Bit-Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance
Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a w...
Saved in:
Published in | IEEE transactions on magnetics Vol. 51; no. 5; pp. 1 - 42 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9464 1941-0069 |
DOI | 10.1109/TMAG.2015.2397880 |
Cover
Abstract | Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in 2 . This combination of novel fabrication technologies achieves feature sizes of <;10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer-referred to as templated growth-is presented. New recording results at 1.6 Td/in 2 (roughly equivalent to 1.3 Tb/in 2 ) demonstrate a raw error rate <;10 -2 , which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored. |
---|---|
AbstractList | Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in[Formula Omitted] and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in[Formula Omitted]. This combination of novel fabrication technologies achieves feature sizes of <10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer--referred to as templated growth--is presented. New recording results at 1.6 Td/in[Formula Omitted] (roughly equivalent to 1.3 Tb/in[Formula Omitted] demonstrate a raw error rate [Formula Omitted], which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored. Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM comprises a well-ordered array of lithographically patterned isolated magnetic islands, each of which stores 1 bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this paper, we describe a BPM fabrication method that combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in 2 . This combination of novel fabrication technologies achieves feature sizes of <;10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work that used hexagonal arrays of round islands, our latest approach creates BPM with rectangular bit cells, which are advantageous for the integration of BPM with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements, such as provision of servo patterns, implementation of write synchronization, and providing for a stable head-disk interface, are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and tight switching field distribution is discussed, and a new method for growing BPM islands from a specially patterned underlayer-referred to as templated growth-is presented. New recording results at 1.6 Td/in 2 (roughly equivalent to 1.3 Tb/in 2 ) demonstrate a raw error rate <;10 -2 , which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities and its eventual combination with energy-assisted recording are explored. |
Author | Schabes, Manfred Mate, C. Mathew He Gao Arora, Hitesh Ruiz, Ricardo Chapuis, Yves-Andre Beaujour, Jean-Marc Rubin, Kurt Hellwig, Olav Ayanoor-Vitikkate, Vipin Bedau, Daniel Gurney, Bruce Lille, Jeffrey Zuwei Liu Bogdanov, Alexei L. Albrecht, Thomas R. Lei Wan Dobisz, Elizabeth E. Hirano, Toshiki Doerk, Gregory Patel, Kanaiyalal C. Cushen, Julia Obukhov, Yuri Berman, David Tsai-Wei Wu Kercher, Dan En Yang Grobis, Michael Jubert, Pierre-Olivier Weller, Dieter Hanson, Weldon |
Author_xml | – sequence: 1 givenname: Thomas R. surname: Albrecht fullname: Albrecht, Thomas R. email: thomas.albrecht@hgst.com organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 2 givenname: Hitesh surname: Arora fullname: Arora, Hitesh organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 3 givenname: Vipin surname: Ayanoor-Vitikkate fullname: Ayanoor-Vitikkate, Vipin organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 4 givenname: Jean-Marc surname: Beaujour fullname: Beaujour, Jean-Marc organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 5 givenname: Daniel surname: Bedau fullname: Bedau, Daniel organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 6 givenname: David surname: Berman fullname: Berman, David organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 7 givenname: Alexei L. surname: Bogdanov fullname: Bogdanov, Alexei L. organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 8 givenname: Yves-Andre surname: Chapuis fullname: Chapuis, Yves-Andre organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 9 givenname: Julia surname: Cushen fullname: Cushen, Julia organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 10 givenname: Elizabeth E. surname: Dobisz fullname: Dobisz, Elizabeth E. organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 11 givenname: Gregory surname: Doerk fullname: Doerk, Gregory organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 12 surname: He Gao fullname: He Gao organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 13 givenname: Michael surname: Grobis fullname: Grobis, Michael organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 14 givenname: Bruce surname: Gurney fullname: Gurney, Bruce organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 15 givenname: Weldon surname: Hanson fullname: Hanson, Weldon organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 16 givenname: Olav surname: Hellwig fullname: Hellwig, Olav organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 17 givenname: Toshiki surname: Hirano fullname: Hirano, Toshiki organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 18 givenname: Pierre-Olivier surname: Jubert fullname: Jubert, Pierre-Olivier organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 19 givenname: Dan surname: Kercher fullname: Kercher, Dan organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 20 givenname: Jeffrey surname: Lille fullname: Lille, Jeffrey organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 21 surname: Zuwei Liu fullname: Zuwei Liu organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 22 givenname: C. Mathew surname: Mate fullname: Mate, C. Mathew organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 23 givenname: Yuri surname: Obukhov fullname: Obukhov, Yuri organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 24 givenname: Kanaiyalal C. surname: Patel fullname: Patel, Kanaiyalal C. organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 25 givenname: Kurt surname: Rubin fullname: Rubin, Kurt organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 26 givenname: Ricardo surname: Ruiz fullname: Ruiz, Ricardo organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 27 givenname: Manfred surname: Schabes fullname: Schabes, Manfred organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 28 surname: Lei Wan fullname: Lei Wan organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 29 givenname: Dieter surname: Weller fullname: Weller, Dieter organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 30 surname: Tsai-Wei Wu fullname: Tsai-Wei Wu organization: HGST, Western Digital Co., San Jose, CA, USA – sequence: 31 surname: En Yang fullname: En Yang organization: HGST, Western Digital Co., San Jose, CA, USA |
BookMark | eNp9kE1PAjEQhhuDiYD-AONlE68sdrbdj3pDImgCkRj0uul2p1gCXeyWA__eXSGaePA0meR55uPtkY6tLBJyDXQIQMXdcj6aDiMK8TBiIs0yeka6IDiElCaiQ7qUQhYKnvAL0qvrddPyGGiXvD8YHy6k9-gslsFcrix6o4JXVJUrjV3dB8sPrNxhEMyxNDKYyMIZJb2p7CCQtvwlgwU6XbmttAovybmWmxqvTrVP3iaPy_FTOHuZPo9Hs1CxWPhQ85RhDAgJh0IjtA8AlbzQkElVAGhepFEmuEbJBC14xkquRZJqyjCKgfXJ7XHuzlWfe6x9vq72zjYrc0gyxgCyxumT9EgpV9W1Q50r479f8E6aTQ40b0PM2xDz9ob8FGJjwh9z58xWusO_zs3RMYj4w6c0Eg3PvgBxUn3V |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_3390_electronics13234811 crossref_primary_10_1002_pssa_202000160 crossref_primary_10_1002_admi_201800997 crossref_primary_10_1063_5_0046033 crossref_primary_10_1021_acsnano_7b02698 crossref_primary_10_1080_10426914_2021_1945096 crossref_primary_10_1088_1361_6463_aad7ad crossref_primary_10_1063_5_0004598 crossref_primary_10_1109_TMAG_2024_3417218 crossref_primary_10_1116_1_5123397 crossref_primary_10_1109_TMAG_2022_3207032 crossref_primary_10_1038_srep43700 crossref_primary_10_1063_5_0198203 crossref_primary_10_1049_iet_com_2016_0200 crossref_primary_10_1109_TMAG_2021_3114624 crossref_primary_10_1021_acsami_0c02997 crossref_primary_10_1109_TIT_2020_2997329 crossref_primary_10_1016_j_progpolymsci_2015_10_006 crossref_primary_10_1063_1_5050712 crossref_primary_10_7567_1347_4065_ab4f34 crossref_primary_10_1021_acsmacrolett_6b00005 crossref_primary_10_1063_5_0147937 crossref_primary_10_1109_JPROC_2016_2567778 crossref_primary_10_1016_j_tsf_2019_137683 crossref_primary_10_1016_j_electacta_2019_01_176 crossref_primary_10_1038_s41576_019_0125_3 crossref_primary_10_1063_5_0045235 crossref_primary_10_1088_1361_6463_aabd92 crossref_primary_10_1063_5_0177447 crossref_primary_10_1021_acsnano_7b03284 crossref_primary_10_1088_1402_4896_ad6d9f crossref_primary_10_1142_S2010324717500059 crossref_primary_10_1016_j_jmmm_2017_12_062 crossref_primary_10_1021_acsnano_7b06154 crossref_primary_10_1063_5_0070483 crossref_primary_10_1016_j_jallcom_2020_156156 crossref_primary_10_1038_nature21042 crossref_primary_10_1117_1_JMM_24_1_013002 crossref_primary_10_1063_5_0147665 crossref_primary_10_1063_5_0010112 crossref_primary_10_1039_C6NR03330J crossref_primary_10_1063_5_0096192 crossref_primary_10_1134_S1063784219110288 crossref_primary_10_1109_TMAG_2016_2626381 crossref_primary_10_1103_PhysRevB_108_064410 crossref_primary_10_1109_TMAG_2016_2626386 crossref_primary_10_1021_acsnano_5b02613 crossref_primary_10_1109_TMAG_2024_3402184 crossref_primary_10_1016_j_jmmm_2022_169356 crossref_primary_10_1063_1_5110434 crossref_primary_10_1063_1_5026817 crossref_primary_10_1038_s41928_018_0147_4 crossref_primary_10_3390_nano12030518 crossref_primary_10_1109_TMAG_2022_3144394 crossref_primary_10_1007_s10043_024_00903_6 crossref_primary_10_1063_1_4992808 crossref_primary_10_1039_C6CP08726D crossref_primary_10_1088_1361_6528_ab34f6 crossref_primary_10_1109_ACCESS_2022_3182801 crossref_primary_10_1109_MBITS_2023_3336213 crossref_primary_10_1007_s12274_022_4804_6 crossref_primary_10_1109_TMAG_2022_3213584 crossref_primary_10_1039_D0RA08491C crossref_primary_10_1109_TMAG_2023_3278724 crossref_primary_10_1117_1_JMM_16_2_024001 crossref_primary_10_3389_fphy_2021_774951 crossref_primary_10_1016_j_jmmm_2020_166559 crossref_primary_10_1039_C8NR10011J crossref_primary_10_1063_5_0221877 crossref_primary_10_1021_acsnano_6b03667 crossref_primary_10_1109_TMAG_2018_2837023 crossref_primary_10_1103_PhysRevApplied_13_014034 crossref_primary_10_1103_PhysRevApplied_9_064027 crossref_primary_10_1109_TMAG_2017_2746741 crossref_primary_10_1049_el_2020_1324 crossref_primary_10_3390_app12042156 crossref_primary_10_1063_1_5012815 crossref_primary_10_1038_s41467_021_22687_y crossref_primary_10_1063_1_4962213 crossref_primary_10_1142_S2010324723400246 crossref_primary_10_2139_ssrn_4182600 crossref_primary_10_1109_TMAG_2016_2573769 crossref_primary_10_1016_j_mee_2018_04_005 crossref_primary_10_1002_adma_201502824 crossref_primary_10_1016_j_physe_2015_12_016 crossref_primary_10_1002_adfm_201501090 crossref_primary_10_1039_C6NR07863J crossref_primary_10_1109_TMAG_2015_2492475 crossref_primary_10_1039_C5NR08865H crossref_primary_10_1038_s41598_020_67677_0 crossref_primary_10_1109_TMAG_2022_3207913 crossref_primary_10_1021_acs_macromol_6b02399 crossref_primary_10_1016_j_jallcom_2020_153874 crossref_primary_10_1016_j_jmmm_2020_166579 crossref_primary_10_1007_s10825_017_1098_0 crossref_primary_10_1016_j_jmmm_2022_169843 crossref_primary_10_1103_PhysRevApplied_5_064007 crossref_primary_10_1109_LMAG_2019_2956671 crossref_primary_10_1109_TMAG_2018_2850337 crossref_primary_10_1039_C8NR06669H crossref_primary_10_1088_0957_4484_27_41_415302 crossref_primary_10_1088_1361_6463_ac0ca4 crossref_primary_10_2474_trol_18_97 crossref_primary_10_1364_OE_521669 crossref_primary_10_1016_j_mtla_2022_101650 crossref_primary_10_1049_iet_com_2020_0245 crossref_primary_10_1109_LMAG_2019_2891446 crossref_primary_10_1016_j_jmmm_2021_168594 crossref_primary_10_1146_annurev_chembioeng_080615_034635 crossref_primary_10_3390_ma15072581 crossref_primary_10_1007_s10948_018_4671_2 crossref_primary_10_1088_1361_6528_aa6a9f crossref_primary_10_1109_TMAG_2020_3020088 crossref_primary_10_7567_JJAP_56_08LA04 crossref_primary_10_1126_sciadv_1501571 crossref_primary_10_1016_j_jmmm_2016_07_002 crossref_primary_10_1021_acsnano_8b02851 crossref_primary_10_1038_s41598_019_54093_2 crossref_primary_10_1109_JPROC_2018_2795961 crossref_primary_10_1021_acsami_5b12785 crossref_primary_10_1088_1402_4896_ad65c9 crossref_primary_10_1155_2017_4254029 crossref_primary_10_1587_transfun_E99_A_2248 crossref_primary_10_1002_admi_202001143 crossref_primary_10_1063_1_4974866 crossref_primary_10_1088_1361_6528_aad393 crossref_primary_10_1088_2631_7990_aba3ae crossref_primary_10_1063_1_5092525 crossref_primary_10_1063_1_4998670 crossref_primary_10_1557_mrs_2018_2 crossref_primary_10_1039_C7CP06261C crossref_primary_10_1021_acs_nanolett_4c04116 crossref_primary_10_1557_mrs_2018_5 crossref_primary_10_1016_j_physe_2021_115015 crossref_primary_10_1016_j_matlet_2017_01_114 crossref_primary_10_1088_1402_4896_acd72f crossref_primary_10_1016_j_jmmm_2021_168455 crossref_primary_10_1021_acs_nanolett_6b02345 crossref_primary_10_1109_ACCESS_2020_3018466 crossref_primary_10_3390_met14060614 crossref_primary_10_1063_9_0000062 crossref_primary_10_1088_0957_4484_27_41_415601 crossref_primary_10_1109_TMAG_2015_2449859 crossref_primary_10_1109_TCSI_2024_3436034 crossref_primary_10_1557_mrs_2020_248 crossref_primary_10_3390_cryst10040263 crossref_primary_10_1557_opl_2016_41 crossref_primary_10_1016_j_actamat_2024_119869 crossref_primary_10_1063_1_4996366 crossref_primary_10_1109_TMAG_2017_2700290 crossref_primary_10_1109_TMAG_2023_3313871 crossref_primary_10_1109_TMAG_2017_2695802 crossref_primary_10_1116_6_0003210 crossref_primary_10_1063_5_0078623 crossref_primary_10_1039_C5SM02829A crossref_primary_10_1063_5_0148774 crossref_primary_10_1103_PhysRevB_99_104434 |
Cites_doi | 10.1116/1.577116 10.1109/TNANO.2008.920183 10.1201/9780203490310 10.1126/science.275.5305.1458 10.1116/1.578879 10.2494/photopolymer.26.55 10.1088/0957-4484/22/30/305302 10.1063/1.3293301 10.1109/TMAG.2008.2002365 10.1109/TMAG.2012.2237545 10.1038/nphoton.2010.90 10.1109/20.278712 10.1063/1.4896982 10.1109/TMAG.2011.2148112 10.1117/12.535926 10.1021/cr900056b 10.1109/TMAG.2006.880564 10.1002/adma.200701577 10.1116/1.1618238 10.1039/c1jm12461g 10.1147/rd.443.0311 10.1063/1.3304166 10.1109/TMAG.2011.2159965 10.1016/j.polymer.2005.09.072 10.1021/ma102856t 10.1109/TMAG.2007.911031 10.1126/science.272.5258.85 10.1109/TMAG.2002.1017764 10.1109/TMAG.2004.838071 10.1146/annurev.pc.41.100190.002521 10.2494/photopolymer.27.419 10.1007/978-3-642-32042-2_6 10.1098/rsta.1948.0007 10.1103/PhysRevLett.62.1852 10.1063/1.3691947 10.1103/PhysRevLett.81.5229 10.1126/science.1168108 10.1021/ma050479l 10.1063/1.3013857 10.1021/nn2003234 10.1063/1.4873543 10.1021/nn505630t 10.1063/1.3271679 10.1021/nl500061t 10.1109/TMAG.2010.2089610 10.1109/TMAG.2012.2227303 10.1021/acsnano.5b02613 10.1116/1.587499 10.1155/2013/521086 10.1117/12.2011629 10.1016/j.jmmm.2008.07.035 10.1007/s11249-009-9570-z 10.1117/12.864298 10.1109/TMAG.2004.838057 10.1116/1.586180 10.1116/1.3650697 10.1117/12.917993 10.1002/polb.23408 10.1146/annurev-matsci-082908-145336 10.1109/TMAG.2006.878617 10.1063/1.4896667 10.1116/1.4767237 10.1063/1.358164 10.1557/mrs2008.179 10.1116/1.1421551 10.1002/adma.200800826 10.1002/adma.200802855 10.1021/nn101561p 10.1063/1.1951053 10.1117/12.915695 10.1007/s11249-011-9767-9 10.1126/science.280.5371.1919 10.1109/TMAG.2012.2226566 10.1021/nn900073r 10.1063/1.2431399 10.1021/nn100686v 10.1109/TMAG.2010.2071857 10.1063/1.370077 10.1126/science.1226046 10.1109/TMAG.2010.2076798 10.1109/TMAG.2012.2205226 10.1063/1.3623488 10.1109/TMAG.2008.2010676 10.1088/0022-3727/43/38/385003 10.1063/1.4896838 10.1063/1.2822439 10.1063/1.2730744 10.1109/TMAG.2006.878392 10.1063/1.3481668 10.1147/rd.515.0605 10.1088/0022-3727/38/12/R01 10.1155/2013/615896 10.1063/1.3623752 10.1002/polb.23433 10.1063/1.362440 10.1116/1.4758773 10.1021/cm200694w 10.1007/s00542-010-1191-9 10.1063/1.3681297 10.1109/JPROC.2008.2004315 10.1021/ma201822a 10.1117/12.864332 10.1007/978-0-387-85600-1_9 10.1063/1.3276911 10.1109/TMAG.2010.2048748 10.1007/s00542-011-1222-1 10.1002/adma.201002465 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1109/TMAG.2015.2397880 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 42 |
ExternalDocumentID | 3695643881 10_1109_TMAG_2015_2397880 7029109 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG AAYXX CITATION RIG 7SP 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c359t-f473e51e1641bfe1201510a4bf18acb11f4b72894fea390b483d4f967f03e2513 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Mon Jun 30 08:12:19 EDT 2025 Thu Apr 24 22:49:14 EDT 2025 Tue Jul 01 04:29:36 EDT 2025 Tue Aug 26 16:50:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | prepatterned servo Co alloys magnetic multilayers hard disk drive bit-patterned media block copolymer self-assembly magnetic recording interface anisotropy Areal density thermal annealing nanoimprint lithography double patterning sequential infiltration synthesis templated growth e-beam lithography write synchronization |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-f473e51e1641bfe1201510a4bf18acb11f4b72894fea390b483d4f967f03e2513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9806-8884 |
PQID | 1683311848 |
PQPubID | 85461 |
PageCount | 42 |
ParticipantIDs | ieee_primary_7029109 crossref_citationtrail_10_1109_TMAG_2015_2397880 proquest_journals_1683311848 crossref_primary_10_1109_TMAG_2015_2397880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-May 2015-5-00 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 albrecht (ref16) 2011 ref51 ref50 obukhov (ref114) 0 ref46 yang (ref43) 0 ref45 ref47 ref42 ref41 ref44 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 hellwig (ref38) 2012 ref24 ref23 ref26 ref25 ref22 ref21 chappert (ref97) 1998; 280 shiu (ref86) 2009; 7274 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref96 ref99 ref11 ref98 ref10 rubin (ref19) 2005 ref17 ref18 vasic (ref8) 2004; 2 ref93 ref92 ref95 ref94 ref91 ref90 millward (ref48) 2014; 9054 ref89 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref102 ref76 ref103 ref2 ref1 bunday (ref77) 2004; 5375 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref67 ref117 ref69 ref64 ref115 ref63 ref116 ref66 ref113 ref65 bencher (ref72) 2011; 7970 ref60 ref62 bencher (ref85) 2008; 6924 ref61 richter (ref20) 2007 |
References_xml | – year: 0 ident: ref43 article-title: Template assisted direct growth of 1Td/in $^{2}$ bit patterned media – ident: ref44 doi: 10.1116/1.577116 – ident: ref27 doi: 10.1109/TNANO.2008.920183 – year: 2012 ident: ref38 article-title: Patterned perpendicular magnetic recording medium with ultrathin oxide film and reduced switching field distribution – volume: 2 year: 2004 ident: ref8 publication-title: Coding and Signal Processing for Magnetic Recording Systems doi: 10.1201/9780203490310 – ident: ref60 doi: 10.1126/science.275.5305.1458 – ident: ref89 doi: 10.1116/1.578879 – ident: ref70 doi: 10.2494/photopolymer.26.55 – ident: ref49 doi: 10.1088/0957-4484/22/30/305302 – ident: ref23 doi: 10.1063/1.3293301 – ident: ref11 doi: 10.1109/TMAG.2008.2002365 – volume: 7274 start-page: 72740e-1 year: 2009 ident: ref86 article-title: Advanced self-aligned double patterning development for sub-30-nm DRAM manufacturing publication-title: Proc SPIE – ident: ref18 doi: 10.1109/TMAG.2012.2237545 – ident: ref116 doi: 10.1038/nphoton.2010.90 – ident: ref31 doi: 10.1109/20.278712 – ident: ref35 doi: 10.1063/1.4896982 – ident: ref12 doi: 10.1109/TMAG.2011.2148112 – volume: 5375 start-page: 515 year: 2004 ident: ref77 article-title: Determination of optimal parameters for CD-SEM measurement of line-edge roughness publication-title: Proc SPIE doi: 10.1117/12.535926 – volume: 7970 start-page: 79700f-1 year: 2011 ident: ref72 article-title: Self-assembly patterning for sub-15 nm halfpitch: A transition from lab to fab publication-title: Proc SPIE – ident: ref80 doi: 10.1021/cr900056b – ident: ref103 doi: 10.1109/TMAG.2006.880564 – ident: ref58 doi: 10.1002/adma.200701577 – ident: ref91 doi: 10.1116/1.1618238 – ident: ref83 doi: 10.1039/c1jm12461g – ident: ref1 doi: 10.1147/rd.443.0311 – ident: ref112 doi: 10.1063/1.3304166 – ident: ref107 doi: 10.1109/TMAG.2011.2159965 – ident: ref67 doi: 10.1016/j.polymer.2005.09.072 – ident: ref53 doi: 10.1021/ma102856t – ident: ref4 doi: 10.1109/TMAG.2007.911031 – ident: ref90 doi: 10.1126/science.272.5258.85 – ident: ref22 doi: 10.1109/TMAG.2002.1017764 – ident: ref40 doi: 10.1109/TMAG.2004.838071 – ident: ref46 doi: 10.1146/annurev.pc.41.100190.002521 – ident: ref71 doi: 10.2494/photopolymer.27.419 – year: 2005 ident: ref19 article-title: Patterned media having offset tracks – ident: ref25 doi: 10.1007/978-3-642-32042-2_6 – ident: ref13 doi: 10.1098/rsta.1948.0007 – ident: ref55 doi: 10.1103/PhysRevLett.62.1852 – ident: ref110 doi: 10.1063/1.3691947 – ident: ref42 doi: 10.1103/PhysRevLett.81.5229 – ident: ref57 doi: 10.1126/science.1168108 – ident: ref65 doi: 10.1021/ma050479l – ident: ref24 doi: 10.1063/1.3013857 – ident: ref82 doi: 10.1021/nn2003234 – ident: ref117 doi: 10.1063/1.4873543 – ident: ref87 doi: 10.1021/nn505630t – ident: ref41 doi: 10.1063/1.3271679 – ident: ref45 doi: 10.1021/nl500061t – ident: ref17 doi: 10.1109/TMAG.2010.2089610 – ident: ref26 doi: 10.1109/TMAG.2012.2227303 – ident: ref56 doi: 10.1021/acsnano.5b02613 – ident: ref6 doi: 10.1116/1.587499 – ident: ref101 doi: 10.1155/2013/521086 – volume: 6924 start-page: 69244e-1 year: 2008 ident: ref85 article-title: 22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP) publication-title: Proc SPIE – ident: ref54 doi: 10.1117/12.2011629 – ident: ref10 doi: 10.1016/j.jmmm.2008.07.035 – ident: ref106 doi: 10.1007/s11249-009-9570-z – ident: ref95 doi: 10.1117/12.864298 – ident: ref102 doi: 10.1109/TMAG.2004.838057 – ident: ref88 doi: 10.1116/1.586180 – ident: ref75 doi: 10.1116/1.3650697 – year: 0 ident: ref114 article-title: Bit error rate computation for high areal density magnetic bit patterned media – ident: ref73 doi: 10.1117/12.917993 – ident: ref63 doi: 10.1002/polb.23408 – ident: ref92 doi: 10.1146/annurev-matsci-082908-145336 – ident: ref105 doi: 10.1109/TMAG.2006.878617 – ident: ref39 doi: 10.1063/1.4896667 – ident: ref79 doi: 10.1116/1.4767237 – year: 2011 ident: ref16 article-title: Patterned magnetic media having an exchange bridge structure connecting islands – ident: ref5 doi: 10.1063/1.358164 – ident: ref66 doi: 10.1557/mrs2008.179 – ident: ref78 doi: 10.1116/1.1421551 – ident: ref50 doi: 10.1002/adma.200800826 – ident: ref62 doi: 10.1002/adma.200802855 – ident: ref52 doi: 10.1021/nn101561p – ident: ref14 doi: 10.1063/1.1951053 – ident: ref59 doi: 10.1117/12.915695 – ident: ref108 doi: 10.1007/s11249-011-9767-9 – volume: 280 start-page: 1919 year: 1998 ident: ref97 article-title: Planar patterned magnetic media obtained by ion irradiation publication-title: Science doi: 10.1126/science.280.5371.1919 – ident: ref64 doi: 10.1109/TMAG.2012.2226566 – year: 2007 ident: ref20 article-title: Data storage device with bit patterned media with staggered islands – ident: ref74 doi: 10.1021/nn900073r – ident: ref30 doi: 10.1063/1.2431399 – ident: ref51 doi: 10.1021/nn100686v – ident: ref109 doi: 10.1109/TMAG.2010.2071857 – ident: ref111 doi: 10.1063/1.370077 – ident: ref69 doi: 10.1126/science.1226046 – ident: ref113 doi: 10.1109/TMAG.2010.2076798 – ident: ref104 doi: 10.1109/TMAG.2012.2205226 – ident: ref33 doi: 10.1063/1.3623488 – ident: ref2 doi: 10.1109/TMAG.2008.2010676 – ident: ref37 doi: 10.1088/0022-3727/43/38/385003 – ident: ref96 doi: 10.1063/1.4896838 – ident: ref34 doi: 10.1063/1.2822439 – ident: ref29 doi: 10.1063/1.2730744 – ident: ref9 doi: 10.1109/TMAG.2006.878392 – volume: 9054 start-page: 90540m-1 year: 2014 ident: ref48 article-title: A comparison of the pattern transfer of line-space patterns from graphoepitaxial and chemoepitaxial block co-polymer directed self-assembly publication-title: Proc SPIE – ident: ref15 doi: 10.1063/1.3481668 – ident: ref47 doi: 10.1147/rd.515.0605 – ident: ref21 doi: 10.1088/0022-3727/38/12/R01 – ident: ref28 doi: 10.1155/2013/615896 – ident: ref32 doi: 10.1063/1.3623752 – ident: ref76 doi: 10.1002/polb.23433 – ident: ref93 doi: 10.1063/1.362440 – ident: ref84 doi: 10.1116/1.4758773 – ident: ref68 doi: 10.1021/cm200694w – ident: ref99 doi: 10.1007/s00542-010-1191-9 – ident: ref115 doi: 10.1063/1.3681297 – ident: ref3 doi: 10.1109/JPROC.2008.2004315 – ident: ref61 doi: 10.1021/ma201822a – ident: ref94 doi: 10.1117/12.864332 – ident: ref7 doi: 10.1007/978-0-387-85600-1_9 – ident: ref36 doi: 10.1063/1.3276911 – ident: ref100 doi: 10.1109/TMAG.2010.2048748 – ident: ref98 doi: 10.1007/s00542-011-1222-1 – ident: ref81 doi: 10.1002/adma.201002465 |
SSID | ssj0014510 |
Score | 2.5387993 |
Snippet | Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in 2 and circumvents many of the challenges... Bit-patterned media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in[Formula Omitted] and circumvents many of the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | areal density Bit error rate Bit patterned media block copolymer Co alloys Disk drives double patterning e-beam lithography Fabrication hard disk drive Hard disks interface anisotropy Magnetic heads Magnetic multilayers Magnetic recording Magnetism Media nanoimprint lithography prepatterned servo self-assembly Semiconductors sequential infiltration synthesis templated growth thermal annealing Thermal stability write synchronization |
Title | Bit-Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance |
URI | https://ieeexplore.ieee.org/document/7029109 https://www.proquest.com/docview/1683311848 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62gaAP_tgUp1Py4JOsW9Kka-PbFOcQKnvYZG8lyVIRpZOte_GvN2m7bqiIb6VcSuglufty990BXCnlY-li5ijMlcOYkI7gRDhcBD2uXRJT15KTw6fecMIep960Au2SC6O1zpLPdMc-ZrH82Vyt7FVZ18eusW68ClWzzHKuVhkxYB7J6SYksG3jWRHBNOLdcdh_sElcXsc11jewFSC3bFDWVOXHSZyZl8EBhOuJ5Vklb51VKjvq81vNxv_O_BD2Cz8T9fOFcQQVndRhb6v6YB12suxPtWzA8-1r6oyySpvm1EWheEkstxHl2NQI36Ccw99GNrAj0EDIRXHZ10YimW0k0WjDRDiGyeB-fDd0ioYLjqIeT52Y-VR7RBsIRWSsif1nBAsmYxIIJQmJmfQNQmOxFpRjyQI6YzHv-TGm2jhK9ARqyTzRp4CwMLtdSPNOGww241L60tbC58ZfMQCYNQGvVRCpohq5bYrxHmWoBPPIai2yM4gKrTXhuhzykZfi-Eu4YbVQChYKaEJrreeo2KzLiPQCSg3QYsHZ76POYdd-O89zbEEtXaz0hfFFUnmZLcIvNzPX3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCAEHHgPEeObACa1b0qRrw20gxnh02mFD3KokSxECdWjrLvx6krZ7CBDiVlWOGtVJ7C_2ZwOcK-Vj6WLmKMyVw5iQjuBEOFwEDa5dElPXkpPDTqPdZ_fP3vMSVGdcGK11lnyma_Yxi-UPhmpir8rqPnaNdePLsOIZVBHkbK1ZzIB5JCeckMA2jmdFDNMMqPfC5q1N4_JqrrG_ga0BuWCFsrYqP87izMC0tiCcTi3PK3mrTVJZU5_fqjb-d-7bsFl4mqiZL40dWNJJGTYW6g-WYTXL_1TjXXi6ek2dblZr05y7KBQviWU3ohydGuFLlLP4q8iGdgRqCTkqrvuqSCSDuSTqzrkIe9Bv3fSu207RcsFR1OOpEzOfao9oA6KIjDWx_4xgwWRMAqEkITGTvsFoLNaCcixZQAcs5g0_xlQbV4nuQykZJvoAEBZmvwtp3mmDwgZcSl_aavjceCwGArMK4KkKIlXUI7dtMd6jDJdgHlmtRXYGUaG1ClzMhnzkxTj-Et61WpgJFgqowPFUz1GxXccRaQSUGqjFgsPfR53BWrsXPkaPd52HI1i338mzHo-hlI4m-sR4Jqk8zRbkF8EI2y8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bit-Patterned+Magnetic+Recording%3A+Theory%2C+Media+Fabrication%2C+and+Recording+Performance&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Albrecht%2C+Thomas+R&rft.au=Arora%2C+Hitesh&rft.au=Ayanoor-Vitikkate%2C+Vipin&rft.au=Beaujour%2C+Jean-Marc&rft.date=2015-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=51&rft.issue=5&rft.spage=1&rft_id=info:doi/10.1109%2FTMAG.2015.2397880&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3695643881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |