Tumor cell type and gene marker identification by single layer perceptron neural network on single-cell RNA sequence data

Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present insid...

Full description

Saved in:
Bibliographic Details
Published inJournal of biosciences Vol. 49; no. 2; p. 47
Main Authors Senapati, Biswajit, Das, Ranjita
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-7138
0250-5991
0973-7138
DOI10.1007/s12038-023-00368-w

Cover

Abstract Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present inside a tumor, machine learning classifier, optimization, and neural network models were applied to scRNA sequencing data. Indeed, even though single-cell analysis is a more powerful tool, several issues have been identified, such as transcriptional noise that alters gene expression and degrades mRNA. Recently, optimization models for single-cell analysis have been developed to address these kinds of issues, and encouraging results have been reported. scRNA sequencing is popular because it produces biological information in the form of patterns that are displayed within the transcriptome profile. The neural network approach plays an important role in understanding and identifying these distinct patterns. A single layer perceptron was introduced to better analyze the data pattern within gene expression profiles. Finally, recently developed optimization models with machine learning classifiers are compared with the proposed single layer perceptron. The single layer perceptron performs better compared with other models such as extra tree classifier with genetic algorithm, k-nearest neighbors with bat optimization, decision tree with gray wolf optimization, random forest with firefly optimization, and Gaussian naïve Bayes with artificial bee colony optimization. This study also focused on classifying these unique cell types and gene markers using scRNA sequence datasets. The proposed single layer perceptron was assessed using two datasets: normal mucosa and colorectal tumors. Our findings showed that the proposed single layer perceptron performed exceptionally well with accuracy, precision, recall, and F1 value.
AbstractList Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present inside a tumor, machine learning classifier, optimization, and neural network models were applied to scRNA sequencing data. Indeed, even though single-cell analysis is a more powerful tool, several issues have been identified, such as transcriptional noise that alters gene expression and degrades mRNA. Recently, optimization models for single-cell analysis have been developed to address these kinds of issues, and encouraging results have been reported. scRNA sequencing is popular because it produces biological information in the form of patterns that are displayed within the transcriptome profile. The neural network approach plays an important role in understanding and identifying these distinct patterns. A single layer perceptron was introduced to better analyze the data pattern within gene expression profiles. Finally, recently developed optimization models with machine learning classifiers are compared with the proposed single layer perceptron. The single layer perceptron performs better compared with other models such as extra tree classifier with genetic algorithm, k-nearest neighbors with bat optimization, decision tree with gray wolf optimization, random forest with firefly optimization, and Gaussian naïve Bayes with artificial bee colony optimization. This study also focused on classifying these unique cell types and gene markers using scRNA sequence datasets. The proposed single layer perceptron was assessed using two datasets: normal mucosa and colorectal tumors. Our findings showed that the proposed single layer perceptron performed exceptionally well with accuracy, precision, recall, and F1 value.
Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present inside a tumor, machine learning classifier, optimization, and neural network models were applied to scRNA sequencing data. Indeed, even though single-cell analysis is a more powerful tool, several issues have been identified, such as transcriptional noise that alters gene expression and degrades mRNA. Recently, optimization models for single-cell analysis have been developed to address these kinds of issues, and encouraging results have been reported. scRNA sequencing is popular because it produces biological information in the form of patterns that are displayed within the transcriptome profile. The neural network approach plays an important role in understanding and identifying these distinct patterns. A single layer perceptron was introduced to better analyze the data pattern within gene expression profiles. Finally, recently developed optimization models with machine learning classifiers are compared with the proposed single layer perceptron. The single layer perceptron performs better compared with other models such as extra tree classifier with genetic algorithm, k-nearest neighbors with bat optimization, decision tree with gray wolf optimization, random forest with firefly optimization, and Gaussian naı¨ve Bayes with artificial bee colony optimization. This study also focused on classifying these unique cell types and gene markers using scRNA sequence datasets. The proposed single layer perceptron was assessed using two datasets: normal mucosa and colorectal tumors. Our findings showed that the proposed single layer perceptron performed exceptionally well with accuracy, precision, recall, and F1 value.Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present inside a tumor, machine learning classifier, optimization, and neural network models were applied to scRNA sequencing data. Indeed, even though single-cell analysis is a more powerful tool, several issues have been identified, such as transcriptional noise that alters gene expression and degrades mRNA. Recently, optimization models for single-cell analysis have been developed to address these kinds of issues, and encouraging results have been reported. scRNA sequencing is popular because it produces biological information in the form of patterns that are displayed within the transcriptome profile. The neural network approach plays an important role in understanding and identifying these distinct patterns. A single layer perceptron was introduced to better analyze the data pattern within gene expression profiles. Finally, recently developed optimization models with machine learning classifiers are compared with the proposed single layer perceptron. The single layer perceptron performs better compared with other models such as extra tree classifier with genetic algorithm, k-nearest neighbors with bat optimization, decision tree with gray wolf optimization, random forest with firefly optimization, and Gaussian naı¨ve Bayes with artificial bee colony optimization. This study also focused on classifying these unique cell types and gene markers using scRNA sequence datasets. The proposed single layer perceptron was assessed using two datasets: normal mucosa and colorectal tumors. Our findings showed that the proposed single layer perceptron performed exceptionally well with accuracy, precision, recall, and F1 value.
Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made important contributions to the field of tumor research. To investigate the cell types and identify similar types of gene markers present inside a tumor, machine learning classifier, optimization, and neural network models were applied to scRNA sequencing data. Indeed, even though single-cell analysis is a more powerful tool, several issues have been identified, such as transcriptional noise that alters gene expression and degrades mRNA. Recently, optimization models for single-cell analysis have been developed to address these kinds of issues, and encouraging results have been reported. scRNA sequencing is popular because it produces biological information in the form of patterns that are displayed within the transcriptome profile. The neural network approach plays an important role in understanding and identifying these distinct patterns. A single layer perceptron was introduced to better analyze the data pattern within gene expression profiles. Finally, recently developed optimization models with machine learning classifiers are compared with the proposed single layer perceptron. The single layer perceptron performs better compared with other models such as extra tree classifier with genetic algorithm, k-nearest neighbors with bat optimization, decision tree with gray wolf optimization, random forest with firefly optimization, and Gaussian naı¨ve Bayes with artificial bee colony optimization. This study also focused on classifying these unique cell types and gene markers using scRNA sequence datasets. The proposed single layer perceptron was assessed using two datasets: normal mucosa and colorectal tumors. Our findings showed that the proposed single layer perceptron performed exceptionally well with accuracy, precision, recall, and F1 value.
ArticleNumber 47
Author Senapati, Biswajit
Das, Ranjita
Author_xml – sequence: 1
  givenname: Biswajit
  orcidid: 0000-0002-9091-3414
  surname: Senapati
  fullname: Senapati, Biswajit
  email: biswajit.cse.phd@nitmz.ac.in
  organization: Computer Science and Engineering, National Institute of Technology Mizoram
– sequence: 2
  givenname: Ranjita
  surname: Das
  fullname: Das, Ranjita
  organization: Computer Science and Engineering, National Institute of Technology Mizoram, Computer Science and Engineering, National Institute of Technology Agartala
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38525885$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wB1ggS2zYBMZ2HNvLqioPqQIJlbXl2JOrtLlOsBNd5d_j25SHWMBqLM935thzzslJHCMS8pLBWwag3mXGQegKuKgARKOrwxNyBkaJSjGhT_44n5LznO8AmKkFPCOnQksutZZnZL1d9mOiHoeBzuuE1MVAdxiR7l26x0T7gHHuu967uR8jbVea-7gbkA5uLe0Jk8dpTqUVcUluKGU-jOmelpuNrB6Gf_18STN-XzB6pMHN7jl52rkh44vHekG-vb--vfpY3Xz58Onq8qbyQpq56njwWvG6dsxBaFvjDBrRoNOtaTUDFRpVB9Re-tZ0vEGlPfMBDHbSgQdxQd5sc6c0Fvs8232fj09yEcclW8FkMVLA1X9RbrRURjZGFPT1X-jduKRYPlIoJWRTa3Ec-OqRWto9Bjulvqx1tT_3XwC-AT6NOSfsfiEM7DFku4VsS8j2IWR7KCKxiXKB4w7Tb-9_qH4ALiqqzg
Cites_doi 10.1023/A:1010676701382
10.1109/ACCESS.2019.2960722
10.1038/ng.3818
10.3390/biomedicines9111513
10.1186/s13059-017-1188-0
10.1016/j.procs.2023.01.001
10.1186/s12967-021-03084-x
10.1016/j.csbj.2022.05.035
10.1038/nmeth.4207
10.1155/2022/4092404
10.1007/978-981-19-1018-0_41
10.1155/2022/2436946
10.1109/ICPCSI.2017.8391855
ContentType Journal Article
Copyright Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H99
HCIFZ
K9.
L.F
L.G
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1007/s12038-023-00368-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ASFA: Marine Biotechnology Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Zoology
Biology
EISSN 0973-7138
EndPage 47
ExternalDocumentID 38525885
10_1007_s12038_023_00368_w
Genre Journal Article
GrantInformation_xml – fundername: DST and SERB
  grantid: EEQ/2020/000104
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
36B
4.4
406
408
40D
40E
53G
5GY
5VS
67N
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BENPR
BGNMA
BHPHI
CS3
CSCUP
D-I
DDRTE
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRP
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
GX1
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
KQ8
LLZTM
M2O
M4Y
M7P
MA-
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OK1
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RAB
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7W
Z8Q
ZMTXR
ZOVNA
~A9
~EX
7X7
8FE
8FH
8G5
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ACUHS
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BPHCQ
BVXVI
CITATION
EAD
EBD
EMB
EMOBN
EST
FYUFA
GUQSH
LK8
OVT
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
SV3
TUS
UKHRP
~8M
-Y2
1SB
28-
2VQ
3SX
88E
8AO
8FI
8FJ
AANXM
AARHV
AAYTO
ABULA
ACBXY
ADHKG
ADYPR
AEBTG
AEKMD
AEUYN
AFEXP
AFGCZ
AGGDS
AGJBK
AGQPQ
AJBLW
ASPBG
AVWKF
AZFZN
BBWZM
BDATZ
C1A
CAG
CCPQU
CGR
COF
CUY
CVF
DWQXO
ECM
EIF
EJD
EN4
FEDTE
FINBP
FSGXE
GNUQQ
H13
HMCUK
HVGLF
HZ~
M1P
N2Q
NDZJH
NPM
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
R4E
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
3V.
7QL
7TM
7XB
88A
8FD
8FK
C1K
F1W
FR3
H99
K9.
L.F
L.G
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c359t-f2dc87244a1a0dbb9a9e936ea8b9b8107d674de8c5cb9f26e78c1cd09ef5a0c03
IEDL.DBID U2A
ISSN 0973-7138
0250-5991
IngestDate Fri Sep 05 06:34:51 EDT 2025
Thu Sep 04 19:33:49 EDT 2025
Tue Oct 07 05:52:45 EDT 2025
Mon Jul 21 05:56:55 EDT 2025
Wed Oct 01 03:17:15 EDT 2025
Fri Feb 21 02:44:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords scRNA-seq
Adaptive moment estimation
regularization
single layer perceptron
hidden layer
neural network
rectified linear unit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-f2dc87244a1a0dbb9a9e936ea8b9b8107d674de8c5cb9f26e78c1cd09ef5a0c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9091-3414
PMID 38525885
PQID 2973564837
PQPubID 54416
PageCount 1
ParticipantIDs proquest_miscellaneous_3153597027
proquest_miscellaneous_2985795693
proquest_journals_2973564837
pubmed_primary_38525885
crossref_primary_10_1007_s12038_023_00368_w
springer_journals_10_1007_s12038_023_00368_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: India
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Journal of biosciences
PublicationTitleAbbrev J Biosci
PublicationTitleAlternate J Biosci
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Patel, Shah (CR13) 2014; 2
CR2
Elbashir, Ezz, Mohammed (CR6) 2019; 7
CR5
Liu, Wang, Lai (CR11) 2022; 20
Lin, Troup, Ho (CR10) 2017; 18
Mathew (CR12) 2022; 100
CR16
Kuo, Chang, Chen (CR8) 2001; 66
CR15
Wang, Zhu, Pierson, Ramazzotti, Batzoglou (CR17) 2017; 14
Asada, Takasawa, Machino (CR3) 2021; 9
Mothe, Senapati, Das (CR14) 2023; 218
Aiwale, Ansari (CR1) 2019; 10
Chellamuthu, Kandasamy, Kanagaraj (CR4) 2017; 10
Jiao, Zou, Guo (CR7) 2021; 19
Li, Courtois, Sengupta (CR9) 2017; 49
H Li (368_CR9) 2017; 49
WJ Kuo (368_CR8) 2001; 66
368_CR16
A Aiwale (368_CR1) 2019; 10
S Jiao (368_CR7) 2021; 19
368_CR15
P Lin (368_CR10) 2017; 18
K Asada (368_CR3) 2021; 9
HP Liu (368_CR11) 2022; 20
368_CR5
MK Elbashir (368_CR6) 2019; 7
R Mothe (368_CR14) 2023; 218
SA Patel (368_CR13) 2014; 2
368_CR2
TE Mathew (368_CR12) 2022; 100
B Wang (368_CR17) 2017; 14
G Chellamuthu (368_CR4) 2017; 10
References_xml – volume: 66
  start-page: 51
  year: 2001
  end-page: 57
  ident: CR8
  article-title: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1023/A:1010676701382
– volume: 7
  start-page: 185338
  year: 2019
  end-page: 185348
  ident: CR6
  article-title: Lightweight con- volutional neural network for breast cancer classification using RNA-seq gene expression data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960722
– volume: 49
  start-page: 708
  year: 2017
  end-page: 718
  ident: CR9
  article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3818
– volume: 10
  start-page: 401
  year: 2017
  end-page: 408
  ident: CR4
  article-title: Biomarker selection from gene expression data for tumour categorization using bat algorithm
  publication-title: Methods
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 9
  start-page: 1513
  year: 2021
  ident: CR3
  article-title: Single-cell analysis using machine learning techniques and its application to medical research
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9111513
– volume: 18
  start-page: 2
  year: 2017
  end-page: 11
  ident: CR10
  article-title: CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1188-0
– volume: 218
  start-page: 189
  year: 2023
  end-page: 198
  ident: CR14
  article-title: Identifying colorectal tumor for single cell RNA sequence using rectified linear unit with stochastic gradient descent
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.001
– volume: 2
  start-page: 2321
  year: 2014
  end-page: 9939
  ident: CR13
  article-title: Tumor location and size identification in brain tissues using fuzzy c-clustering and artificial bee colony algorithm
  publication-title: Int. J. Engineer. Dev. Res.
– volume: 19
  start-page: 449
  year: 2021
  ident: CR7
  article-title: IITCA-RF: a random forest predictor for tumor T cell antigens
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-021-03084-x
– volume: 20
  start-page: 2672
  year: 2022
  end-page: 2679
  ident: CR11
  article-title: Can we infer tumor presence of single cell transcriptomes and their tumor of origin from bulk transcriptomes by machine learning
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.05.035
– volume: 100
  start-page: 5234
  year: 2022
  end-page: 5246
  ident: CR12
  article-title: An optimized extremely randomized tree model for breast cancer classification
  publication-title: J. Theor. Appl. Informat. Technol.
– volume: 14
  start-page: 414
  year: 2017
  end-page: 416
  ident: CR17
  article-title: Visualization and analysis of single cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4207
– ident: CR5
– volume: 10
  start-page: 187
  year: 2019
  end-page: 193
  ident: CR1
  article-title: Brain tumor detection using knn
  publication-title: Int. J. Sci. Engineer. Res.
– volume: 14
  start-page: 414
  year: 2017
  ident: 368_CR17
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4207
– volume: 2
  start-page: 2321
  year: 2014
  ident: 368_CR13
  publication-title: Int. J. Engineer. Dev. Res.
– volume: 10
  start-page: 401
  year: 2017
  ident: 368_CR4
  publication-title: Methods
– volume: 18
  start-page: 2
  year: 2017
  ident: 368_CR10
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1188-0
– volume: 66
  start-page: 51
  year: 2001
  ident: 368_CR8
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1023/A:1010676701382
– ident: 368_CR16
  doi: 10.1155/2022/4092404
– volume: 7
  start-page: 185338
  year: 2019
  ident: 368_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960722
– volume: 9
  start-page: 1513
  year: 2021
  ident: 368_CR3
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9111513
– volume: 218
  start-page: 189
  year: 2023
  ident: 368_CR14
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.001
– volume: 20
  start-page: 2672
  year: 2022
  ident: 368_CR11
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.05.035
– volume: 10
  start-page: 187
  year: 2019
  ident: 368_CR1
  publication-title: Int. J. Sci. Engineer. Res.
– volume: 100
  start-page: 5234
  year: 2022
  ident: 368_CR12
  publication-title: J. Theor. Appl. Informat. Technol.
– ident: 368_CR15
  doi: 10.1007/978-981-19-1018-0_41
– volume: 19
  start-page: 449
  year: 2021
  ident: 368_CR7
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-021-03084-x
– ident: 368_CR2
  doi: 10.1155/2022/2436946
– ident: 368_CR5
  doi: 10.1109/ICPCSI.2017.8391855
– volume: 49
  start-page: 708
  year: 2017
  ident: 368_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3818
SSID ssj0019430
Score 2.3893979
Snippet Tumors have drawn increasing attention recently because of their heterogeneous interior structures. Particularly, single-cell RNA (scRNA) mechanics have made...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 47
SubjectTerms Algorithms
Base Sequence
Bayes Theorem
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell culture
Chiroptera
Classifiers
Colorectal cancer
data collection
Datasets
decision support systems
Decision trees
Gene expression
genes
Genetic algorithms
Humans
Lampyridae
Learning algorithms
Life Sciences
Machine Learning
Mechanics
Microbiology
mucosa
neoplasm cells
Neoplasms
Neural networks
Neural Networks, Computer
Nucleotide sequence
nucleotide sequences
Optimization
Optimization models
Pattern analysis
Plant Sciences
Ribonucleic acid
RNA
Search algorithms
Sequence Analysis, RNA
Sequencing
Swarm intelligence
transcription (genetics)
transcriptome
Transcriptomes
Tumors
Zoology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB50RbyXw1PvrqceEe7tDNc2TZs8yKGiiOAiouBbSZoUBO3urbvI_vfONO0uh-hrE9o0X35MJt98A_BLFbWstSUqTi14VnjBVUa5XlymE1UUTlgKFL4a5hd32eW9vF-BYR8LQ7TKfk1sF2o3qshH_odyLMmc9M__jv9xyhpFt6t9Cg3TpVZwR63E2CqspaSMNYC1k7Ph9c3iXoHExluvi4y5RNOoC6MJwXRpjJMf9zBOIi2Kv_y_Vb2xP9_cnbZb0vkmfO5sSXYcwP8CK77ZgvWQXXK-BRunfTK3bZjfzp5GE0ZuekZeV2Yax3DsePZE_JwJe3AdbahFitk5IyfCo2ePBo1yNg78lwkWkQImfrUJ_HGGT0JN3r78ZnjMeno2I_rpDtydn92eXvAu6wKvhNRTXqeuUgXu-iYxsbNWG-21yL1RVluFp0WXF5nzqpKV1XWa-0JVSeVi7Wtp4ioWX2HQjBr_HZhMDMGWJ7XIs8RY4y0J5tncpGgY1nEEv_sOLsdBXKNcyigTHCXCUbZwlC8R7PUYlN1Eey6XwyKCg0Uxdi79s2n8aEZ1lCzwHKjF-3UErvx4tsJDegTfAr6LJgklU6mUjOCwB3zZgPfb--Pj9u7CpxQNpEA724PBdDLz-2jgTO3PbtS-ArQN9-I
  priority: 102
  providerName: ProQuest
Title Tumor cell type and gene marker identification by single layer perceptron neural network on single-cell RNA sequence data
URI https://link.springer.com/article/10.1007/s12038-023-00368-w
https://www.ncbi.nlm.nih.gov/pubmed/38525885
https://www.proquest.com/docview/2973564837
https://www.proquest.com/docview/2985795693
https://www.proquest.com/docview/3153597027
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: KQ8
  dateStart: 19790301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0973-7138
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: ABDBF
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: DIK
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: GX1
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0973-7138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019430
  issn: 0973-7138
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUNVeUKGvUFgZiRuNlMRxbB-3dHkUdYUQK217iezYkZAgi5Zdof33ncljVwg4cIo0njiOx48Z-5sZgEMlS1FqS1Cckoep9DxUKeV6camOlZSOW3IU_jPMzkbp77EYt05hDx3avbuSrFfqlbNbEuHkxD0mpCAqKnxch01B4bxwFI-S_vLugAKKt-4xL7_3dAt6plc-uxOtt5qTj7DV6ois3wh1G9Z8tQPvmqyRix14f9wlaUPqv0lN_QSL6_ndZMroIJ7RuSozlWM4Ojy7IwTOlN24FhhUy4LZBaNjglvPbg2q3ey-QbhMsYhiXOL3qwYhzpDScIZ15VfDPusA2IwApp9hdDK4Pj4L27wKYcGFnoVl4golcV83sYmctdpor3nmjbLaKrQHXSZT51UhCqvLJPNSFXHhIu1LYaIi4l9go5pU_hswERtKfpXFJc_S2FjjLYXEs5lJUPUrowCOuq7O75vwGfkqUDIJJkfB5LVg8scA9jpp5O1UesipfpFR4PsADpbF2M30z6bykznxKCHR0tP8dR6OaztaT2iGB_C1kfSySVyJRCglAvjRiX7VgNfbu_s29u_wIUGVqAGa7cHGbDr3-6jSzGwP1uVY9mCzf_r3YoDPn4Ph5RVSf51f9OrR_R8zy_Tq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWi8IBhfHQOMBE9gkcRxYj9MaIxNHdsqNHXS3oIdOxLSlnZdq6r_HH8bd3HSCk3jba-J5Ti-s-_rd3cAH1ReyUpbguJUgqe5F1yl1OvFpTpWee6EpUTh00HWP09_XMiLNfjT5cIQrLK7E5uL2o1K8pF_oR5LMqP651_H15y6RlF0tWuhYdrWCm63KTHWJnYc-8UcTbib3aPvSO-PSXJ4MNzv87bLAC-F1FNeJa5UOUo5E5vIWauN9lpk3iirrULryGV56rwqZWl1lWQ-V2Vcukj7SpqojATO-wA2UpFqNP42vh0Mfp4t4xhU3Lzx8siIS1TF2rSdkLyXRHjZoMzkVBRG8fm_ovGWvnsrVtuIwMMn8LjVXdleYLansObrLXgYulkutmBzv2se9wwWw9nVaMIoLMDIy8tM7RjyqmdXhAeasN-uhSk1nMHsgpHT4tKzS4NGABsHvM0EX1HFTfxqHfDqDJ-EkbyZ_Gywxzo4OCO463M4v5f9fwHr9aj2r4DJ2BCbZHElsjQ21nhLBfpsZhJURKuoB5-6DS7GoZhHsSrbTOQokBxFQ45i3oOdjgZFe7BvihUb9uD98jVuLv2zqf1oRmOUzNHu1OLuMQIlDdpyUYLzvAz0XS5JKJlIpWQPPncEXy3g7vVu_3-972CzPzw9KU6OBsev4VGCylmAvO3A-nQy829QuZraty0HM_h134fmL6hJNqs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIcAKrSRzH9gGhqmXVUlgh1Eq9pXbsSEhtdtnuarV_jV_HTJzsClXl1mtiORPP2PPwNzMA77SqZW0cQXFqwXMVBNc59XrxuUm1Ul44ShT-PioOTvKvp_J0A_70uTAEq-zPxPag9uOKYuQ71GNJFlT_fKfuYBE_9oefJ785dZCim9a-nUYUkaOwXKD7dvnpcB95_T7Lhl-O9w5412GAV0KaGa8zX2mFGs6mNvHOGWuCEUWw2hmn0TPyhcp90JWsnKmzIihdpZVPTKilTapE4Ly34LYSwhCcUJ2unL2Uypq38R2ZcIlGWJewE9P2sgSPGdSWnMrBaL74VylesXSv3NK2ym_4EB50VivbjWL2CDZCswV3Yh_L5Rbc2-vbxj2G5fH8YjxldCHAKL7LbOMZSmlgF4QEmrJfvgMotTLB3JJRuOI8sHOL5j-bRKTNFF9RrU38ahOR6gyfxJG8nfznaJf1QHBGQNcncHIjq_8UNptxE54Dk6klASnSWhR5ap0NjkrzucJmaILWyQA-9AtcTmIZj3JdsJnYUSI7ypYd5WIA2z0Pym5LX5ZrARzA29VrXFz6Z9uE8ZzGaKnQ4zTi-jECdQx6cUmG8zyL_F2RJLTMpNZyAB97hq8JuJ7eF_-n9w3cxa1SfjscHb2E-xlaZRHrtg2bs-k8vEKrauZet-LL4Oym98tfKBc0RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+cell+type+and+gene+marker+identification+by+single+layer+perceptron+neural+network+on+single-cell+RNA+sequence+data&rft.jtitle=Journal+of+biosciences&rft.au=Senapati%2C+Biswajit&rft.au=Das%2C+Ranjita&rft.date=2024-06-01&rft.issn=0973-7138&rft.volume=49&rft.issue=2+p.47-47&rft.spage=47&rft.epage=47&rft_id=info:doi/10.1007%2Fs12038-023-00368-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7138&client=summon