Overcoming Data Scarcity in Wind Power Forecasting: A Deep Learning Approach With Bidirectional Generative Adversarial Network and Neighborhood Search PSO Algorithm
The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) und...
Saved in:
| Published in | IEEE access Vol. 12; pp. 183410 - 183428 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3507154 |
Cover
| Abstract | The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) under the background of a substantial increase in wind power installed capacity worldwide. Hence, there is practical scientific significance in exploring high-precision prediction methods within the domain of NWF WPP. To address the challenge of few sample in WPP, a novel data-enhanced WPP method is proposed, which integrates BiGAN (BiGAN) module, self-attention mechanism (SAM) and neighborhood search particle swarm optimization (NSPSO). Within the data enhancement module, BiGAN is proposed to mitigate convergence difficulties and gradient instability encountered during the training of traditional GANs, thereby fostering closer alignment between the generated distribution and the real distribution. During the prediction stage, SAM is designed to obtain a new input matrix for weight allocation before BiGRU, enhancing its sensitivity to critical input information. Furthermore, to prevent SAM-BiGRU from succumbing to local optima, the Dense layer is optimized by the NSPSO algorithm to improve the prediction accuracy. Extensive experimental results in two scenarios demonstrate that the proposed approach surpasses other advanced methods to a certain extent, achieving one-step-ahead prediction accuracy rates of 0.9775 and 0.9810, respectively. This study provides novel ideas to the field of WPP and demonstrates the potential of the proposed model to improve the accuracy of wind farms in power prediction, especially for those with limited historical data. |
|---|---|
| AbstractList | The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) under the background of a substantial increase in wind power installed capacity worldwide. Hence, there is practical scientific significance in exploring high-precision prediction methods within the domain of NWF WPP. To address the challenge of few sample in WPP, a novel data-enhanced WPP method is proposed, which integrates BiGAN (BiGAN) module, self-attention mechanism (SAM) and neighborhood search particle swarm optimization (NSPSO). Within the data enhancement module, BiGAN is proposed to mitigate convergence difficulties and gradient instability encountered during the training of traditional GANs, thereby fostering closer alignment between the generated distribution and the real distribution. During the prediction stage, SAM is designed to obtain a new input matrix for weight allocation before BiGRU, enhancing its sensitivity to critical input information. Furthermore, to prevent SAM-BiGRU from succumbing to local optima, the Dense layer is optimized by the NSPSO algorithm to improve the prediction accuracy. Extensive experimental results in two scenarios demonstrate that the proposed approach surpasses other advanced methods to a certain extent, achieving one-step-ahead prediction accuracy rates of 0.9775 and 0.9810, respectively. This study provides novel ideas to the field of WPP and demonstrates the potential of the proposed model to improve the accuracy of wind farms in power prediction, especially for those with limited historical data. |
| Author | Chen, Fei Liu, Zhendong Liu, Shiyu Qiao, Hongyan |
| Author_xml | – sequence: 1 givenname: Shiyu orcidid: 0000-0003-0689-5100 surname: Liu fullname: Liu, Shiyu email: shiyu.liu@cwxu.edu.cn organization: School of Digital Economics and Management, Wuxi University, Wuxi, China – sequence: 2 givenname: Fei surname: Chen fullname: Chen, Fei organization: CHN ENERGY I&C Interconnection Technology Company Ltd., Beijing, China – sequence: 3 givenname: Zhendong surname: Liu fullname: Liu, Zhendong organization: China Xinghua Electrical Sciences Research Institute Company Ltd., Kowloon, Hong Kong – sequence: 4 givenname: Hongyan surname: Qiao fullname: Qiao, Hongyan organization: Wuxi Yunyin Technology Group Company Ltd., Jiangsu, China |
| BookMark | eNplkt9u0zAUxiM0JMbYE8CFJa5b4tiOE-5C94dJ1TopIC6tE_ukdUnjYqer-j57UBwyoQl8Y-v4-37HOp_fJme96zFJ3tN0TmlafqoWi-u6nmdpxudMpJIK_io5z2hezphg-dmL85vkMoRtGlcRS0KeJ0-rR_Ta7Wy_JlcwAKk1eG2HE7E9-WF7Qx7cET25cR41hCHqPpOKXCHuyRLB96Ox2u-9A72JhmFDvlhjo3iwroeO3GKPHgb7iKQysVcAb2P5Hoej8z8JxA73aNebxvmNc4bUERpJD_WKVN3a-UjcvUtet9AFvHzeL5LvN9ffFl9ny9Xt3aJazjQT5TBD5KZMc8ryBqXUEppUGC5ZXjBBKTWClUajkbTMtMg0Fq1kwpTxQhR5o0t2kdxNXONgq_be7sCflAOr_hScXyvwg9UdKpYJ06SIAGXK20I3wIuMtyZvx84ZjSw-sQ79Hk5H6Lq_QJqqMTgFWmMIagxOPQcXbR8nW5zorwOGQW3dwcdBBsUo51QKxseHskmlvQvBY_sfe_oU_7I_TC6LiC8cMo9Tk-w36qq1Dw |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.enconman.2019.112077 10.1016/j.enconman.2021.115036 10.1109/ACCESS.2020.2978635 10.1016/j.energy.2023.128986 10.1016/j.ijforecast.2015.03.001 10.1016/j.seta.2019.100601 10.1016/j.rser.2021.111758 10.1016/j.apenergy.2015.10.145 10.1016/j.energy.2021.121795 10.1109/TPWRS.2018.2794541 10.1145/3422622 10.1016/j.renene.2017.03.064 10.1016/j.ijepes.2019.105814 10.1016/j.enconman.2017.06.021 10.1016/j.media.2019.101552 10.1109/JSEN.2020.3013668 10.1016/j.enconman.2021.114790 10.1016/j.energy.2022.126419 10.1016/j.renene.2015.06.034 10.1016/j.asoc.2020.106463 10.1016/j.est.2023.108962 10.1016/j.renene.2020.10.119 10.1145/3559540 10.1016/j.enconman.2020.113731 10.35833/MPCE.2021.000717 10.1016/j.apenergy.2022.119608 10.3389/fenrg.2022.926774 10.3389/fenrg.2023.1211360 10.1016/j.eneco.2019.05.026 10.1016/j.eswa.2023.121510 10.1016/j.enconman.2021.114714 10.1049/rpg2.12085 10.1016/j.egyr.2022.11.202 10.1016/j.apenergy.2021.117766 10.1016/j.renene.2016.03.103 10.1109/ACCESS.2018.2875936 10.1016/j.isatra.2020.09.002 10.1016/j.renene.2021.12.100 10.1016/j.renene.2021.01.003 10.1016/j.enconman.2017.08.014 10.1016/j.energy.2018.02.142 10.1016/j.energy.2022.123497 10.1016/j.apenergy.2022.120291 10.1016/j.renene.2017.10.075 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3507154 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Journals (OA) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 183428 |
| ExternalDocumentID | oai_doaj_org_article_325db0eeaa904f8cba4824fd6f77c721 10.1109/access.2024.3507154 10_1109_ACCESS_2024_3507154 10769067 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province, in 2021 (Research on the Digital Transformation of the Manufacturing Industry under the New Development Pattern of Dual Circulation) grantid: 2021SJA2306 – fundername: High-Quality Project of Social Science Applied Research in Jiangsu Province, in 2024 (titled “Research on the Implementation Paths for Specialized, Sophisticated, Unique and Innovative Small and Medium-Sized Enterprises to Participate in Key Technology Tackling”) grantid: 24SYB-003 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-ee4d906136be77c7ab05d4736835111d539dced7192c52ce8f735d91d5586bc93 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:47 EDT 2025 Sun Sep 07 11:23:33 EDT 2025 Mon Jun 30 12:58:31 EDT 2025 Wed Oct 01 03:43:30 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-ee4d906136be77c7ab05d4736835111d539dced7192c52ce8f735d91d5586bc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0689-5100 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10769067 |
| PQID | 3144175349 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_10769067 proquest_journals_3144175349 unpaywall_primary_10_1109_access_2024_3507154 crossref_primary_10_1109_ACCESS_2024_3507154 doaj_primary_oai_doaj_org_article_325db0eeaa904f8cba4824fd6f77c721 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 Chen (ref33) ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref20 doi: 10.1016/j.enconman.2019.112077 – ident: ref41 doi: 10.1016/j.enconman.2021.115036 – ident: ref40 doi: 10.1109/ACCESS.2020.2978635 – ident: ref43 doi: 10.1016/j.energy.2023.128986 – start-page: 864 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref33 article-title: Pixelsnail: An improved autoregressive generative model – ident: ref24 doi: 10.1016/j.ijforecast.2015.03.001 – ident: ref1 doi: 10.1016/j.seta.2019.100601 – ident: ref8 doi: 10.1016/j.rser.2021.111758 – ident: ref4 doi: 10.1016/j.apenergy.2015.10.145 – ident: ref42 doi: 10.1016/j.energy.2021.121795 – ident: ref35 doi: 10.1109/TPWRS.2018.2794541 – ident: ref37 doi: 10.1145/3422622 – ident: ref17 doi: 10.1016/j.renene.2017.03.064 – ident: ref21 doi: 10.1016/j.ijepes.2019.105814 – ident: ref5 doi: 10.1016/j.enconman.2017.06.021 – ident: ref31 doi: 10.1016/j.media.2019.101552 – ident: ref34 doi: 10.1109/JSEN.2020.3013668 – ident: ref7 doi: 10.1016/j.enconman.2021.114790 – ident: ref19 doi: 10.1016/j.energy.2022.126419 – ident: ref29 doi: 10.1016/j.renene.2015.06.034 – ident: ref13 doi: 10.1016/j.asoc.2020.106463 – ident: ref45 doi: 10.1016/j.est.2023.108962 – ident: ref23 doi: 10.1016/j.renene.2020.10.119 – ident: ref32 doi: 10.1145/3559540 – ident: ref2 doi: 10.1016/j.enconman.2020.113731 – ident: ref11 doi: 10.35833/MPCE.2021.000717 – ident: ref15 doi: 10.1016/j.apenergy.2022.119608 – ident: ref3 doi: 10.3389/fenrg.2022.926774 – ident: ref39 doi: 10.3389/fenrg.2023.1211360 – ident: ref18 doi: 10.1016/j.eneco.2019.05.026 – ident: ref44 doi: 10.1016/j.eswa.2023.121510 – ident: ref38 doi: 10.1016/j.enconman.2021.114714 – ident: ref22 doi: 10.1049/rpg2.12085 – ident: ref27 doi: 10.1016/j.egyr.2022.11.202 – ident: ref6 doi: 10.1016/j.apenergy.2021.117766 – ident: ref26 doi: 10.1016/j.renene.2016.03.103 – ident: ref36 doi: 10.1109/ACCESS.2018.2875936 – ident: ref16 doi: 10.1016/j.isatra.2020.09.002 – ident: ref12 doi: 10.1016/j.renene.2021.12.100 – ident: ref10 doi: 10.1016/j.renene.2021.01.003 – ident: ref25 doi: 10.1016/j.enconman.2017.08.014 – ident: ref28 doi: 10.1016/j.energy.2018.02.142 – ident: ref9 doi: 10.1016/j.energy.2022.123497 – ident: ref30 doi: 10.1016/j.apenergy.2022.120291 – ident: ref14 doi: 10.1016/j.renene.2017.10.075 |
| SSID | ssj0000816957 |
| Score | 2.3022408 |
| Snippet | The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 183410 |
| SubjectTerms | Accuracy Algorithms Atmospheric modeling Autoregressive processes bidirectional gate recurrent unit bidirectional generative adversarial network Data models Data search Deep learning Generative adversarial networks Machine learning Modules neighborhood search particle swarm optimization New-built wind farms Numerical models Particle swarm optimization Prediction models Predictive models self-attention mechanism Wind farms Wind forecasting Wind power Wind power generation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8Sgi0FZz4EhoNvGTW7ptVSGxrQQVvUV-lkpLuuqmQvwffmg9dlplxYELx7zsieezPWOPvyHkvWEheOdE6QOSakeLNHYpr0pthDJC6EAFHhT-suAn5_TzBbuYpPrCmLBMD5wbbr-pmTOV91qrigZpjaaypsHxIIQV6Qh5XUk1cabSGCxnXDEx0gzNKrXfzufxj6JDWNOPDRpBjG5MRYmxf0yxsmFtPr7tV_r3L71cTiae4-fk2WgxQpslfUEe-f4leTrhEXxF_pxGQEboxAs41IMG3Fax0b6Gqx6-R68bzjAZGmAeTqvXGOn8CVo49H4FI8HqJbQju3j8YPgBB1d5sksrhZDJqXFkhJTBea0Rt7DIMeSgYw0LXGONgEKaZMhBzHD29RTa5eX1TSzx5zY5Pz76Nj8px_QLpW2YGkrvqVM43XPjsa21qZijouESNx9njjXKWe9EtBEtq62XQTTMqfiASW6sal6Trf66928IaG2lDpwH5Sg1ghuppQucutpw79WsIB_uNdGtMstGl7yTSnVZcR0qrhsVV5AD1NbDq0iRnW5E4HQjcLp_Aacg26jrSX0CSZtFQXbuld-N_XndNeh3Rs-OqoKUD4D4S1adklxuyPr2f8j6jjzBMvPSzw7ZGm5u_W40hgazl3B_B6QDB8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BukAsyquIlILugiUOjj0PDzs3paqQSCNBRFlZ8ywVwY0aRwi-hw_lXtutEpAQLG3PeF5nZs6dx7mMvbAixuC9SkIkUW1kpNilgk6MVdoqZSJXdFH43VSezPnbM3HW62zTXZjN_ftxql-Z1m0g2nEZH-XEXQS_zXakQOI9YDvz6az8RO7jxlInebsR-fQvMbfmnlaiv_epskUv76zrpfn-zSwWGzPN8b3uCveqFSikAyZfRuvGjtyP3-Qb_7EQ99luzzih7CDygN0K9UN2d0OH8BH7eYqARujhAxyZxgBtyzjk53BRw0e02mFGztSA_Hg6s6KT0q-hhKMQltALtJ5D2auTY4TmMxxedJNlu9IInbg1jazQeoBeGcI9TLsz6GAwhSmt0SIgSWYZukPQMHt_CuXi_PIK__h1j82P33yYnCS9-4bE5UI3SQjca6IL0galnDI2FZ6rXBa0eTn2ItfeBa-QYzqRuVBElQuv8YMopHU6f8wG9WUdnjAwxhUmShm159wqaQtT-Ci5z6wMQY-H7OV1w1bLTqWjaq2bVFflZIJQrqjyq77yh-yQGv8mKElsty-w0aq-x1Z5JrxNQzBGpzwWzhpeZDx6GakwGaa5R9DZSE-R6LMasoNrLFX9eLCqcrJb0TLkesiSG3z9kdcOKFt53f_P8Ads0FytwzOkSo193neRXwnPETI priority: 102 providerName: Unpaywall |
| Title | Overcoming Data Scarcity in Wind Power Forecasting: A Deep Learning Approach With Bidirectional Generative Adversarial Network and Neighborhood Search PSO Algorithm |
| URI | https://ieeexplore.ieee.org/document/10769067 https://www.proquest.com/docview/3144175349 https://doi.org/10.1109/access.2024.3507154 https://doaj.org/article/325db0eeaa904f8cba4824fd6f77c721 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoOUAPPIsIlMgHjmxIdv1Yc9umVBUSaSSIKKeVH-O2IiRRs1EFv4cfisfeRAkIids-vGtb89meGY-_IeS14d6DczIDj6TaQSMNQwpUpo1URkrtmcSDwh9H4mzCPlzwi_awejwLAwAx-Ax6eBn38t3crtBVFka4RF5duUf2ZCnSYa2NQwUzSCguW2ahQV-9rYbD0IlgA-asV6Dew9nO6hNJ-tusKjsK5r3VbKF_3OrpdGutOX1IRutWphCTb71VY3r25x8Ejv_djUfkQat10irB5DG5A7Mn5GCLi_Ap-XUeQB3gF27oiW40xa0ZG3R0ej2jX4LlTseYUI1iLk-rlxgt_Y5W9ARgQVuS1ktatQzl4YPmih5fpwUzehtpIrjG2ZXGLNBLjdinoxSHTnWoYYR-2gBKpFqmKRCajj-d02p6Ob8Jf_x-SCan7z8Pz7I2hUNmC66aDIA5hSqDMCClldr0uWOyECVuYA4cL5Sz4GTQMy3PLZReFtyp8IKXwlhVPCP7s_kMnhOqtS21F8Irx5iRwpS6dF4wlxsBoAYd8mYt2nqRmDrqaOH0VZ2QUCMS6hYJHXKM4t8URZrt-CCIqm5HbV3k3Jk-gNaqz3xpjWZlzrwTHjuThzoPUbxb9SXJdsjRGk11Oycs6wJt12AdMtUh2QZhf7VVx0SZO2198Y9qXpL7WCx5hI7IfnOzgldBR2pMN_oWunGEdMndyWhcff0NDwATrg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHAoHnkUECvjAkQ3Jrr1ec9umVAHabSVa0dvKj3Gpmm6iZiMEv4cfisfeRAkIidu-vLY1n-2Z8fgbQt5o7hxYKxJwSKrtNVI_pEAmSguphVCOCTwofFTl4zP26Zyfd4fVw1kYAAjBZ9DHy7CXb6dmga4yP8IF8uqK2-QOZ4zxeFxr5VLBHBKSi45baDiQ78rRyHfDW4Ep62eo-XC2sf4Emv4ur8qGirm9aGbqx3c1maytNgcPSLVsZwwyueovWt03P_-gcPzvjjwk9zu9k5YRKI_ILWgek3trbIRPyK9jD2sPQH9D91WrKG7OGK-l08uGfvW2Oz3BlGoUs3kaNcd46fe0pPsAM9rRtF7QsuMo9wXab3TvMi6Zwd9II8U1zq805IGeK0Q_rWIkOlW-hgo9tR6WSLZMYyg0PflyTMvJxfTG__F6h5wdfDgdjZMuiUNiMi7bBIBZiUpDrkEII5QecMtElhe4hTm0PJPWgBVe0zQ8NVA4kXEr_Qte5NrI7CnZaqYNPCNUKVMol-dOWsa0yHWhCutyZlOdA8hhj7xdiraeRa6OOtg4A1lHJNSIhLpDQo_sofhXnyLRdnjgRVV347bOUm71AEApOWCuMFqxImXO5g47k_o6d1C8a_VFyfbI7hJNdTcrzOsMrVdvHzLZI8kKYX-1VYVUmRttff6Pal6T7fHp0WF9-LH6_ILcxSLRP7RLttqbBbz0GlOrX4Vx8ht0-RRW |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BukAsyquIlILugiUOjj0PDzs3paqQSCNBRFlZ8ywVwY0aRwi-hw_lXtutEpAQLG3PeF5nZs6dx7mMvbAixuC9SkIkUW1kpNilgk6MVdoqZSJXdFH43VSezPnbM3HW62zTXZjN_ftxql-Z1m0g2nEZH-XEXQS_zXakQOI9YDvz6az8RO7jxlInebsR-fQvMbfmnlaiv_epskUv76zrpfn-zSwWGzPN8b3uCveqFSikAyZfRuvGjtyP3-Qb_7EQ99luzzih7CDygN0K9UN2d0OH8BH7eYqARujhAxyZxgBtyzjk53BRw0e02mFGztSA_Hg6s6KT0q-hhKMQltALtJ5D2auTY4TmMxxedJNlu9IInbg1jazQeoBeGcI9TLsz6GAwhSmt0SIgSWYZukPQMHt_CuXi_PIK__h1j82P33yYnCS9-4bE5UI3SQjca6IL0galnDI2FZ6rXBa0eTn2ItfeBa-QYzqRuVBElQuv8YMopHU6f8wG9WUdnjAwxhUmShm159wqaQtT-Ci5z6wMQY-H7OV1w1bLTqWjaq2bVFflZIJQrqjyq77yh-yQGv8mKElsty-w0aq-x1Z5JrxNQzBGpzwWzhpeZDx6GakwGaa5R9DZSE-R6LMasoNrLFX9eLCqcrJb0TLkesiSG3z9kdcOKFt53f_P8Ads0FytwzOkSo193neRXwnPETI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Data+Scarcity+in+Wind+Power+Forecasting%3A+A+Deep+Learning+Approach+With+Bidirectional+Generative+Adversarial+Network+and+Neighborhood+Search+PSO+Algorithm&rft.jtitle=IEEE+access&rft.au=Liu%2C+Shiyu&rft.au=Chen%2C+Fei&rft.au=Liu%2C+Zhendong&rft.au=Qiao%2C+Hongyan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=183410&rft.epage=183428&rft_id=info:doi/10.1109%2FACCESS.2024.3507154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3507154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |