Bit-Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance

Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 51; no. 5; pp. 1 - 42
Main Authors Albrecht, Thomas R., Arora, Hitesh, Ayanoor-Vitikkate, Vipin, Beaujour, Jean-Marc, Bedau, Daniel, Berman, David, Bogdanov, Alexei L., Chapuis, Yves-Andre, Cushen, Julia, Dobisz, Elizabeth E., Doerk, Gregory, He Gao, Grobis, Michael, Gurney, Bruce, Hanson, Weldon, Hellwig, Olav, Hirano, Toshiki, Jubert, Pierre-Olivier, Kercher, Dan, Lille, Jeffrey, Zuwei Liu, Mate, C. Mathew, Obukhov, Yuri, Patel, Kanaiyalal C., Rubin, Kurt, Ruiz, Ricardo, Schabes, Manfred, Lei Wan, Weller, Dieter, Tsai-Wei Wu, En Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2015.2397880

Cover

Abstract Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in 2 . This combination of novel fabrication technologies achieves feature sizes of <;10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer-referred to as templated growth-is presented. New recording results at 1.6 Td/in 2 (roughly equivalent to 1.3 Tb/in 2 ) demonstrate a raw error rate <;10 -2 , which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored.
AbstractList Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in[Formula Omitted] and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in[Formula Omitted]. This combination of novel fabrication technologies achieves feature sizes of <10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer--referred to as templated growth--is presented. New recording results at 1.6 Td/in[Formula Omitted] (roughly equivalent to 1.3 Tb/in[Formula Omitted] demonstrate a raw error rate [Formula Omitted], which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored.
Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in 2 . This combination of novel fabrication technologies achieves feature sizes of <;10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer-referred to as templated growth-is presented. New recording results at 1.6 Td/in 2 (roughly equivalent to 1.3 Tb/in 2 ) demonstrate a raw error rate <;10 -2 , which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored.
Author Schabes, Manfred
Mate, C. Mathew
He Gao
Arora, Hitesh
Ruiz, Ricardo
Chapuis, Yves-Andre
Beaujour, Jean-Marc
Rubin, Kurt
Hellwig, Olav
Ayanoor-Vitikkate, Vipin
Bedau, Daniel
Gurney, Bruce
Lille, Jeffrey
Zuwei Liu
Bogdanov, Alexei L.
Albrecht, Thomas R.
Lei Wan
Dobisz, Elizabeth E.
Hirano, Toshiki
Doerk, Gregory
Patel, Kanaiyalal C.
Cushen, Julia
Obukhov, Yuri
Berman, David
Tsai-Wei Wu
Kercher, Dan
En Yang
Grobis, Michael
Jubert, Pierre-Olivier
Weller, Dieter
Hanson, Weldon
Author_xml – sequence: 1
  givenname: Thomas R.
  surname: Albrecht
  fullname: Albrecht, Thomas R.
  email: thomas.albrecht@hgst.com
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 2
  givenname: Hitesh
  surname: Arora
  fullname: Arora, Hitesh
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 3
  givenname: Vipin
  surname: Ayanoor-Vitikkate
  fullname: Ayanoor-Vitikkate, Vipin
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 4
  givenname: Jean-Marc
  surname: Beaujour
  fullname: Beaujour, Jean-Marc
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 5
  givenname: Daniel
  surname: Bedau
  fullname: Bedau, Daniel
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 6
  givenname: David
  surname: Berman
  fullname: Berman, David
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 7
  givenname: Alexei L.
  surname: Bogdanov
  fullname: Bogdanov, Alexei L.
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 8
  givenname: Yves-Andre
  surname: Chapuis
  fullname: Chapuis, Yves-Andre
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 9
  givenname: Julia
  surname: Cushen
  fullname: Cushen, Julia
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 10
  givenname: Elizabeth E.
  surname: Dobisz
  fullname: Dobisz, Elizabeth E.
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 11
  givenname: Gregory
  surname: Doerk
  fullname: Doerk, Gregory
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 12
  surname: He Gao
  fullname: He Gao
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 13
  givenname: Michael
  surname: Grobis
  fullname: Grobis, Michael
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 14
  givenname: Bruce
  surname: Gurney
  fullname: Gurney, Bruce
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 15
  givenname: Weldon
  surname: Hanson
  fullname: Hanson, Weldon
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 16
  givenname: Olav
  surname: Hellwig
  fullname: Hellwig, Olav
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 17
  givenname: Toshiki
  surname: Hirano
  fullname: Hirano, Toshiki
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 18
  givenname: Pierre-Olivier
  surname: Jubert
  fullname: Jubert, Pierre-Olivier
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 19
  givenname: Dan
  surname: Kercher
  fullname: Kercher, Dan
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 20
  givenname: Jeffrey
  surname: Lille
  fullname: Lille, Jeffrey
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 21
  surname: Zuwei Liu
  fullname: Zuwei Liu
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 22
  givenname: C. Mathew
  surname: Mate
  fullname: Mate, C. Mathew
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 23
  givenname: Yuri
  surname: Obukhov
  fullname: Obukhov, Yuri
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 24
  givenname: Kanaiyalal C.
  surname: Patel
  fullname: Patel, Kanaiyalal C.
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 25
  givenname: Kurt
  surname: Rubin
  fullname: Rubin, Kurt
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 26
  givenname: Ricardo
  surname: Ruiz
  fullname: Ruiz, Ricardo
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 27
  givenname: Manfred
  surname: Schabes
  fullname: Schabes, Manfred
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 28
  surname: Lei Wan
  fullname: Lei Wan
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 29
  givenname: Dieter
  surname: Weller
  fullname: Weller, Dieter
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 30
  surname: Tsai-Wei Wu
  fullname: Tsai-Wei Wu
  organization: HGST, Western Digital Co., San Jose, CA, USA
– sequence: 31
  surname: En Yang
  fullname: En Yang
  organization: HGST, Western Digital Co., San Jose, CA, USA
BookMark eNp9kE1PAjEQhhuDiYD-AONlE68sdrbdj3pDImgCkRj0uul2p1gCXeyWA__eXSGaePA0meR55uPtkY6tLBJyDXQIQMXdcj6aDiMK8TBiIs0yeka6IDiElCaiQ7qUQhYKnvAL0qvrddPyGGiXvD8YHy6k9-gslsFcrix6o4JXVJUrjV3dB8sPrNxhEMyxNDKYyMIZJb2p7CCQtvwlgwU6XbmttAovybmWmxqvTrVP3iaPy_FTOHuZPo9Hs1CxWPhQ85RhDAgJh0IjtA8AlbzQkElVAGhepFEmuEbJBC14xkquRZJqyjCKgfXJ7XHuzlWfe6x9vq72zjYrc0gyxgCyxumT9EgpV9W1Q50r479f8E6aTQ40b0PM2xDz9ob8FGJjwh9z58xWusO_zs3RMYj4w6c0Eg3PvgBxUn3V
CODEN IEMGAQ
CitedBy_id crossref_primary_10_3390_electronics13234811
crossref_primary_10_1002_pssa_202000160
crossref_primary_10_1002_admi_201800997
crossref_primary_10_1063_5_0046033
crossref_primary_10_1021_acsnano_7b02698
crossref_primary_10_1080_10426914_2021_1945096
crossref_primary_10_1088_1361_6463_aad7ad
crossref_primary_10_1063_5_0004598
crossref_primary_10_1109_TMAG_2024_3417218
crossref_primary_10_1116_1_5123397
crossref_primary_10_1109_TMAG_2022_3207032
crossref_primary_10_1038_srep43700
crossref_primary_10_1063_5_0198203
crossref_primary_10_1049_iet_com_2016_0200
crossref_primary_10_1109_TMAG_2021_3114624
crossref_primary_10_1021_acsami_0c02997
crossref_primary_10_1109_TIT_2020_2997329
crossref_primary_10_1016_j_progpolymsci_2015_10_006
crossref_primary_10_1063_1_5050712
crossref_primary_10_7567_1347_4065_ab4f34
crossref_primary_10_1021_acsmacrolett_6b00005
crossref_primary_10_1063_5_0147937
crossref_primary_10_1109_JPROC_2016_2567778
crossref_primary_10_1016_j_tsf_2019_137683
crossref_primary_10_1016_j_electacta_2019_01_176
crossref_primary_10_1038_s41576_019_0125_3
crossref_primary_10_1063_5_0045235
crossref_primary_10_1088_1361_6463_aabd92
crossref_primary_10_1063_5_0177447
crossref_primary_10_1021_acsnano_7b03284
crossref_primary_10_1088_1402_4896_ad6d9f
crossref_primary_10_1142_S2010324717500059
crossref_primary_10_1016_j_jmmm_2017_12_062
crossref_primary_10_1021_acsnano_7b06154
crossref_primary_10_1063_5_0070483
crossref_primary_10_1016_j_jallcom_2020_156156
crossref_primary_10_1038_nature21042
crossref_primary_10_1117_1_JMM_24_1_013002
crossref_primary_10_1063_5_0147665
crossref_primary_10_1063_5_0010112
crossref_primary_10_1039_C6NR03330J
crossref_primary_10_1063_5_0096192
crossref_primary_10_1134_S1063784219110288
crossref_primary_10_1109_TMAG_2016_2626381
crossref_primary_10_1103_PhysRevB_108_064410
crossref_primary_10_1109_TMAG_2016_2626386
crossref_primary_10_1021_acsnano_5b02613
crossref_primary_10_1109_TMAG_2024_3402184
crossref_primary_10_1016_j_jmmm_2022_169356
crossref_primary_10_1063_1_5110434
crossref_primary_10_1063_1_5026817
crossref_primary_10_1038_s41928_018_0147_4
crossref_primary_10_3390_nano12030518
crossref_primary_10_1109_TMAG_2022_3144394
crossref_primary_10_1007_s10043_024_00903_6
crossref_primary_10_1063_1_4992808
crossref_primary_10_1039_C6CP08726D
crossref_primary_10_1088_1361_6528_ab34f6
crossref_primary_10_1109_ACCESS_2022_3182801
crossref_primary_10_1109_MBITS_2023_3336213
crossref_primary_10_1007_s12274_022_4804_6
crossref_primary_10_1109_TMAG_2022_3213584
crossref_primary_10_1039_D0RA08491C
crossref_primary_10_1109_TMAG_2023_3278724
crossref_primary_10_1117_1_JMM_16_2_024001
crossref_primary_10_3389_fphy_2021_774951
crossref_primary_10_1016_j_jmmm_2020_166559
crossref_primary_10_1039_C8NR10011J
crossref_primary_10_1063_5_0221877
crossref_primary_10_1021_acsnano_6b03667
crossref_primary_10_1109_TMAG_2018_2837023
crossref_primary_10_1103_PhysRevApplied_13_014034
crossref_primary_10_1103_PhysRevApplied_9_064027
crossref_primary_10_1109_TMAG_2017_2746741
crossref_primary_10_1049_el_2020_1324
crossref_primary_10_3390_app12042156
crossref_primary_10_1063_1_5012815
crossref_primary_10_1038_s41467_021_22687_y
crossref_primary_10_1063_1_4962213
crossref_primary_10_1142_S2010324723400246
crossref_primary_10_2139_ssrn_4182600
crossref_primary_10_1109_TMAG_2016_2573769
crossref_primary_10_1016_j_mee_2018_04_005
crossref_primary_10_1002_adma_201502824
crossref_primary_10_1016_j_physe_2015_12_016
crossref_primary_10_1002_adfm_201501090
crossref_primary_10_1039_C6NR07863J
crossref_primary_10_1109_TMAG_2015_2492475
crossref_primary_10_1039_C5NR08865H
crossref_primary_10_1038_s41598_020_67677_0
crossref_primary_10_1109_TMAG_2022_3207913
crossref_primary_10_1021_acs_macromol_6b02399
crossref_primary_10_1016_j_jallcom_2020_153874
crossref_primary_10_1016_j_jmmm_2020_166579
crossref_primary_10_1007_s10825_017_1098_0
crossref_primary_10_1016_j_jmmm_2022_169843
crossref_primary_10_1103_PhysRevApplied_5_064007
crossref_primary_10_1109_LMAG_2019_2956671
crossref_primary_10_1109_TMAG_2018_2850337
crossref_primary_10_1039_C8NR06669H
crossref_primary_10_1088_0957_4484_27_41_415302
crossref_primary_10_1088_1361_6463_ac0ca4
crossref_primary_10_2474_trol_18_97
crossref_primary_10_1364_OE_521669
crossref_primary_10_1016_j_mtla_2022_101650
crossref_primary_10_1049_iet_com_2020_0245
crossref_primary_10_1109_LMAG_2019_2891446
crossref_primary_10_1016_j_jmmm_2021_168594
crossref_primary_10_1146_annurev_chembioeng_080615_034635
crossref_primary_10_3390_ma15072581
crossref_primary_10_1007_s10948_018_4671_2
crossref_primary_10_1088_1361_6528_aa6a9f
crossref_primary_10_1109_TMAG_2020_3020088
crossref_primary_10_7567_JJAP_56_08LA04
crossref_primary_10_1126_sciadv_1501571
crossref_primary_10_1016_j_jmmm_2016_07_002
crossref_primary_10_1021_acsnano_8b02851
crossref_primary_10_1038_s41598_019_54093_2
crossref_primary_10_1109_JPROC_2018_2795961
crossref_primary_10_1021_acsami_5b12785
crossref_primary_10_1088_1402_4896_ad65c9
crossref_primary_10_1155_2017_4254029
crossref_primary_10_1587_transfun_E99_A_2248
crossref_primary_10_1002_admi_202001143
crossref_primary_10_1063_1_4974866
crossref_primary_10_1088_1361_6528_aad393
crossref_primary_10_1088_2631_7990_aba3ae
crossref_primary_10_1063_1_5092525
crossref_primary_10_1063_1_4998670
crossref_primary_10_1557_mrs_2018_2
crossref_primary_10_1039_C7CP06261C
crossref_primary_10_1021_acs_nanolett_4c04116
crossref_primary_10_1557_mrs_2018_5
crossref_primary_10_1016_j_physe_2021_115015
crossref_primary_10_1016_j_matlet_2017_01_114
crossref_primary_10_1088_1402_4896_acd72f
crossref_primary_10_1016_j_jmmm_2021_168455
crossref_primary_10_1021_acs_nanolett_6b02345
crossref_primary_10_1109_ACCESS_2020_3018466
crossref_primary_10_3390_met14060614
crossref_primary_10_1063_9_0000062
crossref_primary_10_1088_0957_4484_27_41_415601
crossref_primary_10_1109_TMAG_2015_2449859
crossref_primary_10_1109_TCSI_2024_3436034
crossref_primary_10_1557_mrs_2020_248
crossref_primary_10_3390_cryst10040263
crossref_primary_10_1557_opl_2016_41
crossref_primary_10_1016_j_actamat_2024_119869
crossref_primary_10_1063_1_4996366
crossref_primary_10_1109_TMAG_2017_2700290
crossref_primary_10_1109_TMAG_2023_3313871
crossref_primary_10_1109_TMAG_2017_2695802
crossref_primary_10_1116_6_0003210
crossref_primary_10_1063_5_0078623
crossref_primary_10_1039_C5SM02829A
crossref_primary_10_1063_5_0148774
crossref_primary_10_1103_PhysRevB_99_104434
Cites_doi 10.1116/1.577116
10.1109/TNANO.2008.920183
10.1201/9780203490310
10.1126/science.275.5305.1458
10.1116/1.578879
10.2494/photopolymer.26.55
10.1088/0957-4484/22/30/305302
10.1063/1.3293301
10.1109/TMAG.2008.2002365
10.1109/TMAG.2012.2237545
10.1038/nphoton.2010.90
10.1109/20.278712
10.1063/1.4896982
10.1109/TMAG.2011.2148112
10.1117/12.535926
10.1021/cr900056b
10.1109/TMAG.2006.880564
10.1002/adma.200701577
10.1116/1.1618238
10.1039/c1jm12461g
10.1147/rd.443.0311
10.1063/1.3304166
10.1109/TMAG.2011.2159965
10.1016/j.polymer.2005.09.072
10.1021/ma102856t
10.1109/TMAG.2007.911031
10.1126/science.272.5258.85
10.1109/TMAG.2002.1017764
10.1109/TMAG.2004.838071
10.1146/annurev.pc.41.100190.002521
10.2494/photopolymer.27.419
10.1007/978-3-642-32042-2_6
10.1098/rsta.1948.0007
10.1103/PhysRevLett.62.1852
10.1063/1.3691947
10.1103/PhysRevLett.81.5229
10.1126/science.1168108
10.1021/ma050479l
10.1063/1.3013857
10.1021/nn2003234
10.1063/1.4873543
10.1021/nn505630t
10.1063/1.3271679
10.1021/nl500061t
10.1109/TMAG.2010.2089610
10.1109/TMAG.2012.2227303
10.1021/acsnano.5b02613
10.1116/1.587499
10.1155/2013/521086
10.1117/12.2011629
10.1016/j.jmmm.2008.07.035
10.1007/s11249-009-9570-z
10.1117/12.864298
10.1109/TMAG.2004.838057
10.1116/1.586180
10.1116/1.3650697
10.1117/12.917993
10.1002/polb.23408
10.1146/annurev-matsci-082908-145336
10.1109/TMAG.2006.878617
10.1063/1.4896667
10.1116/1.4767237
10.1063/1.358164
10.1557/mrs2008.179
10.1116/1.1421551
10.1002/adma.200800826
10.1002/adma.200802855
10.1021/nn101561p
10.1063/1.1951053
10.1117/12.915695
10.1007/s11249-011-9767-9
10.1126/science.280.5371.1919
10.1109/TMAG.2012.2226566
10.1021/nn900073r
10.1063/1.2431399
10.1021/nn100686v
10.1109/TMAG.2010.2071857
10.1063/1.370077
10.1126/science.1226046
10.1109/TMAG.2010.2076798
10.1109/TMAG.2012.2205226
10.1063/1.3623488
10.1109/TMAG.2008.2010676
10.1088/0022-3727/43/38/385003
10.1063/1.4896838
10.1063/1.2822439
10.1063/1.2730744
10.1109/TMAG.2006.878392
10.1063/1.3481668
10.1147/rd.515.0605
10.1088/0022-3727/38/12/R01
10.1155/2013/615896
10.1063/1.3623752
10.1002/polb.23433
10.1063/1.362440
10.1116/1.4758773
10.1021/cm200694w
10.1007/s00542-010-1191-9
10.1063/1.3681297
10.1109/JPROC.2008.2004315
10.1021/ma201822a
10.1117/12.864332
10.1007/978-0-387-85600-1_9
10.1063/1.3276911
10.1109/TMAG.2010.2048748
10.1007/s00542-011-1222-1
10.1002/adma.201002465
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2015.2397880
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 42
ExternalDocumentID 3695643881
10_1109_TMAG_2015_2397880
7029109
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
AAYXX
CITATION
RIG
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c359t-f473e51e1641bfe1201510a4bf18acb11f4b72894fea390b483d4f967f03e2513
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Mon Jun 30 08:12:19 EDT 2025
Thu Apr 24 22:49:14 EDT 2025
Tue Jul 01 04:29:36 EDT 2025
Tue Aug 26 16:50:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords prepatterned servo
Co alloys
magnetic multilayers
hard disk drive
bit-patterned media
block copolymer
self-assembly
magnetic recording
interface anisotropy
Areal density
thermal annealing
nanoimprint lithography
double patterning
sequential infiltration synthesis
templated growth
e-beam lithography
write synchronization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-f473e51e1641bfe1201510a4bf18acb11f4b72894fea390b483d4f967f03e2513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9806-8884
PQID 1683311848
PQPubID 85461
PageCount 42
ParticipantIDs ieee_primary_7029109
crossref_citationtrail_10_1109_TMAG_2015_2397880
proquest_journals_1683311848
crossref_primary_10_1109_TMAG_2015_2397880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-May
2015-5-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
albrecht (ref16) 2011
ref51
ref50
obukhov (ref114) 0
ref46
yang (ref43) 0
ref45
ref47
ref42
ref41
ref44
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
hellwig (ref38) 2012
ref24
ref23
ref26
ref25
ref22
ref21
chappert (ref97) 1998; 280
shiu (ref86) 2009; 7274
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref96
ref99
ref11
ref98
ref10
rubin (ref19) 2005
ref17
ref18
vasic (ref8) 2004; 2
ref93
ref92
ref95
ref94
ref91
ref90
millward (ref48) 2014; 9054
ref89
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref102
ref76
ref103
ref2
ref1
bunday (ref77) 2004; 5375
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref67
ref117
ref69
ref64
ref115
ref63
ref116
ref66
ref113
ref65
bencher (ref72) 2011; 7970
ref60
ref62
bencher (ref85) 2008; 6924
ref61
richter (ref20) 2007
References_xml – year: 0
  ident: ref43
  article-title: Template assisted direct growth of 1Td/in $^{2}$ bit patterned media
– ident: ref44
  doi: 10.1116/1.577116
– ident: ref27
  doi: 10.1109/TNANO.2008.920183
– year: 2012
  ident: ref38
  article-title: Patterned perpendicular magnetic recording medium with ultrathin oxide film and reduced switching field distribution
– volume: 2
  year: 2004
  ident: ref8
  publication-title: Coding and Signal Processing for Magnetic Recording Systems
  doi: 10.1201/9780203490310
– ident: ref60
  doi: 10.1126/science.275.5305.1458
– ident: ref89
  doi: 10.1116/1.578879
– ident: ref70
  doi: 10.2494/photopolymer.26.55
– ident: ref49
  doi: 10.1088/0957-4484/22/30/305302
– ident: ref23
  doi: 10.1063/1.3293301
– ident: ref11
  doi: 10.1109/TMAG.2008.2002365
– volume: 7274
  start-page: 72740e-1
  year: 2009
  ident: ref86
  article-title: Advanced self-aligned double patterning development for sub-30-nm DRAM manufacturing
  publication-title: Proc SPIE
– ident: ref18
  doi: 10.1109/TMAG.2012.2237545
– ident: ref116
  doi: 10.1038/nphoton.2010.90
– ident: ref31
  doi: 10.1109/20.278712
– ident: ref35
  doi: 10.1063/1.4896982
– ident: ref12
  doi: 10.1109/TMAG.2011.2148112
– volume: 5375
  start-page: 515
  year: 2004
  ident: ref77
  article-title: Determination of optimal parameters for CD-SEM measurement of line-edge roughness
  publication-title: Proc SPIE
  doi: 10.1117/12.535926
– volume: 7970
  start-page: 79700f-1
  year: 2011
  ident: ref72
  article-title: Self-assembly patterning for sub-15 nm halfpitch: A transition from lab to fab
  publication-title: Proc SPIE
– ident: ref80
  doi: 10.1021/cr900056b
– ident: ref103
  doi: 10.1109/TMAG.2006.880564
– ident: ref58
  doi: 10.1002/adma.200701577
– ident: ref91
  doi: 10.1116/1.1618238
– ident: ref83
  doi: 10.1039/c1jm12461g
– ident: ref1
  doi: 10.1147/rd.443.0311
– ident: ref112
  doi: 10.1063/1.3304166
– ident: ref107
  doi: 10.1109/TMAG.2011.2159965
– ident: ref67
  doi: 10.1016/j.polymer.2005.09.072
– ident: ref53
  doi: 10.1021/ma102856t
– ident: ref4
  doi: 10.1109/TMAG.2007.911031
– ident: ref90
  doi: 10.1126/science.272.5258.85
– ident: ref22
  doi: 10.1109/TMAG.2002.1017764
– ident: ref40
  doi: 10.1109/TMAG.2004.838071
– ident: ref46
  doi: 10.1146/annurev.pc.41.100190.002521
– ident: ref71
  doi: 10.2494/photopolymer.27.419
– year: 2005
  ident: ref19
  article-title: Patterned media having offset tracks
– ident: ref25
  doi: 10.1007/978-3-642-32042-2_6
– ident: ref13
  doi: 10.1098/rsta.1948.0007
– ident: ref55
  doi: 10.1103/PhysRevLett.62.1852
– ident: ref110
  doi: 10.1063/1.3691947
– ident: ref42
  doi: 10.1103/PhysRevLett.81.5229
– ident: ref57
  doi: 10.1126/science.1168108
– ident: ref65
  doi: 10.1021/ma050479l
– ident: ref24
  doi: 10.1063/1.3013857
– ident: ref82
  doi: 10.1021/nn2003234
– ident: ref117
  doi: 10.1063/1.4873543
– ident: ref87
  doi: 10.1021/nn505630t
– ident: ref41
  doi: 10.1063/1.3271679
– ident: ref45
  doi: 10.1021/nl500061t
– ident: ref17
  doi: 10.1109/TMAG.2010.2089610
– ident: ref26
  doi: 10.1109/TMAG.2012.2227303
– ident: ref56
  doi: 10.1021/acsnano.5b02613
– ident: ref6
  doi: 10.1116/1.587499
– ident: ref101
  doi: 10.1155/2013/521086
– volume: 6924
  start-page: 69244e-1
  year: 2008
  ident: ref85
  article-title: 22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP)
  publication-title: Proc SPIE
– ident: ref54
  doi: 10.1117/12.2011629
– ident: ref10
  doi: 10.1016/j.jmmm.2008.07.035
– ident: ref106
  doi: 10.1007/s11249-009-9570-z
– ident: ref95
  doi: 10.1117/12.864298
– ident: ref102
  doi: 10.1109/TMAG.2004.838057
– ident: ref88
  doi: 10.1116/1.586180
– ident: ref75
  doi: 10.1116/1.3650697
– year: 0
  ident: ref114
  article-title: Bit error rate computation for high areal density magnetic bit patterned media
– ident: ref73
  doi: 10.1117/12.917993
– ident: ref63
  doi: 10.1002/polb.23408
– ident: ref92
  doi: 10.1146/annurev-matsci-082908-145336
– ident: ref105
  doi: 10.1109/TMAG.2006.878617
– ident: ref39
  doi: 10.1063/1.4896667
– ident: ref79
  doi: 10.1116/1.4767237
– year: 2011
  ident: ref16
  article-title: Patterned magnetic media having an exchange bridge structure connecting islands
– ident: ref5
  doi: 10.1063/1.358164
– ident: ref66
  doi: 10.1557/mrs2008.179
– ident: ref78
  doi: 10.1116/1.1421551
– ident: ref50
  doi: 10.1002/adma.200800826
– ident: ref62
  doi: 10.1002/adma.200802855
– ident: ref52
  doi: 10.1021/nn101561p
– ident: ref14
  doi: 10.1063/1.1951053
– ident: ref59
  doi: 10.1117/12.915695
– ident: ref108
  doi: 10.1007/s11249-011-9767-9
– volume: 280
  start-page: 1919
  year: 1998
  ident: ref97
  article-title: Planar patterned magnetic media obtained by ion irradiation
  publication-title: Science
  doi: 10.1126/science.280.5371.1919
– ident: ref64
  doi: 10.1109/TMAG.2012.2226566
– year: 2007
  ident: ref20
  article-title: Data storage device with bit patterned media with staggered islands
– ident: ref74
  doi: 10.1021/nn900073r
– ident: ref30
  doi: 10.1063/1.2431399
– ident: ref51
  doi: 10.1021/nn100686v
– ident: ref109
  doi: 10.1109/TMAG.2010.2071857
– ident: ref111
  doi: 10.1063/1.370077
– ident: ref69
  doi: 10.1126/science.1226046
– ident: ref113
  doi: 10.1109/TMAG.2010.2076798
– ident: ref104
  doi: 10.1109/TMAG.2012.2205226
– ident: ref33
  doi: 10.1063/1.3623488
– ident: ref2
  doi: 10.1109/TMAG.2008.2010676
– ident: ref37
  doi: 10.1088/0022-3727/43/38/385003
– ident: ref96
  doi: 10.1063/1.4896838
– ident: ref34
  doi: 10.1063/1.2822439
– ident: ref29
  doi: 10.1063/1.2730744
– ident: ref9
  doi: 10.1109/TMAG.2006.878392
– volume: 9054
  start-page: 90540m-1
  year: 2014
  ident: ref48
  article-title: A comparison of the pattern transfer of line-space patterns from graphoepitaxial and chemoepitaxial block co-polymer directed self-assembly
  publication-title: Proc SPIE
– ident: ref15
  doi: 10.1063/1.3481668
– ident: ref47
  doi: 10.1147/rd.515.0605
– ident: ref21
  doi: 10.1088/0022-3727/38/12/R01
– ident: ref28
  doi: 10.1155/2013/615896
– ident: ref32
  doi: 10.1063/1.3623752
– ident: ref76
  doi: 10.1002/polb.23433
– ident: ref93
  doi: 10.1063/1.362440
– ident: ref84
  doi: 10.1116/1.4758773
– ident: ref68
  doi: 10.1021/cm200694w
– ident: ref99
  doi: 10.1007/s00542-010-1191-9
– ident: ref115
  doi: 10.1063/1.3681297
– ident: ref3
  doi: 10.1109/JPROC.2008.2004315
– ident: ref61
  doi: 10.1021/ma201822a
– ident: ref94
  doi: 10.1117/12.864332
– ident: ref7
  doi: 10.1007/978-0-387-85600-1_9
– ident: ref36
  doi: 10.1063/1.3276911
– ident: ref100
  doi: 10.1109/TMAG.2010.2048748
– ident: ref98
  doi: 10.1007/s00542-011-1222-1
– ident: ref81
  doi: 10.1002/adma.201002465
SSID ssj0014510
Score 2.5387993
Snippet Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges...
Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in[Formula Omitted] and circumvents many of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms areal density
Bit error rate
Bit patterned media
block copolymer
Co alloys
Disk drives
double patterning
e-beam lithography
Fabrication
hard disk drive
Hard disks
interface anisotropy
Magnetic heads
Magnetic multilayers
Magnetic recording
Magnetism
Media
nanoimprint lithography
prepatterned servo
self-assembly
Semiconductors
sequential infiltration
synthesis
templated growth
thermal annealing
Thermal stability
write synchronization
Title Bit-Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance
URI https://ieeexplore.ieee.org/document/7029109
https://www.proquest.com/docview/1683311848
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62gaAP_tgUp1Py4JOsW9Kka-PbFOcQKnvYZG8lyVIRpZOte_GvN2m7bqiIb6VcSuglufty990BXCnlY-li5ijMlcOYkI7gRDhcBD2uXRJT15KTw6fecMIep960Au2SC6O1zpLPdMc-ZrH82Vyt7FVZ18eusW68ClWzzHKuVhkxYB7J6SYksG3jWRHBNOLdcdh_sElcXsc11jewFSC3bFDWVOXHSZyZl8EBhOuJ5Vklb51VKjvq81vNxv_O_BD2Cz8T9fOFcQQVndRhb6v6YB12suxPtWzA8-1r6oyySpvm1EWheEkstxHl2NQI36Ccw99GNrAj0EDIRXHZ10YimW0k0WjDRDiGyeB-fDd0ioYLjqIeT52Y-VR7RBsIRWSsif1nBAsmYxIIJQmJmfQNQmOxFpRjyQI6YzHv-TGm2jhK9ARqyTzRp4CwMLtdSPNOGww241L60tbC58ZfMQCYNQGvVRCpohq5bYrxHmWoBPPIai2yM4gKrTXhuhzykZfi-Eu4YbVQChYKaEJrreeo2KzLiPQCSg3QYsHZ76POYdd-O89zbEEtXaz0hfFFUnmZLcIvNzPX3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCAEHHgPEeObACa1b0qRrw20gxnh02mFD3KokSxECdWjrLvx6krZ7CBDiVlWOGtVJ7C_2ZwOcK-Vj6WLmKMyVw5iQjuBEOFwEDa5dElPXkpPDTqPdZ_fP3vMSVGdcGK11lnyma_Yxi-UPhmpir8rqPnaNdePLsOIZVBHkbK1ZzIB5JCeckMA2jmdFDNMMqPfC5q1N4_JqrrG_ga0BuWCFsrYqP87izMC0tiCcTi3PK3mrTVJZU5_fqjb-d-7bsFl4mqiZL40dWNJJGTYW6g-WYTXL_1TjXXi6ek2dblZr05y7KBQviWU3ohydGuFLlLP4q8iGdgRqCTkqrvuqSCSDuSTqzrkIe9Bv3fSu207RcsFR1OOpEzOfao9oA6KIjDWx_4xgwWRMAqEkITGTvsFoLNaCcixZQAcs5g0_xlQbV4nuQykZJvoAEBZmvwtp3mmDwgZcSl_aavjceCwGArMK4KkKIlXUI7dtMd6jDJdgHlmtRXYGUaG1ClzMhnzkxTj-Et61WpgJFgqowPFUz1GxXccRaQSUGqjFgsPfR53BWrsXPkaPd52HI1i338mzHo-hlI4m-sR4Jqk8zRbkF8EI2y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bit-Patterned+Magnetic+Recording%3A+Theory%2C+Media+Fabrication%2C+and+Recording+Performance&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Albrecht%2C+Thomas+R&rft.au=Arora%2C+Hitesh&rft.au=Ayanoor-Vitikkate%2C+Vipin&rft.au=Beaujour%2C+Jean-Marc&rft.date=2015-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=51&rft.issue=5&rft.spage=1&rft_id=info:doi/10.1109%2FTMAG.2015.2397880&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3695643881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon