SAR Image Classification Using CNN Embeddings and Metric Learning
The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output o...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2020.3022435 |
Cover
Abstract | The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output of middle layer in the forward propagation process of CNN. In the second stage, an end-to-end metric network is trained to measure the relations between sample features. The method proposed in this letter is tested with some of the larger targets in OpenSARShip data set which is collected from Sentinel-1 satellite, and it is also tested with the MSTAR data set which is created by the U.S. Air Force Laboratory. The experimental results show that our method can get a higher recognition accuracy than normal CNN structure. |
---|---|
AbstractList | The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural network (CNN) is trained for normal SAR image classification task. After training, the sample features can be obtained by extracting the output of middle layer in the forward propagation process of CNN. In the second stage, an end-to-end metric network is trained to measure the relations between sample features. The method proposed in this letter is tested with some of the larger targets in OpenSARShip data set which is collected from Sentinel-1 satellite, and it is also tested with the MSTAR data set which is created by the U.S. Air Force Laboratory. The experimental results show that our method can get a higher recognition accuracy than normal CNN structure. |
Author | Sun, Qian Dong, Qianhui Li, Xiang Li, Yibing |
Author_xml | – sequence: 1 givenname: Yibing orcidid: 0000-0003-4510-982X surname: Li fullname: Li, Yibing organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Xiang orcidid: 0000-0002-7267-5731 surname: Li fullname: Li, Xiang organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Qian orcidid: 0000-0001-7267-7545 surname: Sun fullname: Sun, Qian organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China – sequence: 4 givenname: Qianhui orcidid: 0000-0003-1365-4970 surname: Dong fullname: Dong, Qianhui email: dongqianhui0203@126.com organization: Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China |
BookMark | eNp9kEFLwzAUx4NMcJt-APFS8Nz50jZJcxxlzkGdsDnwFpI0GRlbO5Pu4Le3dcODB095efx_7_F-IzSom9ogdI9hgjHwp3K-Wk8SSGCSQpJkKblCQ0xIHgNheNDXGYkJzz9u0CiEHUCS5Tkboul6uooWB7k1UbGXITjrtGxdU0eb4OptVCyX0eygTFV1vxDJuopeTeudjkojfd01b9G1lftg7i7vGG2eZ-_FS1y-zRfFtIx1SngbW8gAJABl2iqlSE41Tqy0CjiztpIqq6i2lnKDM5UqxinVihkATThlDKdj9Hiee_TN58mEVuyak6-7lSKhnQKOMSNdip1T2jcheGOFdu3PQa2Xbi8wiN6X6H2J3pe4-OpI_Ic8eneQ_utf5uHMOGPMb55jzhOSp98ZSHbz |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3412401 crossref_primary_10_1109_TGRS_2023_3337856 crossref_primary_10_1109_LGRS_2023_3323557 crossref_primary_10_3390_s21020519 crossref_primary_10_1109_JSTARS_2021_3138781 crossref_primary_10_1109_TGRS_2023_3314501 crossref_primary_10_1109_TGRS_2025_3528464 crossref_primary_10_3390_rs13030361 crossref_primary_10_1109_ACCESS_2022_3151089 crossref_primary_10_1109_TGRS_2024_3386963 crossref_primary_10_1109_ACCESS_2024_3387314 crossref_primary_10_1109_JSTARS_2024_3423377 crossref_primary_10_11834_jig_230359 crossref_primary_10_1109_TGRS_2022_3166174 crossref_primary_10_1109_JSTARS_2021_3126688 crossref_primary_10_23919_transcom_2023EBP3179 crossref_primary_10_1109_LGRS_2024_3374375 crossref_primary_10_1109_TAES_2024_3438749 crossref_primary_10_1109_JSTARS_2024_3434448 crossref_primary_10_1109_LGRS_2024_3393623 crossref_primary_10_1109_JSTARS_2025_3530442 crossref_primary_10_1109_LGRS_2023_3259971 crossref_primary_10_1155_2023_7724264 crossref_primary_10_1109_TGRS_2022_3225187 crossref_primary_10_1109_TGRS_2022_3208346 crossref_primary_10_1109_JSTARS_2024_3365472 |
Cites_doi | 10.1109/TGRS.2010.2071879 10.1109/LGRS.2018.2792683 10.1109/LGRS.2015.2506570 10.1109/CVPR.2018.00131 10.1109/TGRS.2019.2923988 10.1109/LGRS.2016.2514482 10.1109/LGRS.2019.2960095 10.1109/CVRS.2012.6421279 10.1109/IGARSS.2019.8897831 10.1109/TGRS.2018.2854661 10.1109/TGRS.2019.2906054 10.1109/LGRS.2015.2513754 10.1109/JSTARS.2017.2755672 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2020.3022435 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2020_3022435 9199258 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province grantid: QC2018053 funderid: 10.13039/501100005046 – fundername: National Natural Science Foundation of China grantid: 51809056 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2016YFF0102806 funderid: 10.13039/501100012166 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072020CF0805; 3072020CF0811 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-f0400a0067cfbbb586c12fafb097ffdab4d6cff69e14b3b7966cb7e00c5967713 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:37:46 EDT 2025 Tue Jul 01 03:45:44 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Aug 27 05:11:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-f0400a0067cfbbb586c12fafb097ffdab4d6cff69e14b3b7966cb7e00c5967713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1365-4970 0000-0002-7267-5731 0000-0003-4510-982X 0000-0001-7267-7545 |
PQID | 2610991175 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LGRS_2020_3022435 crossref_citationtrail_10_1109_LGRS_2020_3022435 ieee_primary_9199258 proquest_journals_2610991175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Snell (ref9) ref15 ref11 ref10 (ref14) 2020 ref2 ref1 ref17 ref16 ref8 ref7 ref4 ref3 ref6 ref5 Vinyals (ref13) (ref12) 1983 |
References_xml | – start-page: 4077 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Prototypical networks for few-shot learning – ident: ref1 doi: 10.1109/TGRS.2010.2071879 – ident: ref3 doi: 10.1109/LGRS.2018.2792683 – ident: ref2 doi: 10.1109/LGRS.2015.2506570 – ident: ref10 doi: 10.1109/CVPR.2018.00131 – start-page: 3630 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref13 article-title: Matching networks for one shot learning – volume-title: Opensarshipfilter-Package-Sourcecode year: 2020 ident: ref14 – ident: ref7 doi: 10.1109/TGRS.2019.2923988 – ident: ref4 doi: 10.1109/LGRS.2016.2514482 – ident: ref15 doi: 10.1109/LGRS.2019.2960095 – ident: ref5 doi: 10.1109/CVRS.2012.6421279 – ident: ref6 doi: 10.1109/IGARSS.2019.8897831 – ident: ref16 doi: 10.1109/TGRS.2018.2854661 – ident: ref17 doi: 10.1109/TGRS.2019.2906054 – volume-title: The Air Force Moving and Stationary Target Recognition Database year: 1983 ident: ref12 – ident: ref8 doi: 10.1109/LGRS.2015.2513754 – ident: ref11 doi: 10.1109/JSTARS.2017.2755672 |
SSID | ssj0024887 |
Score | 2.4787765 |
Snippet | The method proposed in this letter for synthetic aperture radar (SAR) image classification has two main stages. In the first stage, a convolutional neural... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Classification Convolutional neural network (CNN) Datasets Feature extraction Image classification Marine vehicles Measurement metric learning Neural networks Prototypes Radar imaging SAR (radar) Synthetic aperture radar synthetic aperture radar (SAR) Task analysis Training |
Title | SAR Image Classification Using CNN Embeddings and Metric Learning |
URI | https://ieeexplore.ieee.org/document/9199258 https://www.proquest.com/docview/2610991175 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIHrxURXrixw8iVuz2yS7OYpoq9gefEBvy-aloK2i24P-eneyaQUV8ZZDAiGTzCMz830AB64jWJxlKjKS6YjZKmBVTNNIdVKeCGN17PvW-gPRu2OXQz6cg6NZL4y11hef2TYOfS7fPOsJfpUdS6yV5FkDGmkq616tL1y9zJPhoUcQcZkNQwYzpvL4qnt9U0WCSRWgosXyzG5fNsiTqvzQxN68nK9Af7qxuqrksT0pVVt_fMNs_O_OV2E5-JnkpL4YazBnx01YDJTnD-9NWOh6Tt_39UqznlyTi1GlWIinyMTiIS8v4usJyOlgQM5GyhqfpiLF2JA-8nBpEsBZ7zfg7vzs9rQXBWaFSHe4LCOHT7dAS6WdUopnQseJK5yiMnXOFIoZoZ0T0sZMdVRaxURapZZSzaVIq7h2E-bHz2O7BcQI56hOsjjFnKuhBZNWC-SRiUXBtWgBnZ51rgPsOLJfPOU-_KAyR_HkKJ48iKcFh7MlLzXmxl-T1_G4ZxPDSbdgdyrQPLzKtzxBbHmJ4KTbv6_agaUE2xv8F8suzJevE7tXOR2l2ve37RPoYNBt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB2qInrxW6xWzcGTuDW73WQ3RxG11baHqtDbsvlSUKtoe9BfbyZNK6iItxwSCJkkk5eZeQ_gwDZ4Gue5jLRIVZQaB1hlqmgkGxlLuDYq9nVrnS5v3qaXfdavwNG0FsYY45PPTB2bPpavn9UIv8qOBeZKsnwG5phDFdm4WuuLWS_3cnj4JoiYyPshhhlTcdy-6F07LJg4iIo-y2u7fXkhL6vy4y72DuZ8GTqTqY3zSh7qo6Gsq49vrI3_nfsKLIWXJjkZb41VqJjBGiwE0fP79zWYv_Cqvu_r7m496ZHWk7taiBfJxPQhbzHiMwrIabdLzp6k0T5QRcqBJh1U4lIk0LPebcDt-dnNaTMK2gqRajAxjCwe3hJ9lbJSSpZzFSe2tJKKzFpdylRzZS0XJk5lQ2YOFSmZGUoVEzxzyHYTZgfPA7MFRHNrqUryOMOoq6ZlKoziqCQT85IpXgU6WetCBeJx1L94LDwAoaJA8xRoniKYpwqH0yEvY9aNvzqv43JPO4aVrkJtYtAinMu3IkF2eYH0pNu_j9qHheZNp120W92rHVhMsNjBf7jUYHb4OjK77gkylHt-530CCkrTvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR+Image+Classification+Using+CNN+Embeddings+and+Metric+Learning&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Li%2C+Yibing&rft.au=Li%2C+Xiang&rft.au=Sun%2C+Qian&rft.au=Dong%2C+Qianhui&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3022435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3022435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |