Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems

Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 21; no. 4; pp. 644 - 660
Main Authors Sun, Chaoli, Jin, Yaochu, Cheng, Ran, Ding, Jinliang, Zeng, Jianchao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2017.2675628

Cover

More Information
Summary:Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a surrogate-assisted particle swarm optimization (PSO) algorithm and a surrogate-assisted social learning-based PSO (SL-PSO) algorithm cooperatively search for the global optimum. The cooperation between the PSO and the SL-PSO consists of two aspects. First, they share promising solutions evaluated by the real fitness function. Second, the SL-PSO focuses on exploration while the PSO concentrates on local search. Empirical studies on six 50-D and six 100-D benchmark problems demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems on a limited computational budget.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2017.2675628