SAR Image Classification Using CNN Embeddings and Metric Learning

The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output o...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors Li, Yibing, Li, Xiang, Sun, Qian, Dong, Qianhui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2020.3022435

Cover

Abstract The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output of middle layer in the forward propagation process of CNN. In the second stage, an end-to-end metric network is trained to measure the relations between sample features. The method proposed in this letter is tested with some of the larger targets in OpenSARShip data set which is collected from Sentinel-1 satellite, and it is also tested with the MSTAR data set which is created by the U.S. Air Force Laboratory. The experimental results show that our method can get a higher recognition accuracy than normal CNN structure.
AbstractList The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output of middle layer in the forward propagation process of CNN. In the second stage, an end-to-end metric network is trained to measure the relations between sample features. The method proposed in this letter is tested with some of the larger targets in OpenSARShip data set which is collected from Sentinel-1 satellite, and it is also tested with the MSTAR data set which is created by the U.S. Air Force Laboratory. The experimental results show that our method can get a higher recognition accuracy than normal CNN structure.
Author Sun, Qian
Dong, Qianhui
Li, Xiang
Li, Yibing
Author_xml – sequence: 1
  givenname: Yibing
  orcidid: 0000-0003-4510-982X
  surname: Li
  fullname: Li, Yibing
  organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0002-7267-5731
  surname: Li
  fullname: Li, Xiang
  organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Qian
  orcidid: 0000-0001-7267-7545
  surname: Sun
  fullname: Sun, Qian
  organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China
– sequence: 4
  givenname: Qianhui
  orcidid: 0000-0003-1365-4970
  surname: Dong
  fullname: Dong, Qianhui
  email: dongqianhui0203@126.com
  organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China
BookMark eNp9kEFLwzAUx4NMcJt-APFS8Nz50jZJcxxlzkGdsDnwFpI0GRlbO5Pu4Le3dcODB095efx_7_F-IzSom9ogdI9hgjHwp3K-Wk8SSGCSQpJkKblCQ0xIHgNheNDXGYkJzz9u0CiEHUCS5Tkboul6uooWB7k1UbGXITjrtGxdU0eb4OptVCyX0eygTFV1vxDJuopeTeudjkojfd01b9G1lftg7i7vGG2eZ-_FS1y-zRfFtIx1SngbW8gAJABl2iqlSE41Tqy0CjiztpIqq6i2lnKDM5UqxinVihkATThlDKdj9Hiee_TN58mEVuyak6-7lSKhnQKOMSNdip1T2jcheGOFdu3PQa2Xbi8wiN6X6H2J3pe4-OpI_Ic8eneQ_utf5uHMOGPMb55jzhOSp98ZSHbz
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2024_3412401
crossref_primary_10_1109_TGRS_2023_3337856
crossref_primary_10_1109_LGRS_2023_3323557
crossref_primary_10_3390_s21020519
crossref_primary_10_1109_JSTARS_2021_3138781
crossref_primary_10_1109_TGRS_2023_3314501
crossref_primary_10_1109_TGRS_2025_3528464
crossref_primary_10_3390_rs13030361
crossref_primary_10_1109_ACCESS_2022_3151089
crossref_primary_10_1109_TGRS_2024_3386963
crossref_primary_10_1109_ACCESS_2024_3387314
crossref_primary_10_1109_JSTARS_2024_3423377
crossref_primary_10_11834_jig_230359
crossref_primary_10_1109_TGRS_2022_3166174
crossref_primary_10_1109_JSTARS_2021_3126688
crossref_primary_10_23919_transcom_2023EBP3179
crossref_primary_10_1109_LGRS_2024_3374375
crossref_primary_10_1109_TAES_2024_3438749
crossref_primary_10_1109_JSTARS_2024_3434448
crossref_primary_10_1109_LGRS_2024_3393623
crossref_primary_10_1109_JSTARS_2025_3530442
crossref_primary_10_1109_LGRS_2023_3259971
crossref_primary_10_1155_2023_7724264
crossref_primary_10_1109_TGRS_2022_3225187
crossref_primary_10_1109_TGRS_2022_3208346
crossref_primary_10_1109_JSTARS_2024_3365472
Cites_doi 10.1109/TGRS.2010.2071879
10.1109/LGRS.2018.2792683
10.1109/LGRS.2015.2506570
10.1109/CVPR.2018.00131
10.1109/TGRS.2019.2923988
10.1109/LGRS.2016.2514482
10.1109/LGRS.2019.2960095
10.1109/CVRS.2012.6421279
10.1109/IGARSS.2019.8897831
10.1109/TGRS.2018.2854661
10.1109/TGRS.2019.2906054
10.1109/LGRS.2015.2513754
10.1109/JSTARS.2017.2755672
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3022435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3022435
9199258
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province
  grantid: QC2018053
  funderid: 10.13039/501100005046
– fundername: National Natural Science Foundation of China
  grantid: 51809056
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2016YFF0102806
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072020CF0805; 3072020CF0811
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-f0400a0067cfbbb586c12fafb097ffdab4d6cff69e14b3b7966cb7e00c5967713
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:37:46 EDT 2025
Tue Jul 01 03:45:44 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Aug 27 05:11:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-f0400a0067cfbbb586c12fafb097ffdab4d6cff69e14b3b7966cb7e00c5967713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1365-4970
0000-0002-7267-5731
0000-0003-4510-982X
0000-0001-7267-7545
PQID 2610991175
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2020_3022435
crossref_citationtrail_10_1109_LGRS_2020_3022435
ieee_primary_9199258
proquest_journals_2610991175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Snell (ref9)
ref15
ref11
ref10
(ref14) 2020
ref2
ref1
ref17
ref16
ref8
ref7
ref4
ref3
ref6
ref5
Vinyals (ref13)
(ref12) 1983
References_xml – start-page: 4077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Prototypical networks for few-shot learning
– ident: ref1
  doi: 10.1109/TGRS.2010.2071879
– ident: ref3
  doi: 10.1109/LGRS.2018.2792683
– ident: ref2
  doi: 10.1109/LGRS.2015.2506570
– ident: ref10
  doi: 10.1109/CVPR.2018.00131
– start-page: 3630
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Matching networks for one shot learning
– volume-title: Opensarshipfilter-Package-Sourcecode
  year: 2020
  ident: ref14
– ident: ref7
  doi: 10.1109/TGRS.2019.2923988
– ident: ref4
  doi: 10.1109/LGRS.2016.2514482
– ident: ref15
  doi: 10.1109/LGRS.2019.2960095
– ident: ref5
  doi: 10.1109/CVRS.2012.6421279
– ident: ref6
  doi: 10.1109/IGARSS.2019.8897831
– ident: ref16
  doi: 10.1109/TGRS.2018.2854661
– ident: ref17
  doi: 10.1109/TGRS.2019.2906054
– volume-title: The Air Force Moving and Stationary Target Recognition Database
  year: 1983
  ident: ref12
– ident: ref8
  doi: 10.1109/LGRS.2015.2513754
– ident: ref11
  doi: 10.1109/JSTARS.2017.2755672
SSID ssj0024887
Score 2.4787765
Snippet The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Classification
Convolutional neural network (CNN)
Datasets
Feature extraction
Image classification
Marine vehicles
Measurement
metric learning
Neural networks
Prototypes
Radar imaging
SAR (radar)
Synthetic aperture radar
synthetic aperture radar (SAR)
Task analysis
Training
Title SAR Image Classification Using CNN Embeddings and Metric Learning
URI https://ieeexplore.ieee.org/document/9199258
https://www.proquest.com/docview/2610991175
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIHrxURXrixw8iVuz2yS7OYpoq9gefEBvy-aloK2i24P-eneyaQUV8ZZDAiGTzCMz830AB64jWJxlKjKS6YjZKmBVTNNIdVKeCGN17PvW-gPRu2OXQz6cg6NZL4y11hef2TYOfS7fPOsJfpUdS6yV5FkDGmkq616tL1y9zJPhoUcQcZkNQwYzpvL4qnt9U0WCSRWgosXyzG5fNsiTqvzQxN68nK9Af7qxuqrksT0pVVt_fMNs_O_OV2E5-JnkpL4YazBnx01YDJTnD-9NWOh6Tt_39UqznlyTi1GlWIinyMTiIS8v4usJyOlgQM5GyhqfpiLF2JA-8nBpEsBZ7zfg7vzs9rQXBWaFSHe4LCOHT7dAS6WdUopnQseJK5yiMnXOFIoZoZ0T0sZMdVRaxURapZZSzaVIq7h2E-bHz2O7BcQI56hOsjjFnKuhBZNWC-SRiUXBtWgBnZ51rgPsOLJfPOU-_KAyR_HkKJ48iKcFh7MlLzXmxl-T1_G4ZxPDSbdgdyrQPLzKtzxBbHmJ4KTbv6_agaUE2xv8F8suzJevE7tXOR2l2ve37RPoYNBt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB2qInrxW6xWzcGTuDW73WQ3RxG11baHqtDbsvlSUKtoe9BfbyZNK6iItxwSCJkkk5eZeQ_gwDZ4Gue5jLRIVZQaB1hlqmgkGxlLuDYq9nVrnS5v3qaXfdavwNG0FsYY45PPTB2bPpavn9UIv8qOBeZKsnwG5phDFdm4WuuLWS_3cnj4JoiYyPshhhlTcdy-6F07LJg4iIo-y2u7fXkhL6vy4y72DuZ8GTqTqY3zSh7qo6Gsq49vrI3_nfsKLIWXJjkZb41VqJjBGiwE0fP79zWYv_Cqvu_r7m496ZHWk7taiBfJxPQhbzHiMwrIabdLzp6k0T5QRcqBJh1U4lIk0LPebcDt-dnNaTMK2gqRajAxjCwe3hJ9lbJSSpZzFSe2tJKKzFpdylRzZS0XJk5lQ2YOFSmZGUoVEzxzyHYTZgfPA7MFRHNrqUryOMOoq6ZlKoziqCQT85IpXgU6WetCBeJx1L94LDwAoaJA8xRoniKYpwqH0yEvY9aNvzqv43JPO4aVrkJtYtAinMu3IkF2eYH0pNu_j9qHheZNp120W92rHVhMsNjBf7jUYHb4OjK77gkylHt-530CCkrTvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR+Image+Classification+Using+CNN+Embeddings+and+Metric+Learning&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Li%2C+Yibing&rft.au=Li%2C+Xiang&rft.au=Sun%2C+Qian&rft.au=Dong%2C+Qianhui&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3022435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3022435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon