MODELLING THE CHLOROPHYLL-A CONCENTRATION OF LAGUNA LAKE USING HIMAWARI-8 SATELLITE IMAGERY AND MACHINE LEARNING ALGORITHMS FOR NEAR REAL TIME MONITORING

Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in pro...

Full description

Saved in:
Bibliographic Details
Published inInternational archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVI-4/W3-2021; pp. 211 - 214
Main Authors Martinez, E. R. G., Argamosa, R. J. L., Torres, R. B., Blanco, A. C.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Gottingen Copernicus GmbH 01.01.2022
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9034
1682-1750
1682-1777
2194-9034
DOI10.5194/isprs-archives-XLVI-4-W3-2021-211-2022

Cover

Abstract Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in productive lakes like Laguna Lake. Thus, the aim of this paper is to present the methodology for modelling the Chl-a concentration of Laguna Lake in the Philippines using satellite imaging and machine learning algorithms. The methodology uses images from the Himawari-8 satellite, which have a spatial resolution of 0.5–2 km and are taken every 10 minutes. These are converted into a GeoTIFF format, where differences in spatial resolution are resolved. Additionally, radiometric correction, resampling, and filtering of the Himawari-8 bands to exclude cloud-contaminated pixels are performed. Subsequently, various regression and gradient boosting machine learning algorithms are applied onto the train dataset and evaluated, namely: Simple Linear Regression, Ridge Regression, Lasso Regression, and Light Gradient Boosting Model (LightGBM). The results of this study show that it is indeed possible to integrate algorithms in Machine Learning in modelling the near real-time variations in Chl-a content in a body of water, specifically in the case of Laguna Lake, to an acceptable margin of error. Specifically, the regression models performed similarly with a train RMSE of 1.44 and test RMSE of 2.51 for Simple Linear Regression and 2.48 for Ridge and Lasso Regression. The linear regression models exhibited a larger degree of overfitting than the LightGBM model, which had a 2.18 train RMSE.
AbstractList Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in productive lakes like Laguna Lake. Thus, the aim of this paper is to present the methodology for modelling the Chl-a concentration of Laguna Lake in the Philippines using satellite imaging and machine learning algorithms. The methodology uses images from the Himawari-8 satellite, which have a spatial resolution of 0.5–2 km and are taken every 10 minutes. These are converted into a GeoTIFF format, where differences in spatial resolution are resolved. Additionally, radiometric correction, resampling, and filtering of the Himawari-8 bands to exclude cloud-contaminated pixels are performed. Subsequently, various regression and gradient boosting machine learning algorithms are applied onto the train dataset and evaluated, namely: Simple Linear Regression, Ridge Regression, Lasso Regression, and Light Gradient Boosting Model (LightGBM). The results of this study show that it is indeed possible to integrate algorithms in Machine Learning in modelling the near real-time variations in Chl-a content in a body of water, specifically in the case of Laguna Lake, to an acceptable margin of error. Specifically, the regression models performed similarly with a train RMSE of 1.44 and test RMSE of 2.51 for Simple Linear Regression and 2.48 for Ridge and Lasso Regression. The linear regression models exhibited a larger degree of overfitting than the LightGBM model, which had a 2.18 train RMSE.
Author Martinez, E. R. G.
Blanco, A. C.
Torres, R. B.
Argamosa, R. J. L.
Author_xml – sequence: 1
  givenname: E. R. G.
  surname: Martinez
  fullname: Martinez, E. R. G.
– sequence: 2
  givenname: R. J. L.
  surname: Argamosa
  fullname: Argamosa, R. J. L.
– sequence: 3
  givenname: R. B.
  surname: Torres
  fullname: Torres, R. B.
– sequence: 4
  givenname: A. C.
  surname: Blanco
  fullname: Blanco, A. C.
BookMark eNqVkt9u0zAUxiM0JMbYO1ji2sN27Py5tDI3sXAclGaUXVlukkKq0BSn3dij8LZL1oEQXCCuztHnc36fdD6_9s52w671vCuMrhiO6btu3LsRWld_6e7aEX5SHyWkcOVDggiGBOO5IS-8czJNwxj59Oy3_pV3OY5bhBCmQcAQO_d-5MW1UErqFFSZAEmmirL4kN0qBTlICp0IXZW8koUGxQIont5oPpX3Atws56VM5nzFSwkjsOTVTKoEmLRUlLeA62uQ8ySTWgAleKnnDa7SopRVli_BoiiBnnRQCq5AJXMB8kLLanrX6Rvv5cb2Y3v5XC-8aiGqJIOqSGXCFaz9ABFI1-t6E2FaRwFl8Rr7PkHxxhIWsyaMwthvwwDZOGoQCwkNUIuaxvrEhm1DEIr9C0-esM1gt2bvuq_WPZjBduZJGNxnY92hq_vWoKihNqQRDgildtNExDJUs7gNWBxSRCZWemIdd3v7cG_7_hcQIzPnZ57yMz_zM9_7u85Qc--bOT8z5Tc3M-ntibR3w7djOx7Mdji63XQHQwIcMRqQCE9Ti9NU7YZxdO3mX3bzd5nsVn_bqT9AdXewh27YHZzt-v_FPQJzncdI
CitedBy_id crossref_primary_10_1016_j_envc_2024_101056
ContentType Journal Article
Conference Proceeding
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.5194/isprs-archives-XLVI-4-W3-2021-211-2022
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 214
ExternalDocumentID oai_doaj_org_article_08d4a74816244afd82a50c59e6597402
10.5194/isprs-archives-xlvi-4-w3-2021-211-2022
10_5194_isprs_archives_XLVI_4_W3_2021_211_2022
GroupedDBID 8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
TUS
7TN
ABUWG
AZQEC
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
H13
UNPAY
ID FETCH-LOGICAL-c3602-4bbcf814c86459b133209fa2595d78793e760a98d0572460e0dda32a7ed20093
IEDL.DBID BENPR
ISSN 2194-9034
1682-1750
1682-1777
IngestDate Fri Oct 03 12:53:42 EDT 2025
Wed Oct 01 16:53:10 EDT 2025
Fri Jul 25 11:54:38 EDT 2025
Wed Oct 01 03:35:11 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3602-4bbcf814c86459b133209fa2595d78793e760a98d0572460e0dda32a7ed20093
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
OpenAccessLink https://www.proquest.com/docview/2618546281?pq-origsite=%requestingapplication%&accountid=15518
PQID 2618546281
PQPubID 2037674
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_08d4a74816244afd82a50c59e6597402
unpaywall_primary_10_5194_isprs_archives_xlvi_4_w3_2021_211_2022
proquest_journals_2618546281
crossref_primary_10_5194_isprs_archives_XLVI_4_W3_2021_211_2022
crossref_citationtrail_10_5194_isprs_archives_XLVI_4_W3_2021_211_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001466505
Score 2.2406354
Snippet Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 211
SubjectTerms Algorithms
Chlorophyll
Chlorophyll a
Imagery
Imaging techniques
Lakes
Machine learning
Modelling
Radiometric correction
Real time
Regression analysis
Regression models
Resampling
Resolution
Root-mean-square errors
Satellite imagery
Spaceborne remote sensing
Spatial resolution
Statistical methods
Temporal resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHngcEE9RWJAPXM3m4TjOCUzXbQJ5oGx22z1ZdpJKlapSbbcs_BT-LeMmrbpcVkicYlnyaOKZeL7PsWcQeu_SsK6j2iVmxiNCvTYgPOKGQCgNTK0BUIT2NnKWs_icfpkG04NSX_ZMWJceuJu4E4c3VIeUuwwCkZ413NOBUwdRyywU7tJIOjw6IFPb3RXKAHrY84suAwgJMdK5j4CpfgDAQk_m69XVmug-tSuZphcJoWTig8t4LgFKZBverUi1Teh_C4U-2CxX-teNXiwOAtLoCXrcI0ksujd4iu61y2fo0cV8vel618_R76w4lcDW8zGuYomHcVqUxbf4Mk2JwMMiH8q86japcDHCqRif5wIeXyW21TjGOE4yMRFlQjg-E5WVVEkMfWNZXmKRn-JMDOMklziVosztCJGOizKp4uwMA73EOfTjUooUV0kmMazfSVXY8xcvUDWS1TAmfS0GUvsMFk1qTD3jLq25zT5jgNl6TjTTQJ6CBr75yG9D5uiIN4D_PMqc1mka7Xs6bBv7_8V_iY6W35ftK4SZ5wTGY0aHjabUtNxejeWahkEzM8ZnAyR3067qPk-5LZexUMBXrPnU1nxqZz5lzaeomvjKmk-B-WzDG6CPezmrLnPHP0v4bK2-H20zcW87wD9V75_qLv8coOOdz6h-eVgroK08sLeC3QH6tPeju9T8ufgxBzVv_lLz9f9Q8w16aGV1m0vH6Oj6atO-Bbh1bd5tv6w_B3AWFQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lc9MwENaUdobHgTdDoTA6cFXr2LItn0Ckbmxw7E7qtulJI9kOZAhpJk4ocORfcOaPsuskhebCMBw4WaOxVxrvWvt98mqXkBct7hdFULSYGYiAcbtymQiEYeBKXVNoABQ-nkbupl50zN_03f4G-bY6C4NhlcPxjKGW2eT9-awJUvrIphXMvGI1cDtWY6yxHjFQAQM_0XD4fnISM85OHVC73doDWoO03t4b1pNp3UjDLK7s6m0MbsMGcMtycI1seS7g-U2ydZweyjNkah7AT_Cv1q92U8oRvnLOAsvh1wmw310AQXx9oM-jT0MY6GJtoCverykScAXZ3piPJ_rLhR6NfnNyB3fIj9XrWcS2fNidz8xu8XUtc-T_fX93ye0lhqZyYfT3yEY1vk9unQzr-aK3fkC-d7P9MEnitEPzKKTtKMl62WF0liRM0naWtsM0X2zP0eyAJrJznEq4vA0p1iHp0CjuylPZi5mgRzJHSXlIoa8T9s6oTPdpV7ajOA1pEspeik_IpJP14jzqHlEg1jSFftoLZULzuBtS8FxxnmHkyUOSH4R5O2LLKhSscDxwF9yYYiBavBCYd8cAp7etYKCBNrolrHaBU_mepQNRAvK1uWdVVllqx9Z-VeKfJ-cR2Ryfj6vHhHq25RrbM9ovNeemEngoWGjuu-XAGMfbJuHKOFSxzNCOhUJGCpgaGplqtKFW2lCoDcXVqaNQGwq0gQ17m7y8lDNZ5Cz5awmv0TYvn8Yc5E3H-fSdWi5pyhIl1z4XLQ8goh6UwtauVbhB5SFJtUDIzsqy1XJhrBUQduHieejWNnl1ae1_miZ-TTDNi7VpPvl3EU_JTbwsNtV2yOZsOq-eAcycmefLdeAnZdJogg
  priority: 102
  providerName: Unpaywall
Title MODELLING THE CHLOROPHYLL-A CONCENTRATION OF LAGUNA LAKE USING HIMAWARI-8 SATELLITE IMAGERY AND MACHINE LEARNING ALGORITHMS FOR NEAR REAL TIME MONITORING
URI https://www.proquest.com/docview/2618546281
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W3-2021/211/2022/isprs-archives-XLVI-4-W3-2021-211-2022.pdf
https://doaj.org/article/08d4a74816244afd82a50c59e6597402
UnpaywallVersion publishedVersion
Volume XLVI-4/W3-2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBbaFNjjtEeHdusKHXbV6odsy4ehU1Ml9ubYgeu-ToL8yFAgSLMkXbefsn87MnXSdYcNO1kWbFkwKfIjJZKEvLN5UFVhZbNyJELGncZjIhQlA1XqlZUBQBFgNPIg9aNT_unCu9gg6SoWBo9VrmTiUlDX1xX6yA8A6QsPAyntw-lXhlWjcHd1VULDtKUV6g_LFGObZMvBzFgdsnWk0mF-73XhPkASPNdo-wAtQXdajwhYsO8ByPCDq_l0NmemTfnKLpKzmHF27gIrOTYDUwkbzgMNtkz0_wCdPr6ZTM2PWzMe_6aoes_I9n0IHx2uldNzstFMXpCnZ1fzGzOmcraYvyQ_B9mxAls-7dMiUrQbJVmeDaPLJGGSdrO0q9LizoVFsx5NZP80lXD5rCjW6ujTKB7Ic5nHTNATWeBIhaLQ11f5JZXpMR3IbhSniiZK5im-IZN-lsdFNDihYHzSFPpprmRCi3igKEj3uMjwdMY2KXqq6EasrdTAKtcHkcrLshoJm1cCc9OUYPc6VjgyYFp5NUiE0G0C3zKhqAEdOty3GquujeuYoKlxd8Z9RTqT60mzQ6jvWF7p-KUJasN52QgMnBWGB149KkvX3yVq9fN11WYxx2IaYw3WDBJRL4moV0TUSETN9bmrkYgaiIgNZ5ccrseZ3uX1-O8RjpD267cxT_ey43r2RbfLXlui5ibgwvYBRplRLRzjWZUXNj4achYMsrfiHN0Kj7m-Z_Vd8nHNTf-a5vfxtyuY5u0f03z99y-8IU_wqTun0h7pLGY3zVuAWYtyn2yKXn-_XUH7S2cF3J2mQ3n5C8F9G2A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJw4lFEoMAe4LjUj7W9PlTFTTaxqR-V6zbpabV-BEWKkpAHoT-FH8N_YzZxUsoBxKGnWCvtZOVvduab9c4MQu916hSFW-gk7zOXUKOyCHNZTsCVWnkhgVA4Khs5im3_kn7uWb0d9HOTC6OuVW5s4spQl-NCnZEfAdNnlkqk1E8mX4nqGqW-rm5aaMi6tUJ5vCoxVid2nFU3SwjhZsdBC_D-YBhtnjV9UncZIIVpgzmgeV70mU4Lpuqq5BCzGZrblxAWWCVos2tWjq1Jl5XAbAxqa5VWltI0pFOV6suCCWIfoD1qUhdiv71THp-nt4c81AYGpK5R6jYwWXDV2kMEAfNH4E30aDCbTGdE1hVmSS-8CgglXRM019AJRGbqwbjjMFd9Be6Q4f3FaCJvlnI4_M0vtp-gg9uMQXy-9YVP0U41eoYeXw1mCznE3nQ-e45-REmLh2EQd3Dmc9z0wyRNzv3rMCQebiZxk8fZ-sQMJ20cep3L2IOfM45Va5AO9oPI63ppQBi-8DIlKeMYxjo8vcZe3MKR1_SDmOOQe2msZnhhJ0mDzI8uMMS6OIZxnHIvxFkQcQzOJMgSdRnkAGX3AdkLtDsaj6qXCNuGZuWGnUunlJTmFVN5ukxSxyr7eW7aDcQ3L18UddF01btjKCB4UiCKFYhiA6JQIAoquqZQIAoAUT0YDXSylTNZlxH5bwmnCvvtbFUWfDUwnn4RtZURGiupdCjTbWBtsl8yQ1paYbmVreJGDYQcbjRH1LZqJm53VgN92mrTv5b5ffhtAMtc_rHMV3__h3do38-iUICynb1Gj9SM9XnWIdqdTxfVG2B48_xtvY8wEve8c38BthlRyQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lc9MwENaUdobHgTdDoTA6cFXr2LItn0Ckbmxw7E7qtulJI9kOZAhpJk4ocORfcOaPsuskhebCMBw4WaOxVxrvWvt98mqXkBct7hdFULSYGYiAcbtymQiEYeBKXVNoABQ-nkbupl50zN_03f4G-bY6C4NhlcPxjKGW2eT9-awJUvrIphXMvGI1cDtWY6yxHjFQAQM_0XD4fnISM85OHVC73doDWoO03t4b1pNp3UjDLK7s6m0MbsMGcMtycI1seS7g-U2ydZweyjNkah7AT_Cv1q92U8oRvnLOAsvh1wmw310AQXx9oM-jT0MY6GJtoCverykScAXZ3piPJ_rLhR6NfnNyB3fIj9XrWcS2fNidz8xu8XUtc-T_fX93ye0lhqZyYfT3yEY1vk9unQzr-aK3fkC-d7P9MEnitEPzKKTtKMl62WF0liRM0naWtsM0X2zP0eyAJrJznEq4vA0p1iHp0CjuylPZi5mgRzJHSXlIoa8T9s6oTPdpV7ajOA1pEspeik_IpJP14jzqHlEg1jSFftoLZULzuBtS8FxxnmHkyUOSH4R5O2LLKhSscDxwF9yYYiBavBCYd8cAp7etYKCBNrolrHaBU_mepQNRAvK1uWdVVllqx9Z-VeKfJ-cR2Ryfj6vHhHq25RrbM9ovNeemEngoWGjuu-XAGMfbJuHKOFSxzNCOhUJGCpgaGplqtKFW2lCoDcXVqaNQGwq0gQ17m7y8lDNZ5Cz5awmv0TYvn8Yc5E3H-fSdWi5pyhIl1z4XLQ8goh6UwtauVbhB5SFJtUDIzsqy1XJhrBUQduHieejWNnl1ae1_miZ-TTDNi7VpPvl3EU_JTbwsNtV2yOZsOq-eAcycmefLdeAnZdJogg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=MODELLING+THE+CHLOROPHYLL-A+CONCENTRATION+OF+LAGUNA+LAKE+USING+HIMAWARI-8+SATELLITE+IMAGERY+AND+MACHINE+LEARNING+ALGORITHMS+FOR+NEAR+REAL+TIME+MONITORING&rft.au=Martinez%2C+E+R+G&rft.au=Argamosa%2C+R+J+L&rft.au=Torres%2C+R+B&rft.au=Blanco%2C+A+C&rft.date=2022-01-01&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVI-4%2FW3-2021&rft.spage=211&rft.epage=214&rft_id=info:doi/10.5194%2Fisprs-archives-XLVI-4-W3-2021-211-2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon