Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems
Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems....
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 21; no. 4; pp. 644 - 660 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 |
| DOI | 10.1109/TEVC.2017.2675628 |
Cover
| Summary: | Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a surrogate-assisted particle swarm optimization (PSO) algorithm and a surrogate-assisted social learning-based PSO (SL-PSO) algorithm cooperatively search for the global optimum. The cooperation between the PSO and the SL-PSO consists of two aspects. First, they share promising solutions evaluated by the real fitness function. Second, the SL-PSO focuses on exploration while the PSO concentrates on local search. Empirical studies on six 50-D and six 100-D benchmark problems demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems on a limited computational budget. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2017.2675628 |