A Huge Innovation in Diagnosis of Obstructive Sleep Apnea Syndrome: With an Artificial Intelligence-Based Algorithm, Obstructive Sleep Apnea Syndrome Can Now Be Diagnosed With Pulmonary Function Test
Obstructive sleep apnea syndrome (OSAS) is a life-threatening disease characterized by upper airway narrowing or obstruction. The diagnostic process is difficult, costly, and time-consuming. Many individuals with OSAS do not apply for a diagnosis or are unaware of their disease. This study aimed to...
Saved in:
| Published in | IEEE access Vol. 13; pp. 15376 - 15389 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3531501 |
Cover
| Abstract | Obstructive sleep apnea syndrome (OSAS) is a life-threatening disease characterized by upper airway narrowing or obstruction. The diagnostic process is difficult, costly, and time-consuming. Many individuals with OSAS do not apply for a diagnosis or are unaware of their disease. This study aimed to develop a practical, fast, and reliable diagnostic system for early diagnosis and treatment of OSAS. For the first time, features were extracted from flow-volume curves obtained using a Pulmonary Function Test (PFT), and an Artificial Intelligence (AI)-based algorithm was developed to diagnose OSAS. Spearman correlation coefficients determined the degree of influence of the features in determining OSAS. Several models were created using different features and AI methods according to their effect levels. The models obtained by hyperparameter optimization and cross-validation were tested with unseen data, and their performance was evaluated using seven different criteria. Using only five features extracted from the flow-volume curve (TLC/PIF, PIF/PEF, TLC/FIF50, TLC/FIF25, and FIF25/FEF25), OSAS was diagnosed with 97.1% accuracy using the Neural Network (NN) algorithm. The results showed that OSAS can be diagnosed quickly and reliably using PFT available at every hospital. The features extracted from the flow-volume curve could be used as biomarkers for diagnosing OSAS. The proposed method can be adapted to PC-based spirometry devices without additional hardware developments. This is a significant innovation in both literature and practice. This method will enable early diagnosis for patients and many people unaware of their disease. This will shed light on several future studies. |
|---|---|
| AbstractList | Obstructive sleep apnea syndrome (OSAS) is a life-threatening disease characterized by upper airway narrowing or obstruction. The diagnostic process is difficult, costly, and time-consuming. Many individuals with OSAS do not apply for a diagnosis or are unaware of their disease. This study aimed to develop a practical, fast, and reliable diagnostic system for early diagnosis and treatment of OSAS. For the first time, features were extracted from flow-volume curves obtained using a Pulmonary Function Test (PFT), and an Artificial Intelligence (AI)-based algorithm was developed to diagnose OSAS. Spearman correlation coefficients determined the degree of influence of the features in determining OSAS. Several models were created using different features and AI methods according to their effect levels. The models obtained by hyperparameter optimization and cross-validation were tested with unseen data, and their performance was evaluated using seven different criteria. Using only five features extracted from the flow-volume curve (TLC/PIF, PIF/PEF, TLC/FIF50, TLC/FIF25, and FIF25/FEF25), OSAS was diagnosed with 97.1% accuracy using the Neural Network (NN) algorithm. The results showed that OSAS can be diagnosed quickly and reliably using PFT available at every hospital. The features extracted from the flow-volume curve could be used as biomarkers for diagnosing OSAS. The proposed method can be adapted to PC-based spirometry devices without additional hardware developments. This is a significant innovation in both literature and practice. This method will enable early diagnosis for patients and many people unaware of their disease. This will shed light on several future studies. |
| Author | Bilgin, Cahit Bulut Eris, Seval Recep Bozkurt, Mehmet Eris, Omer |
| Author_xml | – sequence: 1 givenname: Seval orcidid: 0000-0001-8681-1848 surname: Bulut Eris fullname: Bulut Eris, Seval email: seval.eris@ogr.sakarya.edu.tr organization: Electrical and Electronics Engineering Department, Sakarya University, Sakarya, Türkiye – sequence: 2 givenname: Mehmet orcidid: 0000-0003-0673-4454 surname: Recep Bozkurt fullname: Recep Bozkurt, Mehmet organization: Electrical and Electronics Engineering Department, Sakarya University, Sakarya, Türkiye – sequence: 3 givenname: Omer orcidid: 0000-0003-1687-5912 surname: Eris fullname: Eris, Omer organization: Electrical and Electronics Engineering Department, Sakarya University, Sakarya, Türkiye – sequence: 4 givenname: Cahit surname: Bilgin fullname: Bilgin, Cahit organization: Faculty of Medicine, Sakarya University, Sakarya, Türkiye |
| BookMark | eNqFksFu1DAQhiNUJErpE8DBEley2HHsxNzS0NKVKoq0RRwtxxkvXmXtxU5a7RPyWng3BVVwwBfbo___Zsbjl9mJ8w6y7DXBC0KweN-07eVqtShwwRaUUcIweZadFoSLPF35yZPzi-w8xg1Oq04hVp1mPxt0Pa0BLZ3z92q03iHr0Eer1s5HG5E36LaLY5j0aO8BrQaAHWp2DhRa7V0f_BY-oG92_I6UQ00YrbHaqiHxRhgGuwanIb9QEXrUDGsfknL77r9I1CbaZ_-ALuB3LQlwTPNlGrbeqbBHV5PTx4LvII6vsudGDRHOH_ez7OvV5V17nd_cflq2zU2uKRNjbnrCO1XwouS97hTBNeOKVx0THSjSFV1ZMQEFU8T0WPSUUi6gZ4R1ABSLkp5ly5nbe7WRu2C3qRTplZXHgA9rqdIr6AGkplgnvjLUFCUIXRuOAXdUMGMoriGxypk1uZ3aP6hh-AMkWB5mK5XWEKM8zFY-zjbZ3s62XfA_ptS73PgpuNS1pIQTWhFRHlR0VungYwxg_mHP_-Zv9pvZZQHgiaMuWcVr-gvOm8G5 |
| CODEN | IAECCG |
| Cites_doi | 10.5664/jcsm.2472 10.1186/s13643-021-01651-3 10.1016/j.ijcard.2013.08.088 10.12659/MSM.883776 10.1016/j.bspc.2022.104164 10.1049/iet-smt.2019.0034 10.1136/thx.39.10.775 10.1109/OJCAS.2021.3108835 10.1109/jbhi.2013.2282338 10.1016/j.irbm.2020.12.003 10.1002/kjm2.12130 10.1136/thorax.2003.015859 10.1378/chest.98.2.337 10.3390/electronics8111289 10.1186/s12890-015-0063-6 10.1007/s11325-003-0159-8 10.1136/bmjopen-2016-013983 10.1007/978-3-540-78983-3_1 10.1378/chest.87.2.163 10.1007/BF02719694 10.1016/j.bspc.2021.102905 10.1016/S2213-2600(19)30198-5 10.2139/ssrn.3205035 10.5664/jcsm.6576 10.1183/09031936.05.00035205 10.4065/78.12.1545 10.1164/ajrccm.164.11.2102048 10.1378/chest.15-0903 10.1007/s11325-014-0964-2 10.1016/j.smrv.2016.07.002 10.1001/archinte.166.9.977 10.1136/thx.47.7.524 10.5664/jcsm.6506 10.3342/ceo.2013.6.3.161 10.1002/ima.22980 10.2147/COPD.S409383 10.1183/09031936.05.00034805 10.1016/j.rmed.2021.106472 10.1016/j.irbm.2020.05.006 10.1007/s00408-007-9055-5 10.1016/j.rmed.2009.12.006 10.1001/jama.1981.03310480030021 10.1186/1756-0500-5-388 10.1007/s11325-005-0006-1 10.1007/s11325-016-1441-x 10.1111/j.1572-0241.2005.40709.x 10.5664/jcsm.8578 10.4103/2231-0770.94803 10.1046/j.1440-1843.2000.00220.x 10.1183/09031936.05.00034505 10.1097/CPT.0000000000000183 10.1093/sleep/zsab132 10.1007/s11325-021-02299-y 10.1007/s11325-010-0393-9 10.1378/chest.116.6.1537 10.1007/s13246-020-00953-5 10.1001/jama.2020.3514 10.1016/j.cmpb.2022.107010 10.1055/s-0029-1237116 10.1016/j.sleep.2020.06.016 10.1038/s41392-023-01496-3 10.1016/j.ejim.2021.04.027 10.7717/peerj-cs.1188 10.1504/IJMEI.2023.10054791 10.1113/jphysiol.2003.038810 10.3390/ijerph181910277 10.1590/S0100-879X1999000400005 10.1186/s12890-021-01733-x 10.1109/ACCESS.2020.2976199 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3531501 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 15389 |
| ExternalDocumentID | oai_doaj_org_article_c30c085af3f24e9c8f60e0b395ff308e 10.1109/access.2025.3531501 10_1109_ACCESS_2025_3531501 10845768 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-fd16ba26246dcba10856a67b59bea1b2b4759e25a1fd09d33369ed515bee30943 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:52 EDT 2025 Sun Sep 07 11:01:10 EDT 2025 Mon Jun 30 13:00:13 EDT 2025 Wed Oct 01 03:43:35 EDT 2025 Wed Aug 27 01:53:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-fd16ba26246dcba10856a67b59bea1b2b4759e25a1fd09d33369ed515bee30943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1687-5912 0000-0003-0673-4454 0000-0001-8681-1848 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10845768 |
| PQID | 3161371941 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3161371941 unpaywall_primary_10_1109_access_2025_3531501 ieee_primary_10845768 doaj_primary_oai_doaj_org_article_c30c085af3f24e9c8f60e0b395ff308e crossref_primary_10_1109_ACCESS_2025_3531501 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 Ashraf (ref38) 2008; 29 Thomas (ref69) 2020 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Pagel (ref5) 2008; 57 ref41 ref43 ref49 Iguyon (ref57) 2003; 3 ref8 ref7 ref9 ref4 ref3 ref6 ref40 Roychowdhury (ref59) 2021 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref33 ref77 ref32 Miller (ref44) 2005; 26 ref76 ref2 ref1 ref39 Yu (ref56) Liam (ref35) 2001; 56 ref71 ref70 ref73 ref72 Xing (ref58) ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 Garvey (ref18) 2015; 7 ref21 ref65 ref28 ref27 Ellen (ref74) 2006; 2 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref72 doi: 10.5664/jcsm.2472 – ident: ref21 doi: 10.1186/s13643-021-01651-3 – ident: ref16 doi: 10.1016/j.ijcard.2013.08.088 – ident: ref10 doi: 10.12659/MSM.883776 – ident: ref55 doi: 10.1016/j.bspc.2022.104164 – ident: ref70 doi: 10.1049/iet-smt.2019.0034 – ident: ref27 doi: 10.1136/thx.39.10.775 – ident: ref68 doi: 10.1109/OJCAS.2021.3108835 – ident: ref64 doi: 10.1109/jbhi.2013.2282338 – ident: ref60 doi: 10.1016/j.irbm.2020.12.003 – ident: ref2 doi: 10.1002/kjm2.12130 – ident: ref8 doi: 10.1136/thorax.2003.015859 – ident: ref30 doi: 10.1378/chest.98.2.337 – ident: ref63 doi: 10.3390/electronics8111289 – ident: ref24 doi: 10.1186/s12890-015-0063-6 – ident: ref36 doi: 10.1007/s11325-003-0159-8 – ident: ref17 doi: 10.1136/bmjopen-2016-013983 – ident: ref51 doi: 10.1007/978-3-540-78983-3_1 – ident: ref28 doi: 10.1378/chest.87.2.163 – ident: ref29 doi: 10.1007/BF02719694 – volume: 7 start-page: 920 issue: 5 year: 2015 ident: ref18 article-title: Epidemiological aspects of obstructive sleep apnea publication-title: J. Thoracic Disease – ident: ref67 doi: 10.1016/j.bspc.2021.102905 – ident: ref14 doi: 10.1016/S2213-2600(19)30198-5 – ident: ref40 doi: 10.2139/ssrn.3205035 – ident: ref62 doi: 10.5664/jcsm.6576 – ident: ref49 doi: 10.1183/09031936.05.00035205 – ident: ref3 doi: 10.4065/78.12.1545 – ident: ref7 doi: 10.1164/ajrccm.164.11.2102048 – ident: ref71 doi: 10.1378/chest.15-0903 – ident: ref11 doi: 10.1007/s11325-014-0964-2 – ident: ref41 doi: 10.1016/j.smrv.2016.07.002 – volume-title: Cluster Sampling | A Simple Step-by-Step Guide With Examples year: 2020 ident: ref69 – ident: ref75 doi: 10.1001/archinte.166.9.977 – ident: ref31 doi: 10.1136/thx.47.7.524 – ident: ref20 doi: 10.5664/jcsm.6506 – ident: ref12 doi: 10.3342/ceo.2013.6.3.161 – ident: ref23 doi: 10.1002/ima.22980 – ident: ref15 doi: 10.2147/COPD.S409383 – ident: ref48 doi: 10.1183/09031936.05.00034805 – ident: ref50 doi: 10.1016/j.rmed.2021.106472 – ident: ref53 doi: 10.1016/j.irbm.2020.05.006 – ident: ref73 doi: 10.1007/s00408-007-9055-5 – ident: ref47 doi: 10.1016/j.rmed.2009.12.006 – ident: ref77 doi: 10.1001/jama.1981.03310480030021 – ident: ref79 doi: 10.1186/1756-0500-5-388 – ident: ref37 doi: 10.1007/s11325-005-0006-1 – volume: 57 start-page: 3 issue: 8 year: 2008 ident: ref5 article-title: The burden of obstructive sleep apnea and associated excessive sleepiness publication-title: J. Family Pract. – ident: ref39 doi: 10.1007/s11325-016-1441-x – ident: ref4 doi: 10.1111/j.1572-0241.2005.40709.x – ident: ref22 doi: 10.5664/jcsm.8578 – volume: 29 start-page: 1 issue: 2 year: 2008 ident: ref38 article-title: Spirometry and flow, volume curve in patients with obstructive sleep apnea publication-title: Saudi Med. J. – ident: ref1 doi: 10.4103/2231-0770.94803 – ident: ref34 doi: 10.1046/j.1440-1843.2000.00220.x – volume: 26 start-page: 1 issue: 1 year: 2005 ident: ref44 article-title: Series ’ATS/ERS task force: Standardisation of lung function Testing’-general considerations for lung function testing publication-title: Eur. Respir. J. doi: 10.1183/09031936.05.00034505 – ident: ref46 doi: 10.1097/CPT.0000000000000183 – ident: ref19 doi: 10.1093/sleep/zsab132 – ident: ref42 doi: 10.1007/s11325-021-02299-y – start-page: 1 volume-title: Proc. 20th Int. Conf. Mach. Learn. ident: ref56 article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution – ident: ref25 doi: 10.1007/s11325-010-0393-9 – volume: 3 start-page: 1 year: 2003 ident: ref57 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – ident: ref33 doi: 10.1378/chest.116.6.1537 – ident: ref52 doi: 10.1007/s13246-020-00953-5 – ident: ref13 doi: 10.1001/jama.2020.3514 – ident: ref61 doi: 10.1016/j.cmpb.2022.107010 – ident: ref9 doi: 10.1055/s-0029-1237116 – ident: ref65 doi: 10.1016/j.sleep.2020.06.016 – ident: ref76 doi: 10.1038/s41392-023-01496-3 – ident: ref45 doi: 10.1016/j.ejim.2021.04.027 – start-page: 3 volume-title: Advances in Intelligent Systems and Computing year: 2021 ident: ref59 article-title: Non-parametric distance—A new class separability measure – volume: 2 start-page: 193 issue: 2 year: 2006 ident: ref74 article-title: Systematic review of motor vehicle crash risk in persons with sleep apnea publication-title: J. Clin. Sleep Med. – ident: ref54 doi: 10.7717/peerj-cs.1188 – ident: ref26 doi: 10.1504/IJMEI.2023.10054791 – ident: ref6 doi: 10.1113/jphysiol.2003.038810 – ident: ref43 doi: 10.3390/ijerph181910277 – start-page: 1 volume-title: Proc. 18th Int. Conf. Mach. Learn. ident: ref58 article-title: Feature selection for high-dimensional genomic microarray data – ident: ref32 doi: 10.1590/S0100-879X1999000400005 – volume: 56 start-page: 10 issue: 1 year: 2001 ident: ref35 article-title: Awake respiratory function in patients with the obstructive sleep apnoea syndrome publication-title: Med. J. Malaysia – ident: ref78 doi: 10.1186/s12890-021-01733-x – ident: ref66 doi: 10.1109/ACCESS.2020.2976199 |
| SSID | ssj0000816957 |
| Score | 2.3433435 |
| Snippet | Obstructive sleep apnea syndrome (OSAS) is a life-threatening disease characterized by upper airway narrowing or obstruction. The diagnostic process is... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 15376 |
| SubjectTerms | Algorithms Artificial intelligence Biomarkers Correlation coefficients Diagnostic systems Ethics Feature extraction flow-volume curve Innovations Laboratories Lungs Medical diagnostic imaging Neural networks obstructive sleep apnea Personal computers pulmonary function test Pulmonary functions Reliability Sleep apnea Spirometry Technological innovation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8AB8VHEtqXygWNDkzh2Ym7ZLastEgWprejNsuNxWSlkV-0uVX8hf4ux412l4tAL18iamXiePTOJ_YaQD0Zy7YS2SZGDSPyPuaTKNK4rl5eNsxhiub_g_PVMzC6LL1f8atDqy58J6-mB-4k7bljaYFqgHXN5AbKpnEghNUxy51hagd9900oOiqmwB1eZkLyMNENZKo_ryQTfCAvCnH9kCDwe28BsQlFg7I8tVh5km0_X3VLf3-m2HQSe6UvyImaMtO4tfUWeQPeaPB_wCL4hf2o6W18DPd22OKXzjp70p-jmt3Th6DcTmWJ_Az1vAZa0Xnag6XlkLPhEf8xXP6nugqKeVoKeDvg6kzHGO0vr9npxgyN_HT0qkk5Q2tnijo5hYwsKCGq-r1uEv765p1OMq8HgC5yGXXI5_XwxmSWxQ0PSMC5XibOZMDoXeSFsY7S_ySC0KA2XBnRmcuPZBCHnOnM2lZYxJiRYTKEMAPNnGt-SnW7RwTtCoWxK57SuDIOiZK6yUBgjGqwPWYVyRuRo4yy17Ik4VChgUql63yrvWxV9OyJj79DtUM-iHR4gtlTElnoMWyOy6-Ew0FcVvj4bkYMNPlRc8reKYe7MykwWqDvZYuYfW3Xog_nA1r3_Yes-eeZl9l-HDsgOAgDeY760ModhafwFbAITQw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxEYUE-cFyXJI6dmFtaqLpIlJV2K5ZTZCfjpSKk1bZltfxB_hbjxK1SkHhcK3dmkvkmM5Y93xDy0iihrdQliyOQzB3MsTTUGFc2SgpbYooVrsH5_VROZvG7C3HhebZdL0z3_D4M1CvdjA3EfVwkBhzxIlyv1oEUWHj3yMFsepp9cuPjQqkYbw4in_3hn3u5p6Ho9zNV9srL25t6qW-udVV1Ms34XtvCvWoICt0Fky-DzdoMiu-_0Df-40PcJ3d9xUmzFiIPyC2oH5I7HR7CR-RHRiebS6AnuxGpdF7TN-0tvPmKLiz9YDzT7DegZxXAkmbLGjQ984wHr-nH-foz1XWjqKWloCcdvk82xHxZ0qy6XFzhyq_HfxVJRyhturimQ9jaggIaNaebCsNHX93QMeblxuBzfKuHZDZ-ez6aMD_hgRVcqDWzZSiNjmQUy7Iw2nVCSC0TI5QBHZrIODZCiIQObRmoknMuFZRYghkA7u5EPia9elHDE0IhKRJrtU4NhzjhNi0hNkYWuL_kKcrpk-Ot7_NlS-SRNxugQOXZaIRoz51_cu-fPhk6fOyWOhbu5gf0a-6DOi94UKDJ2nIbxaCK1MoAAsOVsJYHKfTJoUNXR18au_1dnxxt4Zb7T8Yq51h78yRUMepmOwj-ZmuLpT1bn_7n-iPSQ_fCc6ym1uaFj6KfNeQc8A priority: 102 providerName: Unpaywall |
| Title | A Huge Innovation in Diagnosis of Obstructive Sleep Apnea Syndrome: With an Artificial Intelligence-Based Algorithm, Obstructive Sleep Apnea Syndrome Can Now Be Diagnosed With Pulmonary Function Test |
| URI | https://ieeexplore.ieee.org/document/10845768 https://www.proquest.com/docview/3161371941 https://doi.org/10.1109/access.2025.3531501 https://doaj.org/article/c30c085af3f24e9c8f60e0b395ff308e |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeIA98DlEYVR-4HEpSZw4MW9poeqQKJO2ivEU2cl5VGRJtTVM4x_k3-LsOFUHQvAWRZbvHP8ud_643xHyWolYai5LLwqBe-ZgzksDiXalw6TQJbrY2CQ4f5zz2SL6cBafuWR1mwsDAPbyGYzMoz3LL5uiNVtlaOFpZOLjHbKTpLxL1tpsqJgKEiJOHLNQ4Is32WSCg8A1YBiPGGItdpVfeu9jSfpdVZVbAea9tl7Jm2tZVVu-ZvqQzHstuysm30btWo2KH78ROP73MB6RBy7qpFkHk8fkDtRPyN4WF-FT8jOjs_Yc6NGmTCpd1vRddxNveUUbTT8pxzb7HehJBbCi2aoGSU8c68Fb-nm5_kplbQV11BT0aIvz0xujzyxpVp03l9jy4vCfXdIJ9jZvrukYel2wAyvmuK3QhOTlDZ2ib7YKn-J33SeL6fvTycxzVR68gsVi7eky4EqGPIx4WShpsiG45ImKhQIZqFAZRkIIYxno0hclY4wLKDEMUwDM3It8RnbrpobnhEJSJFpLmSoGUcJ0WkKkFC9wjclS7GdADvvZz1cdmUduF0G-yDuw5AYsuQPLgIwNQjZNDRO3fYGzmTvDzgvmF6iy1EyHEYgi1dwHXzERa838FAZk3yBgS143-QNy0AMud7-Nq5xh_M2SQEQo29uA8A9dpa2leUvXF38R85LcN826TaMDsotzCq8wjFqrod1-GFojGpK7i_lx9uUXXkcfiA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BORQOPIsIFNgDxzrY3oe93JJAlEAbkJqK3qxde7ZEGCdqE6ryB_lbzK43UQpCcLMse2fW-41n9jHfEPLKKKGt1FXEU5CR25iL8kSjXdk0K22FLla4BOejiRyd8Pen4jQkq_tcGADwh8-g6y79Xn41L1duqQwtPOcuPr5JbgnOuWjTtTZLKq6GhBJZ4BZKYvW6NxhgN3AWmIouQ7SJUPtl7X88TX-oq3ItxNxdNQt9danresvbDO-RyVrP9pDJ1-5qabrlj98oHP-7I_fJ3RB30l4LlAfkBjQPyZ0tNsJH5GePjlZnQMebQql01tC37Vm82QWdW_rRBL7Z70CPa4AF7S0a0PQ48B68oZ9nyy9UN15QS05Bx1usn1EfvWZFe_XZ_Byf_HbwzybpAFubzC9pH9a6YANezKdVjUakz6_oEL2zV3iK33WPnAzfTQejKNR5iEom1DKyVSKNTmXKZVUa7fIhpJaZEcqATkxqHCchpEIntopVxRiTCioMxAwAcycjH5OdZt7AE0IhKzNrtc4NA54xm1fAjZElzjJZju10yMF69ItFS-dR-GlQrIoWLIUDSxHA0iF9h5DNo46L29_A0SyCaRcli0tUWVtmUw6qzK2MITZMCWtZnEOH7DkEbMlrB79D9teAK8KP46JgGIGzLFEcZUcbEP6hq_bVNK_p-vQvYl6S3dH06LA4HE8-PCO33SvtEtI-2cHxhecYVC3NC29KvwC4uyAw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxEYUE-cFyXJI6dmFtaqLpIlJV2K5ZTZCfjpSKk1bZltfxB_hbjxK1SkHhcK3dmkvkmM5Y93xDy0iihrdQliyOQzB3MsTTUGFc2SgpbYooVrsH5_VROZvG7C3HhebZdL0z3_D4M1CvdjA3EfVwkBhzxIlyv1oEUWHj3yMFsepp9cuPjQqkYbw4in_3hn3u5p6Ho9zNV9srL25t6qW-udVV1Ms34XtvCvWoICt0Fky-DzdoMiu-_0Df-40PcJ3d9xUmzFiIPyC2oH5I7HR7CR-RHRiebS6AnuxGpdF7TN-0tvPmKLiz9YDzT7DegZxXAkmbLGjQ984wHr-nH-foz1XWjqKWloCcdvk82xHxZ0qy6XFzhyq_HfxVJRyhturimQ9jaggIaNaebCsNHX93QMeblxuBzfKuHZDZ-ez6aMD_hgRVcqDWzZSiNjmQUy7Iw2nVCSC0TI5QBHZrIODZCiIQObRmoknMuFZRYghkA7u5EPia9elHDE0IhKRJrtU4NhzjhNi0hNkYWuL_kKcrpk-Ot7_NlS-SRNxugQOXZaIRoz51_cu-fPhk6fOyWOhbu5gf0a-6DOi94UKDJ2nIbxaCK1MoAAsOVsJYHKfTJoUNXR18au_1dnxxt4Zb7T8Yq51h78yRUMepmOwj-ZmuLpT1bn_7n-iPSQ_fCc6ym1uaFj6KfNeQc8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Huge+Innovation+in+Diagnosis+of+Obstructive+Sleep+Apnea+Syndrome%3A+With+an+Artificial+Intelligence-Based+Algorithm%2C+Obstructive+Sleep+Apnea+Syndrome+Can+Now+Be+Diagnosed+With+Pulmonary+Function+Test&rft.jtitle=IEEE+access&rft.au=Bulut+Eris%2C+Seval&rft.au=Recep+Bozkurt%2C+Mehmet&rft.au=Eris%2C+Omer&rft.au=Bilgin%2C+Cahit&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=15376&rft.epage=15389&rft_id=info:doi/10.1109%2FACCESS.2025.3531501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3531501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |