MODELLING THE CHLOROPHYLL-A CONCENTRATION OF LAGUNA LAKE USING HIMAWARI-8 SATELLITE IMAGERY AND MACHINE LEARNING ALGORITHMS FOR NEAR REAL TIME MONITORING
Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in pro...
Saved in:
| Published in | International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVI-4/W3-2021; pp. 211 - 214 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Gottingen
Copernicus GmbH
01.01.2022
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2194-9034 1682-1750 1682-1777 2194-9034 |
| DOI | 10.5194/isprs-archives-XLVI-4-W3-2021-211-2022 |
Cover
| Abstract | Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in productive lakes like Laguna Lake. Thus, the aim of this paper is to present the methodology for modelling the Chl-a concentration of Laguna Lake in the Philippines using satellite imaging and machine learning algorithms. The methodology uses images from the Himawari-8 satellite, which have a spatial resolution of 0.5–2 km and are taken every 10 minutes. These are converted into a GeoTIFF format, where differences in spatial resolution are resolved. Additionally, radiometric correction, resampling, and filtering of the Himawari-8 bands to exclude cloud-contaminated pixels are performed. Subsequently, various regression and gradient boosting machine learning algorithms are applied onto the train dataset and evaluated, namely: Simple Linear Regression, Ridge Regression, Lasso Regression, and Light Gradient Boosting Model (LightGBM). The results of this study show that it is indeed possible to integrate algorithms in Machine Learning in modelling the near real-time variations in Chl-a content in a body of water, specifically in the case of Laguna Lake, to an acceptable margin of error. Specifically, the regression models performed similarly with a train RMSE of 1.44 and test RMSE of 2.51 for Simple Linear Regression and 2.48 for Ridge and Lasso Regression. The linear regression models exhibited a larger degree of overfitting than the LightGBM model, which had a 2.18 train RMSE. |
|---|---|
| AbstractList | Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of water. However, most of these studies use satellite data that lack the temporal resolution needed to monitor dynamic changes in Chl-a in productive lakes like Laguna Lake. Thus, the aim of this paper is to present the methodology for modelling the Chl-a concentration of Laguna Lake in the Philippines using satellite imaging and machine learning algorithms. The methodology uses images from the Himawari-8 satellite, which have a spatial resolution of 0.5–2 km and are taken every 10 minutes. These are converted into a GeoTIFF format, where differences in spatial resolution are resolved. Additionally, radiometric correction, resampling, and filtering of the Himawari-8 bands to exclude cloud-contaminated pixels are performed. Subsequently, various regression and gradient boosting machine learning algorithms are applied onto the train dataset and evaluated, namely: Simple Linear Regression, Ridge Regression, Lasso Regression, and Light Gradient Boosting Model (LightGBM). The results of this study show that it is indeed possible to integrate algorithms in Machine Learning in modelling the near real-time variations in Chl-a content in a body of water, specifically in the case of Laguna Lake, to an acceptable margin of error. Specifically, the regression models performed similarly with a train RMSE of 1.44 and test RMSE of 2.51 for Simple Linear Regression and 2.48 for Ridge and Lasso Regression. The linear regression models exhibited a larger degree of overfitting than the LightGBM model, which had a 2.18 train RMSE. |
| Author | Martinez, E. R. G. Blanco, A. C. Torres, R. B. Argamosa, R. J. L. |
| Author_xml | – sequence: 1 givenname: E. R. G. surname: Martinez fullname: Martinez, E. R. G. – sequence: 2 givenname: R. J. L. surname: Argamosa fullname: Argamosa, R. J. L. – sequence: 3 givenname: R. B. surname: Torres fullname: Torres, R. B. – sequence: 4 givenname: A. C. surname: Blanco fullname: Blanco, A. C. |
| BookMark | eNqVkt9u0zAUxiM0JMbYO1ji2sN27Py5tDI3sXAclGaUXVlukkKq0BSn3dij8LZL1oEQXCCuztHnc36fdD6_9s52w671vCuMrhiO6btu3LsRWld_6e7aEX5SHyWkcOVDggiGBOO5IS-8czJNwxj59Oy3_pV3OY5bhBCmQcAQO_d-5MW1UErqFFSZAEmmirL4kN0qBTlICp0IXZW8koUGxQIont5oPpX3Atws56VM5nzFSwkjsOTVTKoEmLRUlLeA62uQ8ySTWgAleKnnDa7SopRVli_BoiiBnnRQCq5AJXMB8kLLanrX6Rvv5cb2Y3v5XC-8aiGqJIOqSGXCFaz9ABFI1-t6E2FaRwFl8Rr7PkHxxhIWsyaMwthvwwDZOGoQCwkNUIuaxvrEhm1DEIr9C0-esM1gt2bvuq_WPZjBduZJGNxnY92hq_vWoKihNqQRDgildtNExDJUs7gNWBxSRCZWemIdd3v7cG_7_hcQIzPnZ57yMz_zM9_7u85Qc--bOT8z5Tc3M-ntibR3w7djOx7Mdji63XQHQwIcMRqQCE9Ti9NU7YZxdO3mX3bzd5nsVn_bqT9AdXewh27YHZzt-v_FPQJzncdI |
| CitedBy_id | crossref_primary_10_1016_j_envc_2024_101056 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.5194/isprs-archives-XLVI-4-W3-2021-211-2022 |
| DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 2194-9034 |
| EndPage | 214 |
| ExternalDocumentID | oai_doaj_org_article_08d4a74816244afd82a50c59e6597402 10.5194/isprs-archives-xlvi-4-w3-2021-211-2022 10_5194_isprs_archives_XLVI_4_W3_2021_211_2022 |
| GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS ADTOC H13 UNPAY |
| ID | FETCH-LOGICAL-c3602-4bbcf814c86459b133209fa2595d78793e760a98d0572460e0dda32a7ed20093 |
| IEDL.DBID | BENPR |
| ISSN | 2194-9034 1682-1750 1682-1777 |
| IngestDate | Fri Oct 03 12:53:42 EDT 2025 Wed Oct 01 16:53:10 EDT 2025 Fri Jul 25 11:54:38 EDT 2025 Wed Oct 01 03:35:11 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3602-4bbcf814c86459b133209fa2595d78793e760a98d0572460e0dda32a7ed20093 |
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| OpenAccessLink | https://www.proquest.com/docview/2618546281?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2618546281 |
| PQPubID | 2037674 |
| PageCount | 4 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_08d4a74816244afd82a50c59e6597402 unpaywall_primary_10_5194_isprs_archives_xlvi_4_w3_2021_211_2022 proquest_journals_2618546281 crossref_primary_10_5194_isprs_archives_XLVI_4_W3_2021_211_2022 crossref_citationtrail_10_5194_isprs_archives_XLVI_4_W3_2021_211_2022 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| SSID | ssj0001466505 |
| Score | 2.2406354 |
| Snippet | Recent studies have investigated the use of satellite imaging combined with machine learning for modelling the Chlorophyll-a (Chl-a) concentration of bodies of... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 211 |
| SubjectTerms | Algorithms Chlorophyll Chlorophyll a Imagery Imaging techniques Lakes Machine learning Modelling Radiometric correction Real time Regression analysis Regression models Resampling Resolution Root-mean-square errors Satellite imagery Spaceborne remote sensing Spatial resolution Statistical methods Temporal resolution |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHngcEE9RWJAPXM3m4TjOCUzXbQJ5oGx22z1ZdpJKlapSbbcs_BT-LeMmrbpcVkicYlnyaOKZeL7PsWcQeu_SsK6j2iVmxiNCvTYgPOKGQCgNTK0BUIT2NnKWs_icfpkG04NSX_ZMWJceuJu4E4c3VIeUuwwCkZ413NOBUwdRyywU7tJIOjw6IFPb3RXKAHrY84suAwgJMdK5j4CpfgDAQk_m69XVmug-tSuZphcJoWTig8t4LgFKZBverUi1Teh_C4U-2CxX-teNXiwOAtLoCXrcI0ksujd4iu61y2fo0cV8vel618_R76w4lcDW8zGuYomHcVqUxbf4Mk2JwMMiH8q86japcDHCqRif5wIeXyW21TjGOE4yMRFlQjg-E5WVVEkMfWNZXmKRn-JMDOMklziVosztCJGOizKp4uwMA73EOfTjUooUV0kmMazfSVXY8xcvUDWS1TAmfS0GUvsMFk1qTD3jLq25zT5jgNl6TjTTQJ6CBr75yG9D5uiIN4D_PMqc1mka7Xs6bBv7_8V_iY6W35ftK4SZ5wTGY0aHjabUtNxejeWahkEzM8ZnAyR3067qPk-5LZexUMBXrPnU1nxqZz5lzaeomvjKmk-B-WzDG6CPezmrLnPHP0v4bK2-H20zcW87wD9V75_qLv8coOOdz6h-eVgroK08sLeC3QH6tPeju9T8ufgxBzVv_lLz9f9Q8w16aGV1m0vH6Oj6atO-Bbh1bd5tv6w_B3AWFQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lc9MwENaUdobHgTdDoTA6cFXr2LItn0Ckbmxw7E7qtulJI9kOZAhpJk4ocORfcOaPsuskhebCMBw4WaOxVxrvWvt98mqXkBct7hdFULSYGYiAcbtymQiEYeBKXVNoABQ-nkbupl50zN_03f4G-bY6C4NhlcPxjKGW2eT9-awJUvrIphXMvGI1cDtWY6yxHjFQAQM_0XD4fnISM85OHVC73doDWoO03t4b1pNp3UjDLK7s6m0MbsMGcMtycI1seS7g-U2ydZweyjNkah7AT_Cv1q92U8oRvnLOAsvh1wmw310AQXx9oM-jT0MY6GJtoCverykScAXZ3piPJ_rLhR6NfnNyB3fIj9XrWcS2fNidz8xu8XUtc-T_fX93ye0lhqZyYfT3yEY1vk9unQzr-aK3fkC-d7P9MEnitEPzKKTtKMl62WF0liRM0naWtsM0X2zP0eyAJrJznEq4vA0p1iHp0CjuylPZi5mgRzJHSXlIoa8T9s6oTPdpV7ajOA1pEspeik_IpJP14jzqHlEg1jSFftoLZULzuBtS8FxxnmHkyUOSH4R5O2LLKhSscDxwF9yYYiBavBCYd8cAp7etYKCBNrolrHaBU_mepQNRAvK1uWdVVllqx9Z-VeKfJ-cR2Ryfj6vHhHq25RrbM9ovNeemEngoWGjuu-XAGMfbJuHKOFSxzNCOhUJGCpgaGplqtKFW2lCoDcXVqaNQGwq0gQ17m7y8lDNZ5Cz5awmv0TYvn8Yc5E3H-fSdWi5pyhIl1z4XLQ8goh6UwtauVbhB5SFJtUDIzsqy1XJhrBUQduHieejWNnl1ae1_miZ-TTDNi7VpPvl3EU_JTbwsNtV2yOZsOq-eAcycmefLdeAnZdJogg priority: 102 providerName: Unpaywall |
| Title | MODELLING THE CHLOROPHYLL-A CONCENTRATION OF LAGUNA LAKE USING HIMAWARI-8 SATELLITE IMAGERY AND MACHINE LEARNING ALGORITHMS FOR NEAR REAL TIME MONITORING |
| URI | https://www.proquest.com/docview/2618546281 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W3-2021/211/2022/isprs-archives-XLVI-4-W3-2021-211-2022.pdf https://doaj.org/article/08d4a74816244afd82a50c59e6597402 |
| UnpaywallVersion | publishedVersion |
| Volume | XLVI-4/W3-2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBbaFNjjtEeHdusKHXbV6odsy4ehU1Ml9ubYgeu-ToL8yFAgSLMkXbefsn87MnXSdYcNO1kWbFkwKfIjJZKEvLN5UFVhZbNyJELGncZjIhQlA1XqlZUBQBFgNPIg9aNT_unCu9gg6SoWBo9VrmTiUlDX1xX6yA8A6QsPAyntw-lXhlWjcHd1VULDtKUV6g_LFGObZMvBzFgdsnWk0mF-73XhPkASPNdo-wAtQXdajwhYsO8ByPCDq_l0NmemTfnKLpKzmHF27gIrOTYDUwkbzgMNtkz0_wCdPr6ZTM2PWzMe_6aoes_I9n0IHx2uldNzstFMXpCnZ1fzGzOmcraYvyQ_B9mxAls-7dMiUrQbJVmeDaPLJGGSdrO0q9LizoVFsx5NZP80lXD5rCjW6ujTKB7Ic5nHTNATWeBIhaLQ11f5JZXpMR3IbhSniiZK5im-IZN-lsdFNDihYHzSFPpprmRCi3igKEj3uMjwdMY2KXqq6EasrdTAKtcHkcrLshoJm1cCc9OUYPc6VjgyYFp5NUiE0G0C3zKhqAEdOty3GquujeuYoKlxd8Z9RTqT60mzQ6jvWF7p-KUJasN52QgMnBWGB149KkvX3yVq9fN11WYxx2IaYw3WDBJRL4moV0TUSETN9bmrkYgaiIgNZ5ccrseZ3uX1-O8RjpD267cxT_ey43r2RbfLXlui5ibgwvYBRplRLRzjWZUXNj4achYMsrfiHN0Kj7m-Z_Vd8nHNTf-a5vfxtyuY5u0f03z99y-8IU_wqTun0h7pLGY3zVuAWYtyn2yKXn-_XUH7S2cF3J2mQ3n5C8F9G2A |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJw4lFEoMAe4LjUj7W9PlTFTTaxqR-V6zbpabV-BEWKkpAHoT-FH8N_YzZxUsoBxKGnWCvtZOVvduab9c4MQu916hSFW-gk7zOXUKOyCHNZTsCVWnkhgVA4Khs5im3_kn7uWb0d9HOTC6OuVW5s4spQl-NCnZEfAdNnlkqk1E8mX4nqGqW-rm5aaMi6tUJ5vCoxVid2nFU3SwjhZsdBC_D-YBhtnjV9UncZIIVpgzmgeV70mU4Lpuqq5BCzGZrblxAWWCVos2tWjq1Jl5XAbAxqa5VWltI0pFOV6suCCWIfoD1qUhdiv71THp-nt4c81AYGpK5R6jYwWXDV2kMEAfNH4E30aDCbTGdE1hVmSS-8CgglXRM019AJRGbqwbjjMFd9Be6Q4f3FaCJvlnI4_M0vtp-gg9uMQXy-9YVP0U41eoYeXw1mCznE3nQ-e45-REmLh2EQd3Dmc9z0wyRNzv3rMCQebiZxk8fZ-sQMJ20cep3L2IOfM45Va5AO9oPI63ppQBi-8DIlKeMYxjo8vcZe3MKR1_SDmOOQe2msZnhhJ0mDzI8uMMS6OIZxnHIvxFkQcQzOJMgSdRnkAGX3AdkLtDsaj6qXCNuGZuWGnUunlJTmFVN5ukxSxyr7eW7aDcQ3L18UddF01btjKCB4UiCKFYhiA6JQIAoquqZQIAoAUT0YDXSylTNZlxH5bwmnCvvtbFUWfDUwnn4RtZURGiupdCjTbWBtsl8yQ1paYbmVreJGDYQcbjRH1LZqJm53VgN92mrTv5b5ffhtAMtc_rHMV3__h3do38-iUICynb1Gj9SM9XnWIdqdTxfVG2B48_xtvY8wEve8c38BthlRyQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lc9MwENaUdobHgTdDoTA6cFXr2LItn0Ckbmxw7E7qtulJI9kOZAhpJk4ocORfcOaPsuskhebCMBw4WaOxVxrvWvt98mqXkBct7hdFULSYGYiAcbtymQiEYeBKXVNoABQ-nkbupl50zN_03f4G-bY6C4NhlcPxjKGW2eT9-awJUvrIphXMvGI1cDtWY6yxHjFQAQM_0XD4fnISM85OHVC73doDWoO03t4b1pNp3UjDLK7s6m0MbsMGcMtycI1seS7g-U2ydZweyjNkah7AT_Cv1q92U8oRvnLOAsvh1wmw310AQXx9oM-jT0MY6GJtoCverykScAXZ3piPJ_rLhR6NfnNyB3fIj9XrWcS2fNidz8xu8XUtc-T_fX93ye0lhqZyYfT3yEY1vk9unQzr-aK3fkC-d7P9MEnitEPzKKTtKMl62WF0liRM0naWtsM0X2zP0eyAJrJznEq4vA0p1iHp0CjuylPZi5mgRzJHSXlIoa8T9s6oTPdpV7ajOA1pEspeik_IpJP14jzqHlEg1jSFftoLZULzuBtS8FxxnmHkyUOSH4R5O2LLKhSscDxwF9yYYiBavBCYd8cAp7etYKCBNrolrHaBU_mepQNRAvK1uWdVVllqx9Z-VeKfJ-cR2Ryfj6vHhHq25RrbM9ovNeemEngoWGjuu-XAGMfbJuHKOFSxzNCOhUJGCpgaGplqtKFW2lCoDcXVqaNQGwq0gQ17m7y8lDNZ5Cz5awmv0TYvn8Yc5E3H-fSdWi5pyhIl1z4XLQ8goh6UwtauVbhB5SFJtUDIzsqy1XJhrBUQduHieejWNnl1ae1_miZ-TTDNi7VpPvl3EU_JTbwsNtV2yOZsOq-eAcycmefLdeAnZdJogg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=MODELLING+THE+CHLOROPHYLL-A+CONCENTRATION+OF+LAGUNA+LAKE+USING+HIMAWARI-8+SATELLITE+IMAGERY+AND+MACHINE+LEARNING+ALGORITHMS+FOR+NEAR+REAL+TIME+MONITORING&rft.au=Martinez%2C+E+R+G&rft.au=Argamosa%2C+R+J+L&rft.au=Torres%2C+R+B&rft.au=Blanco%2C+A+C&rft.date=2022-01-01&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVI-4%2FW3-2021&rft.spage=211&rft.epage=214&rft_id=info:doi/10.5194%2Fisprs-archives-XLVI-4-W3-2021-211-2022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |