Overcoming Data Scarcity in Wind Power Forecasting: A Deep Learning Approach With Bidirectional Generative Adversarial Network and Neighborhood Search PSO Algorithm

The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) und...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 183410 - 183428
Main Authors Liu, Shiyu, Chen, Fei, Liu, Zhendong, Qiao, Hongyan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3507154

Cover

Abstract The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) under the background of a substantial increase in wind power installed capacity worldwide. Hence, there is practical scientific significance in exploring high-precision prediction methods within the domain of NWF WPP. To address the challenge of few sample in WPP, a novel data-enhanced WPP method is proposed, which integrates BiGAN (BiGAN) module, self-attention mechanism (SAM) and neighborhood search particle swarm optimization (NSPSO). Within the data enhancement module, BiGAN is proposed to mitigate convergence difficulties and gradient instability encountered during the training of traditional GANs, thereby fostering closer alignment between the generated distribution and the real distribution. During the prediction stage, SAM is designed to obtain a new input matrix for weight allocation before BiGRU, enhancing its sensitivity to critical input information. Furthermore, to prevent SAM-BiGRU from succumbing to local optima, the Dense layer is optimized by the NSPSO algorithm to improve the prediction accuracy. Extensive experimental results in two scenarios demonstrate that the proposed approach surpasses other advanced methods to a certain extent, achieving one-step-ahead prediction accuracy rates of 0.9775 and 0.9810, respectively. This study provides novel ideas to the field of WPP and demonstrates the potential of the proposed model to improve the accuracy of wind farms in power prediction, especially for those with limited historical data.
AbstractList The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability of historical data poses challenges for traditional deep learning prediction models to accurately forecast for new-built wind farms (NWF) under the background of a substantial increase in wind power installed capacity worldwide. Hence, there is practical scientific significance in exploring high-precision prediction methods within the domain of NWF WPP. To address the challenge of few sample in WPP, a novel data-enhanced WPP method is proposed, which integrates BiGAN (BiGAN) module, self-attention mechanism (SAM) and neighborhood search particle swarm optimization (NSPSO). Within the data enhancement module, BiGAN is proposed to mitigate convergence difficulties and gradient instability encountered during the training of traditional GANs, thereby fostering closer alignment between the generated distribution and the real distribution. During the prediction stage, SAM is designed to obtain a new input matrix for weight allocation before BiGRU, enhancing its sensitivity to critical input information. Furthermore, to prevent SAM-BiGRU from succumbing to local optima, the Dense layer is optimized by the NSPSO algorithm to improve the prediction accuracy. Extensive experimental results in two scenarios demonstrate that the proposed approach surpasses other advanced methods to a certain extent, achieving one-step-ahead prediction accuracy rates of 0.9775 and 0.9810, respectively. This study provides novel ideas to the field of WPP and demonstrates the potential of the proposed model to improve the accuracy of wind farms in power prediction, especially for those with limited historical data.
Author Chen, Fei
Liu, Zhendong
Liu, Shiyu
Qiao, Hongyan
Author_xml – sequence: 1
  givenname: Shiyu
  orcidid: 0000-0003-0689-5100
  surname: Liu
  fullname: Liu, Shiyu
  email: shiyu.liu@cwxu.edu.cn
  organization: School of Digital Economics and Management, Wuxi University, Wuxi, China
– sequence: 2
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: CHN ENERGY I&C Interconnection Technology Company Ltd., Beijing, China
– sequence: 3
  givenname: Zhendong
  surname: Liu
  fullname: Liu, Zhendong
  organization: China Xinghua Electrical Sciences Research Institute Company Ltd., Kowloon, Hong Kong
– sequence: 4
  givenname: Hongyan
  surname: Qiao
  fullname: Qiao, Hongyan
  organization: Wuxi Yunyin Technology Group Company Ltd., Jiangsu, China
BookMark eNplkt9u0zAUxiM0JMbYE8CFJa5b4tiOE-5C94dJ1TopIC6tE_ukdUnjYqer-j57UBwyoQl8Y-v4-37HOp_fJme96zFJ3tN0TmlafqoWi-u6nmdpxudMpJIK_io5z2hezphg-dmL85vkMoRtGlcRS0KeJ0-rR_Ta7Wy_JlcwAKk1eG2HE7E9-WF7Qx7cET25cR41hCHqPpOKXCHuyRLB96Ox2u-9A72JhmFDvlhjo3iwroeO3GKPHgb7iKQysVcAb2P5Hoej8z8JxA73aNebxvmNc4bUERpJD_WKVN3a-UjcvUtet9AFvHzeL5LvN9ffFl9ny9Xt3aJazjQT5TBD5KZMc8ryBqXUEppUGC5ZXjBBKTWClUajkbTMtMg0Fq1kwpTxQhR5o0t2kdxNXONgq_be7sCflAOr_hScXyvwg9UdKpYJ06SIAGXK20I3wIuMtyZvx84ZjSw-sQ79Hk5H6Lq_QJqqMTgFWmMIagxOPQcXbR8nW5zorwOGQW3dwcdBBsUo51QKxseHskmlvQvBY_sfe_oU_7I_TC6LiC8cMo9Tk-w36qq1Dw
CODEN IAECCG
Cites_doi 10.1016/j.enconman.2019.112077
10.1016/j.enconman.2021.115036
10.1109/ACCESS.2020.2978635
10.1016/j.energy.2023.128986
10.1016/j.ijforecast.2015.03.001
10.1016/j.seta.2019.100601
10.1016/j.rser.2021.111758
10.1016/j.apenergy.2015.10.145
10.1016/j.energy.2021.121795
10.1109/TPWRS.2018.2794541
10.1145/3422622
10.1016/j.renene.2017.03.064
10.1016/j.ijepes.2019.105814
10.1016/j.enconman.2017.06.021
10.1016/j.media.2019.101552
10.1109/JSEN.2020.3013668
10.1016/j.enconman.2021.114790
10.1016/j.energy.2022.126419
10.1016/j.renene.2015.06.034
10.1016/j.asoc.2020.106463
10.1016/j.est.2023.108962
10.1016/j.renene.2020.10.119
10.1145/3559540
10.1016/j.enconman.2020.113731
10.35833/MPCE.2021.000717
10.1016/j.apenergy.2022.119608
10.3389/fenrg.2022.926774
10.3389/fenrg.2023.1211360
10.1016/j.eneco.2019.05.026
10.1016/j.eswa.2023.121510
10.1016/j.enconman.2021.114714
10.1049/rpg2.12085
10.1016/j.egyr.2022.11.202
10.1016/j.apenergy.2021.117766
10.1016/j.renene.2016.03.103
10.1109/ACCESS.2018.2875936
10.1016/j.isatra.2020.09.002
10.1016/j.renene.2021.12.100
10.1016/j.renene.2021.01.003
10.1016/j.enconman.2017.08.014
10.1016/j.energy.2018.02.142
10.1016/j.energy.2022.123497
10.1016/j.apenergy.2022.120291
10.1016/j.renene.2017.10.075
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3507154
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Journals (OA)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 183428
ExternalDocumentID oai_doaj_org_article_325db0eeaa904f8cba4824fd6f77c721
10.1109/access.2024.3507154
10_1109_ACCESS_2024_3507154
10769067
Genre orig-research
GrantInformation_xml – fundername: Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province, in 2021 (Research on the Digital Transformation of the Manufacturing Industry under the New Development Pattern of Dual Circulation)
  grantid: 2021SJA2306
– fundername: High-Quality Project of Social Science Applied Research in Jiangsu Province, in 2024 (titled “Research on the Implementation Paths for Specialized, Sophisticated, Unique and Innovative Small and Medium-Sized Enterprises to Participate in Key Technology Tackling”)
  grantid: 24SYB-003
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-ee4d906136be77c7ab05d4736835111d539dced7192c52ce8f735d91d5586bc93
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:47 EDT 2025
Sun Sep 07 11:23:33 EDT 2025
Mon Jun 30 12:58:31 EDT 2025
Wed Oct 01 03:43:30 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ee4d906136be77c7ab05d4736835111d539dced7192c52ce8f735d91d5586bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0689-5100
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10769067
PQID 3144175349
PQPubID 4845423
PageCount 19
ParticipantIDs ieee_primary_10769067
proquest_journals_3144175349
unpaywall_primary_10_1109_access_2024_3507154
crossref_primary_10_1109_ACCESS_2024_3507154
doaj_primary_oai_doaj_org_article_325db0eeaa904f8cba4824fd6f77c721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
Chen (ref33)
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1016/j.enconman.2019.112077
– ident: ref41
  doi: 10.1016/j.enconman.2021.115036
– ident: ref40
  doi: 10.1109/ACCESS.2020.2978635
– ident: ref43
  doi: 10.1016/j.energy.2023.128986
– start-page: 864
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref33
  article-title: Pixelsnail: An improved autoregressive generative model
– ident: ref24
  doi: 10.1016/j.ijforecast.2015.03.001
– ident: ref1
  doi: 10.1016/j.seta.2019.100601
– ident: ref8
  doi: 10.1016/j.rser.2021.111758
– ident: ref4
  doi: 10.1016/j.apenergy.2015.10.145
– ident: ref42
  doi: 10.1016/j.energy.2021.121795
– ident: ref35
  doi: 10.1109/TPWRS.2018.2794541
– ident: ref37
  doi: 10.1145/3422622
– ident: ref17
  doi: 10.1016/j.renene.2017.03.064
– ident: ref21
  doi: 10.1016/j.ijepes.2019.105814
– ident: ref5
  doi: 10.1016/j.enconman.2017.06.021
– ident: ref31
  doi: 10.1016/j.media.2019.101552
– ident: ref34
  doi: 10.1109/JSEN.2020.3013668
– ident: ref7
  doi: 10.1016/j.enconman.2021.114790
– ident: ref19
  doi: 10.1016/j.energy.2022.126419
– ident: ref29
  doi: 10.1016/j.renene.2015.06.034
– ident: ref13
  doi: 10.1016/j.asoc.2020.106463
– ident: ref45
  doi: 10.1016/j.est.2023.108962
– ident: ref23
  doi: 10.1016/j.renene.2020.10.119
– ident: ref32
  doi: 10.1145/3559540
– ident: ref2
  doi: 10.1016/j.enconman.2020.113731
– ident: ref11
  doi: 10.35833/MPCE.2021.000717
– ident: ref15
  doi: 10.1016/j.apenergy.2022.119608
– ident: ref3
  doi: 10.3389/fenrg.2022.926774
– ident: ref39
  doi: 10.3389/fenrg.2023.1211360
– ident: ref18
  doi: 10.1016/j.eneco.2019.05.026
– ident: ref44
  doi: 10.1016/j.eswa.2023.121510
– ident: ref38
  doi: 10.1016/j.enconman.2021.114714
– ident: ref22
  doi: 10.1049/rpg2.12085
– ident: ref27
  doi: 10.1016/j.egyr.2022.11.202
– ident: ref6
  doi: 10.1016/j.apenergy.2021.117766
– ident: ref26
  doi: 10.1016/j.renene.2016.03.103
– ident: ref36
  doi: 10.1109/ACCESS.2018.2875936
– ident: ref16
  doi: 10.1016/j.isatra.2020.09.002
– ident: ref12
  doi: 10.1016/j.renene.2021.12.100
– ident: ref10
  doi: 10.1016/j.renene.2021.01.003
– ident: ref25
  doi: 10.1016/j.enconman.2017.08.014
– ident: ref28
  doi: 10.1016/j.energy.2018.02.142
– ident: ref9
  doi: 10.1016/j.energy.2022.123497
– ident: ref30
  doi: 10.1016/j.apenergy.2022.120291
– ident: ref14
  doi: 10.1016/j.renene.2017.10.075
SSID ssj0000816957
Score 2.3022408
Snippet The precision and stability of wind power prediction (WPP) are critical for the grid-connected operation of wind farms. However, the insufficient availability...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 183410
SubjectTerms Accuracy
Algorithms
Atmospheric modeling
Autoregressive processes
bidirectional gate recurrent unit
bidirectional generative adversarial network
Data models
Data search
Deep learning
Generative adversarial networks
Machine learning
Modules
neighborhood search particle swarm optimization
New-built wind farms
Numerical models
Particle swarm optimization
Prediction models
Predictive models
self-attention mechanism
Wind farms
Wind forecasting
Wind power
Wind power generation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8Sgi0FZz4EhoNvGTW7ptVSGxrQQVvUV-lkpLuuqmQvwffmg9dlplxYELx7zsieezPWOPvyHkvWEheOdE6QOSakeLNHYpr0pthDJC6EAFHhT-suAn5_TzBbuYpPrCmLBMD5wbbr-pmTOV91qrigZpjaaypsHxIIQV6Qh5XUk1cabSGCxnXDEx0gzNKrXfzufxj6JDWNOPDRpBjG5MRYmxf0yxsmFtPr7tV_r3L71cTiae4-fk2WgxQpslfUEe-f4leTrhEXxF_pxGQEboxAs41IMG3Fax0b6Gqx6-R68bzjAZGmAeTqvXGOn8CVo49H4FI8HqJbQju3j8YPgBB1d5sksrhZDJqXFkhJTBea0Rt7DIMeSgYw0LXGONgEKaZMhBzHD29RTa5eX1TSzx5zY5Pz76Nj8px_QLpW2YGkrvqVM43XPjsa21qZijouESNx9njjXKWe9EtBEtq62XQTTMqfiASW6sal6Trf66928IaG2lDpwH5Sg1ghuppQucutpw79WsIB_uNdGtMstGl7yTSnVZcR0qrhsVV5AD1NbDq0iRnW5E4HQjcLp_Aacg26jrSX0CSZtFQXbuld-N_XndNeh3Rs-OqoKUD4D4S1adklxuyPr2f8j6jjzBMvPSzw7ZGm5u_W40hgazl3B_B6QDB8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BukAsyquIlILugiUOjj0PDzs3paqQSCNBRFlZ8ywVwY0aRwi-hw_lXtutEpAQLG3PeF5nZs6dx7mMvbAixuC9SkIkUW1kpNilgk6MVdoqZSJXdFH43VSezPnbM3HW62zTXZjN_ftxql-Z1m0g2nEZH-XEXQS_zXakQOI9YDvz6az8RO7jxlInebsR-fQvMbfmnlaiv_epskUv76zrpfn-zSwWGzPN8b3uCveqFSikAyZfRuvGjtyP3-Qb_7EQ99luzzih7CDygN0K9UN2d0OH8BH7eYqARujhAxyZxgBtyzjk53BRw0e02mFGztSA_Hg6s6KT0q-hhKMQltALtJ5D2auTY4TmMxxedJNlu9IInbg1jazQeoBeGcI9TLsz6GAwhSmt0SIgSWYZukPQMHt_CuXi_PIK__h1j82P33yYnCS9-4bE5UI3SQjca6IL0galnDI2FZ6rXBa0eTn2ItfeBa-QYzqRuVBElQuv8YMopHU6f8wG9WUdnjAwxhUmShm159wqaQtT-Ci5z6wMQY-H7OV1w1bLTqWjaq2bVFflZIJQrqjyq77yh-yQGv8mKElsty-w0aq-x1Z5JrxNQzBGpzwWzhpeZDx6GakwGaa5R9DZSE-R6LMasoNrLFX9eLCqcrJb0TLkesiSG3z9kdcOKFt53f_P8Ads0FytwzOkSo193neRXwnPETI
  priority: 102
  providerName: Unpaywall
Title Overcoming Data Scarcity in Wind Power Forecasting: A Deep Learning Approach With Bidirectional Generative Adversarial Network and Neighborhood Search PSO Algorithm
URI https://ieeexplore.ieee.org/document/10769067
https://www.proquest.com/docview/3144175349
https://doi.org/10.1109/access.2024.3507154
https://doaj.org/article/325db0eeaa904f8cba4824fd6f77c721
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoOUAPPIsIlMgHjmxIdv1Yc9umVBUSaSSIKKeVH-O2IiRRs1EFv4cfisfeRAkIids-vGtb89meGY-_IeS14d6DczIDj6TaQSMNQwpUpo1URkrtmcSDwh9H4mzCPlzwi_awejwLAwAx-Ax6eBn38t3crtBVFka4RF5duUf2ZCnSYa2NQwUzSCguW2ahQV-9rYbD0IlgA-asV6Dew9nO6hNJ-tusKjsK5r3VbKF_3OrpdGutOX1IRutWphCTb71VY3r25x8Ejv_djUfkQat10irB5DG5A7Mn5GCLi_Ap-XUeQB3gF27oiW40xa0ZG3R0ej2jX4LlTseYUI1iLk-rlxgt_Y5W9ARgQVuS1ktatQzl4YPmih5fpwUzehtpIrjG2ZXGLNBLjdinoxSHTnWoYYR-2gBKpFqmKRCajj-d02p6Ob8Jf_x-SCan7z8Pz7I2hUNmC66aDIA5hSqDMCClldr0uWOyECVuYA4cL5Sz4GTQMy3PLZReFtyp8IKXwlhVPCP7s_kMnhOqtS21F8Irx5iRwpS6dF4wlxsBoAYd8mYt2nqRmDrqaOH0VZ2QUCMS6hYJHXKM4t8URZrt-CCIqm5HbV3k3Jk-gNaqz3xpjWZlzrwTHjuThzoPUbxb9SXJdsjRGk11Oycs6wJt12AdMtUh2QZhf7VVx0SZO2198Y9qXpL7WCx5hI7IfnOzgldBR2pMN_oWunGEdMndyWhcff0NDwATrg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHAoHnkUECvjAkQ3Jrr1ec9umVAHabSVa0dvKj3Gpmm6iZiMEv4cfisfeRAkIidu-vLY1n-2Z8fgbQt5o7hxYKxJwSKrtNVI_pEAmSguphVCOCTwofFTl4zP26Zyfd4fVw1kYAAjBZ9DHy7CXb6dmga4yP8IF8uqK2-QOZ4zxeFxr5VLBHBKSi45baDiQ78rRyHfDW4Ep62eo-XC2sf4Emv4ur8qGirm9aGbqx3c1maytNgcPSLVsZwwyueovWt03P_-gcPzvjjwk9zu9k5YRKI_ILWgek3trbIRPyK9jD2sPQH9D91WrKG7OGK-l08uGfvW2Oz3BlGoUs3kaNcd46fe0pPsAM9rRtF7QsuMo9wXab3TvMi6Zwd9II8U1zq805IGeK0Q_rWIkOlW-hgo9tR6WSLZMYyg0PflyTMvJxfTG__F6h5wdfDgdjZMuiUNiMi7bBIBZiUpDrkEII5QecMtElhe4hTm0PJPWgBVe0zQ8NVA4kXEr_Qte5NrI7CnZaqYNPCNUKVMol-dOWsa0yHWhCutyZlOdA8hhj7xdiraeRa6OOtg4A1lHJNSIhLpDQo_sofhXnyLRdnjgRVV347bOUm71AEApOWCuMFqxImXO5g47k_o6d1C8a_VFyfbI7hJNdTcrzOsMrVdvHzLZI8kKYX-1VYVUmRttff6Pal6T7fHp0WF9-LH6_ILcxSLRP7RLttqbBbz0GlOrX4Vx8ht0-RRW
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BukAsyquIlILugiUOjj0PDzs3paqQSCNBRFlZ8ywVwY0aRwi-hw_lXtutEpAQLG3PeF5nZs6dx7mMvbAixuC9SkIkUW1kpNilgk6MVdoqZSJXdFH43VSezPnbM3HW62zTXZjN_ftxql-Z1m0g2nEZH-XEXQS_zXakQOI9YDvz6az8RO7jxlInebsR-fQvMbfmnlaiv_epskUv76zrpfn-zSwWGzPN8b3uCveqFSikAyZfRuvGjtyP3-Qb_7EQ99luzzih7CDygN0K9UN2d0OH8BH7eYqARujhAxyZxgBtyzjk53BRw0e02mFGztSA_Hg6s6KT0q-hhKMQltALtJ5D2auTY4TmMxxedJNlu9IInbg1jazQeoBeGcI9TLsz6GAwhSmt0SIgSWYZukPQMHt_CuXi_PIK__h1j82P33yYnCS9-4bE5UI3SQjca6IL0galnDI2FZ6rXBa0eTn2ItfeBa-QYzqRuVBElQuv8YMopHU6f8wG9WUdnjAwxhUmShm159wqaQtT-Ci5z6wMQY-H7OV1w1bLTqWjaq2bVFflZIJQrqjyq77yh-yQGv8mKElsty-w0aq-x1Z5JrxNQzBGpzwWzhpeZDx6GakwGaa5R9DZSE-R6LMasoNrLFX9eLCqcrJb0TLkesiSG3z9kdcOKFt53f_P8Ads0FytwzOkSo193neRXwnPETI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Data+Scarcity+in+Wind+Power+Forecasting%3A+A+Deep+Learning+Approach+With+Bidirectional+Generative+Adversarial+Network+and+Neighborhood+Search+PSO+Algorithm&rft.jtitle=IEEE+access&rft.au=Liu%2C+Shiyu&rft.au=Chen%2C+Fei&rft.au=Liu%2C+Zhendong&rft.au=Qiao%2C+Hongyan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=183410&rft.epage=183428&rft_id=info:doi/10.1109%2FACCESS.2024.3507154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3507154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon