Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control

Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergenc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 12; no. 5; pp. 788 - 799
Main Authors Cabrera, L.A., Elbuluk, M.E., Zinger, D.S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.1997
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/63.622996

Cover

Abstract Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages.
AbstractList Cabrera et al discuss the application of neural networks to control induction machines using direct torque control.
Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages.
Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages
Author Elbuluk, M.E.
Cabrera, L.A.
Zinger, D.S.
Author_xml – sequence: 1
  givenname: L.A.
  surname: Cabrera
  fullname: Cabrera, L.A.
  organization: Dept. of Electr. Eng., Akron Univ., OH, USA
– sequence: 2
  givenname: M.E.
  surname: Elbuluk
  fullname: Elbuluk, M.E.
– sequence: 3
  givenname: D.S.
  surname: Zinger
  fullname: Zinger, D.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2159908$$DView record in Pascal Francis
BookMark eNptkU1LJDEQhsOisDPqYa97CrIIHnomH91J57iIuy4MeNFzk0lXr3F7krGSVvbmTzfDDB5ESCiKPO9bqao5OQoxACHfOFtwzsxSyYUSwhj1hcy4qXnFONNHZMbatqlaY-RXMk_pkTFeN4zPyOsKLAYf_tIM7iH4pwkSzZFmtD7QABPasYT8EvFforYcmrLNQBOM4HJEOpTrwzNgBqwG6EvSTy77GOjGugcfiuGUdhV6j0VS3LFUoS6GjHE8JceDHROcHeIJuf91fXd1U61uf_-5-rmqnGxMrqB3QmsLTLOmFU71TAswLfRqEKBVL9alac1hXVsNTrtGgVxz3fS1WjuujDwhF3vfLcZdk7nb-ORgHG2AOKVOtFLWppYFPP8APsYJQ_lbJ5hSbSN1XaAfB8gmZ8cBbXA-dVv0G4v_O8EbY1hbsMs95jCmhDC8E5x1u311Snb7fRV2-YF1vkza78Zk_fip4vte4QHg3fnw-AY4FqNw
CODEN ITPEE8
CitedBy_id crossref_primary_10_1088_1757_899X_433_1_012079
crossref_primary_10_1016_j_jclepro_2021_126944
crossref_primary_10_1109_TMAG_2010_2071392
crossref_primary_10_1109_20_767201
crossref_primary_10_1016_S0360_8352_99_00101_1
crossref_primary_10_1002_2050_7038_12705
crossref_primary_10_1109_TIE_2004_831717
Cites_doi 10.1080/00207179008934126
10.1016/0005-1098(92)90053-I
10.1016/0893-6080(89)90020-8
10.1080/00207179008934127
10.1016/0893-6080(89)90003-8
10.1109/IAS.1989.96699
10.1109/MASSP.1987.1165576
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 1997
Copyright_xml – notice: 1998 INIST-CNRS
– notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 1997
DBID AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
DOI 10.1109/63.622996
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0107
EndPage 799
ExternalDocumentID 18130498
2159908
10_1109_63_622996
622996
Genre Feature
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ID FETCH-LOGICAL-c359t-edc277ae070582c6d072e98ed6f2e76d2b29971eb4a7ec7c56e3b175d46bc1693
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Sun Sep 28 07:25:28 EDT 2025
Sun Jun 29 16:56:22 EDT 2025
Mon Jul 21 09:17:14 EDT 2025
Wed Oct 01 03:51:25 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Parallel algorithm
Adaptive algorithm
Electric drive
Neural network
Recursive algorithm
Backpropagation algorithm
Ac motor
Torque control
Induction machine
Descent method
Kalman filtering
Newton method
Gradient method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-edc277ae070582c6d072e98ed6f2e76d2b29971eb4a7ec7c56e3b175d46bc1693
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 206685374
PQPubID 37080
PageCount 12
ParticipantIDs proquest_journals_206685374
pascalfrancis_primary_2159908
ieee_primary_622996
crossref_primary_10_1109_63_622996
crossref_citationtrail_10_1109_63_622996
proquest_miscellaneous_28334943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-09-01
PublicationDateYYYYMMDD 1997-09-01
PublicationDate_xml – month: 09
  year: 1997
  text: 1997-09-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 1997
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References singhal (ref11) 1989
tawel (ref5) 1989
ref12
ref2
ref1
kosko (ref3) 1992
ref8
ref7
ref4
ref6
anderson (ref10) 1979
krause (ref13) 1986
hraiskila (ref9) 1991
References_xml – ident: ref6
  doi: 10.1080/00207179008934126
– year: 1979
  ident: ref10
  publication-title: Optimal Filtering
– year: 1986
  ident: ref13
  publication-title: Analysis of Electric Machinery
– ident: ref4
  doi: 10.1016/0005-1098(92)90053-I
– start-page: 84
  year: 1991
  ident: ref9
  article-title: properties of a neural-network controller
  publication-title: Proc IECON
– ident: ref1
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref12
  doi: 10.1080/00207179008934127
– ident: ref2
  doi: 10.1016/0893-6080(89)90003-8
– year: 1992
  ident: ref3
  publication-title: Neural Networks and Fuzzy Systems A Dynamic Systems Approach to Machine Intelligence
– ident: ref8
  doi: 10.1109/IAS.1989.96699
– year: 1989
  ident: ref11
  article-title: training multilayer perceptrons with the extended kalman filter
  publication-title: Advances in Neural Information Processing System 1
– ident: ref7
  doi: 10.1109/MASSP.1987.1165576
– year: 1989
  ident: ref5
  article-title: does the neuron learn like the synapse?
  publication-title: Advances in Neural Information Processing System 1
SSID ssj0014501
Score 1.6753068
Snippet Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models,...
Cabrera et al discuss the application of neural networks to control induction machines using direct torque control.
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 788
SubjectTerms Application software
Applied sciences
Backpropagation algorithms
Computer errors
Convergence
Electrical engineering. Electrical power engineering
Electrical machines
Electronics
Exact sciences and technology
Industrial control
Industrial training
Machinery
Mathematical model
Neural networks
Regulation and control
Stability
Torque control
Title Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control
URI https://ieeexplore.ieee.org/document/622996
https://www.proquest.com/docview/206685374
https://www.proquest.com/docview/28334943
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 0885-8993
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EaU8LMTAkjZNYjsZEaJCDEwgsUV-nBECUtSkCxM_nbOdRjw6IGVIYseWnfPd2f78HSHnTBWGQ6Yjj61AhYd60DIdZWPNrbZcxdIDZO_4zUN2-8geW55tfxYGADz4DIbu1u_lm6meu6WyEU9QefJVsipyHo5qdRsGGfORjnHMsAinEGlLIjSOixFPh-HDH6bHx1JxSEhZY2fYEMXij0L2VmayGY5v156c0IFLXobzRg31xy_qxn82YItstN4mvQzisU1WoNoh6984CHfJZ8uw-kQ7OteaNlPqY0dQR3eJBVQBLF5TiRf1h5BoDWHFn6LbS58rF9cZZpEFgw8mcNLSNw_VxAIdvP6JBvuJpc-wFtqi5PfIw-T6_uomasMyRDplRROB0YkQElBZsDzR3MQigSIHw20CgptEYSPFGFQmBWihGYdUoZdiMq60437ZJ71qWsEBoYlE_WFVrPPConQkUhgrU8FUbCRYI_vkYvHHSt1ylrvmv5Z-7hIXJU_L0Kl9ctZlfQ9EHcsy7bif0mVYvD3-IQVdMrpDaKzzPhkspKJsR3hdOhp8dHVE1ienXSoOTbffIiuYzjFLnjryn_Rwaa0DshaocB1e7Yj0mtkcjtHBadSJF-0v0Hb9sQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAcaCmgLm2pVfXAJdts4kdyRIhqKaWnVuot8mNcVUC22mQvnPjpjO1sRKEHpByS2LFlZzwztj9_A3AiTO0kcptFbAUpPNKDXtiMz6z01kuT6wiQvZTza35-I24Gnu14FgYRI_gMp-E27uW7hV2FpbJTWZDylE9gS3DORTqsNW4ZcBFjHdOoERlNIsqBRmiW16eynKZPHxifGE0lYCF1R93hUxyLf1RytDNn2-kAdxfpCQO85Nt01Zup_fkXeeN_NmEHXgz-JvuQBOQlbGC7C8__YCF8Bb8GjtVbNhK6dqxfsBg9ggXCSyqgTXDxjmm6WDyGxDpMa_6MHF9214bIzrjMPDp6cImVlv2IYE0qMADsb1myoFT6kmphA07-NVyffbr6OM-GwAyZLUXdZ-hsoZRGUheiKqx0uSqwrtBJX6CSrjDUSDVDw7VCq6yQWBryUxyXxgb2lzew2S5a3ANWaNIg3uS2qj3JR6GV87pUwuROo3d6Au_Xf6yxA2t5aP73Js5e8rqRZZM6dQLHY9b7RNXxWKbd8FPGDOu3hw-kYEwmh4jMdTWB_bVUNMMY75pAhE_OjuITOBpTaXCGHRfd4mJFWaoy0P-Ubx-t9Qiezq--XjQXny-_7MOzRIwb0GsHsNkvV3hI7k5v3kUx_w0wmAEN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+techniques+to+train+neural+networks+as+a+state+selector+for+inverter-fed+induction+machines+using+direct+torque+control&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Cabrera%2C+Luis+A&rft.au=Elbuluk%2C+Malik+E&rft.au=Zinger%2C+Donald+S&rft.date=1997-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=12&rft.issue=5&rft.spage=788&rft_id=info:doi/10.1109%2F63.622996&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=18130498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon