in screening for preeclampsia
  publication-title: Am J Obstet Gynecol
– volume: 52
  start-page: 365
  year: 2018
  end-page: 372
  article-title: Management of pregnancies after combined screening for pre‐eclampsia at 19–24 weeks' gestation
  publication-title: Ultrasound Obstet Gynecol
– volume: 42
  start-page: 377
  year: 2009
  end-page: 381
  article-title: Research electronic data capture (REDCap)–a metadata‐driven methodology and workflow process for providing translational research informatics support
  publication-title: J Biomed Inform
– volume: 72
  start-page: 24
  year: 2018
  end-page: 43
  article-title: The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice
  publication-title: Pregnancy Hypertens
– volume: 122
  start-page: 1122
  year: 2013
  end-page: 31
  article-title: Hypertension in pregnancy. Report of the American college of obstetricians and Gynecologists' task force on hypertension in pregnancy
  publication-title: Obstet Gynecol
– volume: 53
  start-page: 532
  year: 2013
  end-page: 539
  article-title: Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy
  publication-title: Aust N Z J Obstet Gynaecol
– volume: 31
  start-page: 141
  year: 2012
  end-page: 146
  article-title: Early administration of low‐dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta‐analysis
  publication-title: Fetal Diagn Ther
– volume: 20
  start-page: ix
  year: 2001
  end-page: xiv
  article-title: The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP)
  publication-title: Hypertens Pregnancy
– ident: e_1_2_5_19_1
  doi: 10.1159/000335366
– ident: e_1_2_5_9_1
  doi: 10.1159/000338470
– ident: e_1_2_5_25_1
  doi: 10.1159/000341264
– ident: e_1_2_5_11_1
  doi: 10.1002/uog.13435
– ident: e_1_2_5_17_1
  doi: 10.1161/HYPERTENSIONAHA.117.10803
– ident: e_1_2_5_4_1
  doi: 10.1159/000336662
– ident: e_1_2_5_15_1
  doi: 10.1016/j.jbi.2008.08.010
– volume: 214
  start-page: e1
  issue: 103
  year: 2016
  ident: e_1_2_5_13_1
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation
  publication-title: Am J Obstet Gynecol
– ident: e_1_2_5_29_1
  doi: 10.1186/s12884-016-1195-2
– ident: e_1_2_5_2_1
  doi: 10.1016/j.ajog.2013.08.034
– ident: e_1_2_5_21_1
  doi: 10.1002/uog.5157
– ident: e_1_2_5_23_1
  doi: 10.1002/uog.7628
– ident: e_1_2_5_8_1
  doi: 10.1111/ajo.12689
– ident: e_1_2_5_31_1
  doi: 10.1002/uog.19099
– ident: e_1_2_5_24_1
  doi: 10.1002/pd.2660
– ident: e_1_2_5_18_1
  doi: 10.1016/j.preghy.2014.02.001
– volume: 214
  start-page: e1
  issue: 619
  year: 2015
  ident: e_1_2_5_12_1
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks' gestation
  publication-title: Am J Obstet Gynecol
– ident: e_1_2_5_28_1
  doi: 10.1016/j.preghy.2019.03.009
– volume-title: Guideline for the Management of Hypertensive Disorders of Pregnancy. Society of Obstetric Medicine of Australia and
  year: 2014
  ident: e_1_2_5_30_1
– ident: e_1_2_5_16_1
  doi: 10.3109/10641950109152635
– ident: e_1_2_5_20_1
  doi: 10.1016/S0140-6736(83)91970-0
– volume-title: The Management of Hypertensive Disorders During Pregnancy. National Collaborating Centre for Women's and Children's Health (UK)
  year: 2010
  ident: e_1_2_5_26_1
– ident: e_1_2_5_6_1
– ident: e_1_2_5_14_1
  doi: 10.1016/j.ajog.2018.11.1087
– ident: e_1_2_5_22_1
  doi: 10.1373/clinchem.2009.134080
– ident: e_1_2_5_10_1
  doi: 10.1111/ajo.12126
– ident: e_1_2_5_5_1
  doi: 10.1056/NEJMoa1704559
– ident: e_1_2_5_7_1
  doi: 10.1002/uog.17455
– ident: e_1_2_5_3_1
  doi: 10.1016/S0140-6736(06)68397-9
– volume: 122
  start-page: 1122
  year: 2013
  ident: e_1_2_5_27_1
  article-title: Hypertension in pregnancy. Report of the American college of obstetricians and Gynecologists' task force on hypertension in pregnancy
  publication-title: Obstet Gynecol
SSID ssj0019514
Score 2.2818794
Snippet Background Competing risk models used for midpregnancy prediction of preterm pre‐eclampsia have shown detection rates (DR) of 85%, at fixed false‐positive rate...
Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 675
SubjectTerms Algorithms
Biomarkers
Female
Humans
Infant, Newborn
multivariable algorithm
Placenta Growth Factor
placental growth factor (PlGF)
Pre-Eclampsia - diagnosis
prediction
Predictive Value of Tests
Pregnancy
pre‐eclampsia
Prospective Studies
second trimester
Vascular Endothelial Growth Factor Receptor-1
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH5qg9SKQzcKpGqr6XLg4pB6xh7nGFVFCAnKoZHSk5k1hCZ2FBwqOPET-hv5JbznJVLagir15JE9Htvzlvme5y0AH6WJlJJRL0BLxwbCGxOo0NlAU4EabxAwl7FVh0fx_kAcDKNhXeeUYmGq_BDLH24kGaW-JgGfWV_p-UbUd9VZ3qF8MfwhrMURgvEWrA2OjvvfK9ArgiSOq_gi2aOA6WGdW2jl3tUV6Q-YuQ6PF9lMXf5Uk8kqgi2XoL2ncNK8fOV58qOzKHTHXP2W1_E_vu4ZPKnhKetX_PQcHrjsBTw6rDfgNyA9nlObqMlyz8hbEVU7HW-ufzmD7DU7HyumCjYdWzw7onwel4y860dMsdJ98QLNcwrYYqix0Iour0xG-XxcnE5fwmDvy7fP-0FdoyEwPO7yQHFkAWG9Q6QmnBChI8CReBn6xMWGSy51Yj3CUG-losomiYu8RiPxU2IQm_FNaGV55raBUX51aXXUdVIL4aMeV4my2luVGK-7cRt2Gjqlpk5gTnU0JmljyOCEpeWEteH9suusytrxt07vGmKnKFO0UaIyly_O05BL1E0UttuGrYoLlsPwkBARF234sGSL-56xU1L57h5p_-Br2Xj1TwO-hlYxX7g3iIQK_bbm9ltNcwrt
  priority: 102
  providerName: Unpaywall
Title Prediction of preterm pre‐eclampsia at midpregnancy using a multivariable screening algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fajo.13113
https://www.ncbi.nlm.nih.gov/pubmed/32124434
https://www.proquest.com/docview/2370530462
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajo.13113
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0004-8666
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1479-828X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019514
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CAm1zSJ9JnLZh-zjkImNrJa1MT6Y0hEDSUGpIoSD26ThxJGPLLcmpP6G_sb-kM6sHTV-UnrRIK620M7P7jXb2G4CXQsdSingQoKdjgshpHcjQmkBRghqnETD7vVVHx8nBKDo8jU9X4FWzF6bih2h_uJFl-PGaDFyqxQ9GLs-LLnHFENNnnyfenXrXUkf1BzWvNwVapNhkzSpEUTztnTfnol8A5jrcXuYzefVZTqc3sauffPbvwsfmtauYk4vuslRdff0To-N_ftc92KhBKRtWWnQfVmz-AG4d1cvuDyE7mVOZZMgKxyhGEQd0On778tVqVKrZYiKZLNnlxODZMbF4XDGKqR8zyXzQ4id0ymmbFsNxCn1nf2U6LuaT8uzyEYz237x_fRDUmRkCzZMeDyRHwUfGWeplG0WhJZiROhG61CaaCy5UahyCT2eEpHwmqY2dQtewn2pEZHwTVvMit9vAiFVdGBX3rFBR5OIBl6k0yhmZaqd6SQf2GhlluqYtp-wZ06xxX7DDMt9hHXjeVp1VXB2_q_SsEXSGlkTLIzK3xXKRhVzgiESbdTuwVWlA-xgeEg7iUQdetCrxtzb2vIT_XCMbHr71hZ1_r_oY7oTk7PtIwiewWs6X9ikiolLtetXfhbXR8cnww3fkFwno
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlF44D6W0xwPfclqGztxVuKlQlRL6RaEWqkvKPK5bLtNVtssqDzxE_iN_BJmnEOUS4inRIkTJ54Z-xt7_A3AM2kSpWQyjNDTsZHwxkQqdjbSlKDGGwTMYW_VeDcd7Yvtg-RgBZ63e2Fqfohuwo0sI_TXZOA0If2DlavDsk9kMfwcnBcp-ikEid515FEbw4bZm0ItMqy04RWiOJ7u0bOj0S8Q8xKsLYu5Ov2kZrOz6DUMP1tX4H374XXUyVF_Wem--fwTp-P__tlVuNzgUrZZK9I1WHHFdbgwblbeb0D-dkHnJEZWekZhitin0_Hbl6_OoF7NT6aKqYodTy1enRCRxymjsPoJUyzELX5Ev5x2ajHsqtB9Dndmk3IxrT4c34T9rZd7L0ZRk5whMjwd8EhxlL2w3lEzOyFiR0gj8zL2mUsNl1zqzHrEn95KRSlNMpd4jd7hRmYQlPFbsFqUhbsDjIjVpdXJwEkthE-GXGXKam9VZrwepD1Yb4WUm4a5nBJozPLWg8EGy0OD9eBJV3Re03X8rtDjVtI5GhOtkKjClcuTPOYSOyXar9uD27UKdK_hMUEhLnrwtNOJv9WxHkT85xL55vabcHL334s-grXR3ngn33m1-_oeXIzJ9w-BhfdhtVos3QMESJV-GOzgOx1xDFk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKtH20BctbFta93HYS1ZL7Ky9Ui-osKK0UFQViQuK_NwuLMlqybaiJ34Cv5Ffgsd5qPQl1FOsxIkTz4z9TTz-BuAN14mUPOlH3tMxEXNaRzK2JlKYoMZpD5jD3qrtnd7mHtvaT_bn4G29F6bkh2h-uKFlhPEaDdxOjPvJyuVh3kGyGHoDbrKkLzCgb_1zQx612q-YvTHUQvhGK14hjONpbr06G_0GMe_ArVk2kaff5Xh8Fb2G6WdwDw7qFy-jTo46s0J19I9fOB3_98vuw90Kl5K1UpEewJzNHsLCdrXyvgjp7hTLKEaSO4Jhin5Mx-PF2bnVXq8mJyNJZEGOR8afHSKRxynBsPohkSTELX7zfjnu1CJ-qPLuc7gyHubTUfH1-BHsDTa-vNuMquQMkaa9Lo0k9bJnxlnsZstYbBFpCMdjJ2xPU065EsZ5_OkMl5jSRNjEKe8drgrtQRl9DPNZntllIEiszo1KupYrxlzSp1JIo5yRQjvV7bWgXQsp1RVzOSbQGKe1B-M7LA0d1oJXTdVJSdfxp0ova0mn3phwhURmNp-dpDHlflDC_botWCpVoHkMjREKUdaC141O_KuNdhDx32uka1ufQuHJ9au-gIXd9UH68f3Oh6dwO0bXP8QVPoP5YjqzKx4fFep5MINLtj0L3Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH5qg9SKQzcKpGqr6XLg4pB6xh7nGFVFCAnKoZHSk5k1hCZ2FBwqOPET-hv5JbznJVLagir15JE9Htvzlvme5y0AH6WJlJJRL0BLxwbCGxOo0NlAU4EabxAwl7FVh0fx_kAcDKNhXeeUYmGq_BDLH24kGaW-JgGfWV_p-UbUd9VZ3qF8MfwhrMURgvEWrA2OjvvfK9ArgiSOq_gi2aOA6WGdW2jl3tUV6Q-YuQ6PF9lMXf5Uk8kqgi2XoL2ncNK8fOV58qOzKHTHXP2W1_E_vu4ZPKnhKetX_PQcHrjsBTw6rDfgNyA9nlObqMlyz8hbEVU7HW-ufzmD7DU7HyumCjYdWzw7onwel4y860dMsdJ98QLNcwrYYqix0Iour0xG-XxcnE5fwmDvy7fP-0FdoyEwPO7yQHFkAWG9Q6QmnBChI8CReBn6xMWGSy51Yj3CUG-losomiYu8RiPxU2IQm_FNaGV55raBUX51aXXUdVIL4aMeV4my2luVGK-7cRt2Gjqlpk5gTnU0JmljyOCEpeWEteH9suusytrxt07vGmKnKFO0UaIyly_O05BL1E0UttuGrYoLlsPwkBARF234sGSL-56xU1L57h5p_-Br2Xj1TwO-hlYxX7g3iIQK_bbm9ltNcwrt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+preterm+pre%E2%80%90eclampsia+at+midpregnancy+using+a+multivariable+screening+algorithm&rft.jtitle=Australian+%26+New+Zealand+journal+of+obstetrics+%26+gynaecology&rft.au=Black%2C+Carin&rft.au=Rolnik%2C+Daniel+Lorber&rft.au=Al%E2%80%90Amin%2C+Ahmed&rft.au=Kane%2C+Stefan+C.&rft.date=2020-10-01&rft.issn=0004-8666&rft.eissn=1479-828X&rft.volume=60&rft.issue=5&rft.spage=675&rft.epage=682&rft_id=info:doi/10.1111%2Fajo.13113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ajo_13113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-8666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-8666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-8666&client=summon