Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control
Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergenc...
Saved in:
| Published in | IEEE transactions on power electronics Vol. 12; no. 5; pp. 788 - 799 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.09.1997
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-8993 1941-0107 |
| DOI | 10.1109/63.622996 |
Cover
| Abstract | Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages. |
|---|---|
| AbstractList | Cabrera et al discuss the application of neural networks to control induction machines using direct torque control. Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages. Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models, they require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. This paper discusses the application of neural networks to control induction machines using direct torque control (DTC). A neural network is used to emulate the state selector of the DTC. The training algorithms used in this paper are the backpropagation, adaptive neuron model, extended Kalman filter, and the parallel recursive prediction error. Computer simulations of the motor and neural-network system using the four approaches are presented and compared. Discussions about the parallel recursive prediction error and the extended Kalman filter algorithms as the most promising training techniques is presented, giving their advantages and disadvantages |
| Author | Elbuluk, M.E. Cabrera, L.A. Zinger, D.S. |
| Author_xml | – sequence: 1 givenname: L.A. surname: Cabrera fullname: Cabrera, L.A. organization: Dept. of Electr. Eng., Akron Univ., OH, USA – sequence: 2 givenname: M.E. surname: Elbuluk fullname: Elbuluk, M.E. – sequence: 3 givenname: D.S. surname: Zinger fullname: Zinger, D.S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2159908$$DView record in Pascal Francis |
| BookMark | eNptkU1LJDEQhsOisDPqYa97CrIIHnomH91J57iIuy4MeNFzk0lXr3F7krGSVvbmTzfDDB5ESCiKPO9bqao5OQoxACHfOFtwzsxSyYUSwhj1hcy4qXnFONNHZMbatqlaY-RXMk_pkTFeN4zPyOsKLAYf_tIM7iH4pwkSzZFmtD7QABPasYT8EvFforYcmrLNQBOM4HJEOpTrwzNgBqwG6EvSTy77GOjGugcfiuGUdhV6j0VS3LFUoS6GjHE8JceDHROcHeIJuf91fXd1U61uf_-5-rmqnGxMrqB3QmsLTLOmFU71TAswLfRqEKBVL9alac1hXVsNTrtGgVxz3fS1WjuujDwhF3vfLcZdk7nb-ORgHG2AOKVOtFLWppYFPP8APsYJQ_lbJ5hSbSN1XaAfB8gmZ8cBbXA-dVv0G4v_O8EbY1hbsMs95jCmhDC8E5x1u311Snb7fRV2-YF1vkza78Zk_fip4vte4QHg3fnw-AY4FqNw |
| CODEN | ITPEE8 |
| CitedBy_id | crossref_primary_10_1088_1757_899X_433_1_012079 crossref_primary_10_1016_j_jclepro_2021_126944 crossref_primary_10_1109_TMAG_2010_2071392 crossref_primary_10_1109_20_767201 crossref_primary_10_1016_S0360_8352_99_00101_1 crossref_primary_10_1002_2050_7038_12705 crossref_primary_10_1109_TIE_2004_831717 |
| Cites_doi | 10.1080/00207179008934126 10.1016/0005-1098(92)90053-I 10.1016/0893-6080(89)90020-8 10.1080/00207179008934127 10.1016/0893-6080(89)90003-8 10.1109/IAS.1989.96699 10.1109/MASSP.1987.1165576 |
| ContentType | Journal Article |
| Copyright | 1998 INIST-CNRS Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 1997 |
| Copyright_xml | – notice: 1998 INIST-CNRS – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 1997 |
| DBID | AAYXX CITATION IQODW 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| DOI | 10.1109/63.622996 |
| DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0107 |
| EndPage | 799 |
| ExternalDocumentID | 18130498 2159908 10_1109_63_622996 622996 |
| Genre | Feature |
| GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION IQODW RIG 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| ID | FETCH-LOGICAL-c359t-edc277ae070582c6d072e98ed6f2e76d2b29971eb4a7ec7c56e3b175d46bc1693 |
| IEDL.DBID | RIE |
| ISSN | 0885-8993 |
| IngestDate | Sun Sep 28 07:25:28 EDT 2025 Sun Jun 29 16:56:22 EDT 2025 Mon Jul 21 09:17:14 EDT 2025 Wed Oct 01 03:51:25 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Parallel algorithm Adaptive algorithm Electric drive Neural network Recursive algorithm Backpropagation algorithm Ac motor Torque control Induction machine Descent method Kalman filtering Newton method Gradient method |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-edc277ae070582c6d072e98ed6f2e76d2b29971eb4a7ec7c56e3b175d46bc1693 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 206685374 |
| PQPubID | 37080 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_206685374 pascalfrancis_primary_2159908 ieee_primary_622996 crossref_primary_10_1109_63_622996 crossref_citationtrail_10_1109_63_622996 proquest_miscellaneous_28334943 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1997-09-01 |
| PublicationDateYYYYMMDD | 1997-09-01 |
| PublicationDate_xml | – month: 09 year: 1997 text: 1997-09-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on power electronics |
| PublicationTitleAbbrev | TPEL |
| PublicationYear | 1997 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | singhal (ref11) 1989 tawel (ref5) 1989 ref12 ref2 ref1 kosko (ref3) 1992 ref8 ref7 ref4 ref6 anderson (ref10) 1979 krause (ref13) 1986 hraiskila (ref9) 1991 |
| References_xml | – ident: ref6 doi: 10.1080/00207179008934126 – year: 1979 ident: ref10 publication-title: Optimal Filtering – year: 1986 ident: ref13 publication-title: Analysis of Electric Machinery – ident: ref4 doi: 10.1016/0005-1098(92)90053-I – start-page: 84 year: 1991 ident: ref9 article-title: properties of a neural-network controller publication-title: Proc IECON – ident: ref1 doi: 10.1016/0893-6080(89)90020-8 – ident: ref12 doi: 10.1080/00207179008934127 – ident: ref2 doi: 10.1016/0893-6080(89)90003-8 – year: 1992 ident: ref3 publication-title: Neural Networks and Fuzzy Systems A Dynamic Systems Approach to Machine Intelligence – ident: ref8 doi: 10.1109/IAS.1989.96699 – year: 1989 ident: ref11 article-title: training multilayer perceptrons with the extended kalman filter publication-title: Advances in Neural Information Processing System 1 – ident: ref7 doi: 10.1109/MASSP.1987.1165576 – year: 1989 ident: ref5 article-title: does the neuron learn like the synapse? publication-title: Advances in Neural Information Processing System 1 |
| SSID | ssj0014501 |
| Score | 1.6753068 |
| Snippet | Neural networks are receiving attention as controllers for many industrial applications. Although these networks eliminate the need for mathematical models,... Cabrera et al discuss the application of neural networks to control induction machines using direct torque control. |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 788 |
| SubjectTerms | Application software Applied sciences Backpropagation algorithms Computer errors Convergence Electrical engineering. Electrical power engineering Electrical machines Electronics Exact sciences and technology Industrial control Industrial training Machinery Mathematical model Neural networks Regulation and control Stability Torque control |
| Title | Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control |
| URI | https://ieeexplore.ieee.org/document/622996 https://www.proquest.com/docview/206685374 https://www.proquest.com/docview/28334943 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014501 issn: 0885-8993 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EaU8LMTAkjZNYjsZEaJCDEwgsUV-nBECUtSkCxM_nbOdRjw6IGVIYseWnfPd2f78HSHnTBWGQ6Yjj61AhYd60DIdZWPNrbZcxdIDZO_4zUN2-8geW55tfxYGADz4DIbu1u_lm6meu6WyEU9QefJVsipyHo5qdRsGGfORjnHMsAinEGlLIjSOixFPh-HDH6bHx1JxSEhZY2fYEMXij0L2VmayGY5v156c0IFLXobzRg31xy_qxn82YItstN4mvQzisU1WoNoh6984CHfJZ8uw-kQ7OteaNlPqY0dQR3eJBVQBLF5TiRf1h5BoDWHFn6LbS58rF9cZZpEFgw8mcNLSNw_VxAIdvP6JBvuJpc-wFtqi5PfIw-T6_uomasMyRDplRROB0YkQElBZsDzR3MQigSIHw20CgptEYSPFGFQmBWihGYdUoZdiMq60437ZJ71qWsEBoYlE_WFVrPPConQkUhgrU8FUbCRYI_vkYvHHSt1ylrvmv5Z-7hIXJU_L0Kl9ctZlfQ9EHcsy7bif0mVYvD3-IQVdMrpDaKzzPhkspKJsR3hdOhp8dHVE1ienXSoOTbffIiuYzjFLnjryn_Rwaa0DshaocB1e7Yj0mtkcjtHBadSJF-0v0Hb9sQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAcaCmgLm2pVfXAJdts4kdyRIhqKaWnVuot8mNcVUC22mQvnPjpjO1sRKEHpByS2LFlZzwztj9_A3AiTO0kcptFbAUpPNKDXtiMz6z01kuT6wiQvZTza35-I24Gnu14FgYRI_gMp-E27uW7hV2FpbJTWZDylE9gS3DORTqsNW4ZcBFjHdOoERlNIsqBRmiW16eynKZPHxifGE0lYCF1R93hUxyLf1RytDNn2-kAdxfpCQO85Nt01Zup_fkXeeN_NmEHXgz-JvuQBOQlbGC7C8__YCF8Bb8GjtVbNhK6dqxfsBg9ggXCSyqgTXDxjmm6WDyGxDpMa_6MHF9214bIzrjMPDp6cImVlv2IYE0qMADsb1myoFT6kmphA07-NVyffbr6OM-GwAyZLUXdZ-hsoZRGUheiKqx0uSqwrtBJX6CSrjDUSDVDw7VCq6yQWBryUxyXxgb2lzew2S5a3ANWaNIg3uS2qj3JR6GV87pUwuROo3d6Au_Xf6yxA2t5aP73Js5e8rqRZZM6dQLHY9b7RNXxWKbd8FPGDOu3hw-kYEwmh4jMdTWB_bVUNMMY75pAhE_OjuITOBpTaXCGHRfd4mJFWaoy0P-Ubx-t9Qiezq--XjQXny-_7MOzRIwb0GsHsNkvV3hI7k5v3kUx_w0wmAEN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+techniques+to+train+neural+networks+as+a+state+selector+for+inverter-fed+induction+machines+using+direct+torque+control&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Cabrera%2C+Luis+A&rft.au=Elbuluk%2C+Malik+E&rft.au=Zinger%2C+Donald+S&rft.date=1997-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=12&rft.issue=5&rft.spage=788&rft_id=info:doi/10.1109%2F63.622996&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=18130498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |