Output-Feedback Path-Following Control of Autonomous Underwater Vehicles Based on an Extended State Observer and Projection Neural Networks
This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocitie...
Saved in:
| Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 4; pp. 535 - 544 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2216 2168-2232 |
| DOI | 10.1109/TSMC.2017.2697447 |
Cover
| Abstract | This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by internal model uncertainty and external disturbance. At the kinematic level, a commanded guidance law is developed based on a vertical line-of-sight guidance scheme and the observed velocities. To optimize guidance signals, optimization-based reference governors are formulated as bound-constrained quadratic programming problems for computing optimal reference signals. Two globally convergent recurrent neural networks called projection neural networks are used to solve the optimization problems in real-time. Based on the optimal reference signals and ESO, a kinetic control law with disturbance rejection capability is constructed at the kinetic level. It is proved that all error signals in the closed-loop system are uniformly and ultimately bounded. Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles. |
|---|---|
| AbstractList | This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by internal model uncertainty and external disturbance. At the kinematic level, a commanded guidance law is developed based on a vertical line-of-sight guidance scheme and the observed velocities. To optimize guidance signals, optimization-based reference governors are formulated as bound-constrained quadratic programming problems for computing optimal reference signals. Two globally convergent recurrent neural networks called projection neural networks are used to solve the optimization problems in real-time. Based on the optimal reference signals and ESO, a kinetic control law with disturbance rejection capability is constructed at the kinetic level. It is proved that all error signals in the closed-loop system are uniformly and ultimately bounded. Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles. |
| Author | Peng, Zhouhua Wang, Jun |
| Author_xml | – sequence: 1 givenname: Zhouhua surname: Peng fullname: Peng, Zhouhua email: zhpeng@dlmu.edu.cn organization: School of Marine Engineering, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
| BookMark | eNp9kLFOwzAQhi0EElB4AMRiiTnFdhw7GaGigAQUqYU1cuwrpAS72A6FZ-ClcVXEwMD03_D9d7pvH21bZwGhI0qGlJLqdDa9HQ0ZoXLIRCU5l1toj1FRZozlbPt3pmIXHYawIIRQVoqciD30Nenjso_ZGMA0Sr_gexWfs7HrOrdq7RMeORu967Cb47M-OuteXR_wgzXgVyqCx4_w3OoOAj5XAQx2FiuLLz4iJMTgaUwQnjQB_HuClTX43rsF6Ngm8g56r7oUceX8SzhAO3PVBTj8yQF6GF_MRlfZzeTyenR2k-m8qGIGmispc8WoKaQSOW9MoRkpiGnKSkultaG8MFoZ2vBGGKaBg6Gl5rxQRVXmA3Sy2bv07q2HEOuF671NJ2tGJS9YmTORKLmhtHcheJjXuk3ftGshqu1qSuq1_Hotv17Lr3_kpyb901z69lX5z387x5tOCwC_vKwYE4zn3y03lGw |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2915160 crossref_primary_10_1016_j_oceaneng_2022_110971 crossref_primary_10_1007_s11071_020_05720_5 crossref_primary_10_1109_TIE_2023_3241256 crossref_primary_10_1109_TIV_2020_3038785 crossref_primary_10_1007_s40815_022_01356_2 crossref_primary_10_1016_j_neucom_2024_127733 crossref_primary_10_1109_TSMC_2017_2788902 crossref_primary_10_1080_00207721_2017_1381889 crossref_primary_10_1109_TSMC_2018_2847706 crossref_primary_10_1007_s12555_022_0357_4 crossref_primary_10_1016_j_oceaneng_2020_108099 crossref_primary_10_1002_rnc_5262 crossref_primary_10_1016_j_oceaneng_2022_111494 crossref_primary_10_1109_TCST_2020_2998798 crossref_primary_10_1109_JIOT_2023_3289221 crossref_primary_10_1016_j_oceaneng_2024_117117 crossref_primary_10_1109_TNNLS_2018_2884797 crossref_primary_10_1016_j_isatra_2019_04_035 crossref_primary_10_1177_10775463241287885 crossref_primary_10_3390_s19224987 crossref_primary_10_1016_j_oceaneng_2021_109915 crossref_primary_10_1109_TNNLS_2021_3093330 crossref_primary_10_1109_TNNLS_2020_3025807 crossref_primary_10_1016_j_isatra_2022_11_014 crossref_primary_10_1109_TMECH_2021_3066211 crossref_primary_10_1109_TSMC_2020_3013150 crossref_primary_10_1109_TAC_2021_3133376 crossref_primary_10_1109_TII_2020_2974485 crossref_primary_10_1109_TSMC_2021_3126343 crossref_primary_10_1016_j_oceaneng_2021_110232 crossref_primary_10_1016_j_engappai_2023_106102 crossref_primary_10_1109_ACCESS_2018_2883081 crossref_primary_10_3390_math10234539 crossref_primary_10_1016_j_inffus_2023_02_008 crossref_primary_10_1016_j_oceaneng_2019_02_023 crossref_primary_10_1109_TIE_2021_3120442 crossref_primary_10_3390_drones8040158 crossref_primary_10_1109_TASE_2023_3264237 crossref_primary_10_1109_TSMC_2019_2917635 crossref_primary_10_1016_j_oceaneng_2021_110104 crossref_primary_10_1109_TSMC_2020_3036120 crossref_primary_10_1016_j_oceaneng_2022_112327 crossref_primary_10_1007_s00773_022_00890_w crossref_primary_10_1109_ACCESS_2019_2909733 crossref_primary_10_1016_j_ijnaoe_2022_100456 crossref_primary_10_1016_j_oceaneng_2021_110240 crossref_primary_10_3390_jmse10060721 crossref_primary_10_1016_j_amc_2022_127046 crossref_primary_10_1002_asjc_2850 crossref_primary_10_1016_j_oceaneng_2024_117137 crossref_primary_10_1109_TCYB_2021_3074396 crossref_primary_10_1016_j_robot_2017_08_005 crossref_primary_10_1109_TVT_2024_3432742 crossref_primary_10_1109_TCYB_2020_2997686 crossref_primary_10_1016_j_ifacol_2020_12_1002 crossref_primary_10_1109_TSMC_2021_3062712 crossref_primary_10_1016_j_oceaneng_2024_118333 crossref_primary_10_1109_TSMC_2022_3162862 crossref_primary_10_1007_s42243_023_00933_5 crossref_primary_10_1002_rnc_5032 crossref_primary_10_1007_s11071_019_05279_w crossref_primary_10_1016_j_oceaneng_2019_106259 crossref_primary_10_1109_TII_2020_3036665 crossref_primary_10_1109_TSMC_2021_3095975 crossref_primary_10_1016_j_oceaneng_2024_116756 crossref_primary_10_1109_TSMC_2019_2957183 crossref_primary_10_1155_2018_4154670 crossref_primary_10_1016_j_isatra_2023_06_034 crossref_primary_10_1109_TSMC_2019_2961687 crossref_primary_10_1016_j_jfranklin_2023_11_030 crossref_primary_10_1016_j_oceaneng_2020_107524 crossref_primary_10_1007_s11071_023_08605_5 crossref_primary_10_1109_TIE_2020_3013790 crossref_primary_10_1016_j_oceaneng_2024_120101 crossref_primary_10_1080_00207179_2020_1825818 crossref_primary_10_1109_TSMC_2019_2931627 crossref_primary_10_1155_2024_5978563 crossref_primary_10_1016_j_oceaneng_2021_109661 crossref_primary_10_1109_ACCESS_2020_2974153 crossref_primary_10_32604_iasc_2020_010798 crossref_primary_10_1016_j_oceaneng_2022_112385 crossref_primary_10_1109_TCYB_2021_3057335 crossref_primary_10_1016_j_oceaneng_2023_116123 crossref_primary_10_1109_TVT_2024_3380913 crossref_primary_10_1109_TFUZZ_2020_2967294 crossref_primary_10_1016_j_neucom_2019_03_054 crossref_primary_10_2514_1_G005503 crossref_primary_10_1016_j_oceaneng_2021_108586 crossref_primary_10_1016_j_jfranklin_2021_05_023 crossref_primary_10_1016_j_jfranklin_2024_107277 crossref_primary_10_1016_j_oceaneng_2020_108283 crossref_primary_10_1109_ACCESS_2020_2987908 crossref_primary_10_1109_ACCESS_2019_2962744 crossref_primary_10_1016_j_conengprac_2023_105450 crossref_primary_10_1109_TII_2024_3452760 crossref_primary_10_1177_10775463221125987 crossref_primary_10_1109_TAES_2024_3357649 crossref_primary_10_1177_0142331221994410 crossref_primary_10_1016_j_oceaneng_2023_116570 crossref_primary_10_1016_j_oceaneng_2024_118240 crossref_primary_10_1016_j_apor_2020_102051 crossref_primary_10_1016_j_neucom_2019_01_012 crossref_primary_10_1007_s11071_022_07618_w crossref_primary_10_1016_j_apor_2021_102694 crossref_primary_10_34133_research_0299 crossref_primary_10_1016_j_ins_2018_08_025 crossref_primary_10_1016_j_oceaneng_2021_110303 crossref_primary_10_1016_j_oceaneng_2022_110748 crossref_primary_10_1109_TSMC_2018_2855444 crossref_primary_10_1016_j_ins_2019_02_050 crossref_primary_10_1109_ACCESS_2019_2944864 crossref_primary_10_1109_TVT_2019_2957529 crossref_primary_10_1007_s11071_021_06365_8 crossref_primary_10_1109_TVT_2022_3218706 crossref_primary_10_1002_acs_2944 crossref_primary_10_1016_j_ast_2019_105325 crossref_primary_10_1016_j_jfranklin_2020_10_015 crossref_primary_10_1109_TII_2020_3042631 crossref_primary_10_1109_TITS_2024_3387999 crossref_primary_10_1080_17445302_2020_1835054 crossref_primary_10_1109_TIE_2018_2856180 crossref_primary_10_1016_j_isatra_2020_01_017 crossref_primary_10_1177_09596518241309131 crossref_primary_10_1109_TCYB_2024_3462757 crossref_primary_10_1016_j_oceaneng_2022_112480 crossref_primary_10_1109_TCYB_2022_3155761 crossref_primary_10_3390_electronics10232886 crossref_primary_10_1016_j_oceaneng_2020_107410 crossref_primary_10_1109_ACCESS_2019_2951282 crossref_primary_10_1016_j_isatra_2020_01_024 crossref_primary_10_1007_s40815_017_0401_3 crossref_primary_10_1109_ACCESS_2019_2959560 crossref_primary_10_1109_TSMC_2021_3062077 crossref_primary_10_1109_TCYB_2019_2959201 crossref_primary_10_1016_j_jfranklin_2019_07_019 crossref_primary_10_1016_j_jfranklin_2022_10_020 crossref_primary_10_1080_00207721_2020_1820624 crossref_primary_10_1002_acs_3804 crossref_primary_10_1109_TSMC_2019_2895499 crossref_primary_10_1177_09544070231179073 crossref_primary_10_1016_j_conengprac_2023_105792 crossref_primary_10_1016_j_oceaneng_2022_113160 crossref_primary_10_1109_TIE_2020_2978713 crossref_primary_10_1007_s11071_020_05808_y crossref_primary_10_1016_j_conengprac_2022_105158 crossref_primary_10_3390_app14010294 crossref_primary_10_1177_09596518211056415 crossref_primary_10_1109_TCST_2017_2699167 crossref_primary_10_3390_a12120259 crossref_primary_10_1109_TII_2023_3288217 crossref_primary_10_1109_TSMC_2019_2894171 crossref_primary_10_1109_TNSE_2023_3305969 crossref_primary_10_1007_s11071_022_07646_6 crossref_primary_10_1016_j_ijnaoe_2021_08_003 crossref_primary_10_1109_ACCESS_2019_2900998 crossref_primary_10_1109_ACCESS_2019_2911194 crossref_primary_10_1109_TSMC_2019_2944521 crossref_primary_10_1109_TITS_2019_2912389 crossref_primary_10_1109_TIM_2024_3488155 crossref_primary_10_1002_rnc_5653 crossref_primary_10_1007_s10846_022_01710_4 crossref_primary_10_1016_j_neunet_2021_03_039 crossref_primary_10_1108_IR_06_2021_0120 crossref_primary_10_1109_TFUZZ_2019_2893339 crossref_primary_10_1109_TSMC_2023_3279368 crossref_primary_10_1016_j_cam_2024_116448 crossref_primary_10_1002_rnc_6648 crossref_primary_10_1016_j_oceaneng_2022_110673 crossref_primary_10_1109_TCYB_2020_3008998 crossref_primary_10_1016_j_isatra_2024_05_050 crossref_primary_10_3390_jmse10091297 crossref_primary_10_1007_s40815_017_0396_9 crossref_primary_10_1109_TSMC_2023_3256371 crossref_primary_10_1109_TCNS_2022_3210885 crossref_primary_10_1109_TSMC_2018_2871672 crossref_primary_10_1016_j_isatra_2024_05_052 crossref_primary_10_1109_ACCESS_2019_2928897 crossref_primary_10_1016_j_oceaneng_2022_113014 crossref_primary_10_1109_JAS_2023_123051 crossref_primary_10_1002_rnc_6997 crossref_primary_10_1016_j_oceaneng_2023_113671 crossref_primary_10_1016_j_oceaneng_2023_115298 crossref_primary_10_1016_j_apor_2021_102947 crossref_primary_10_1016_j_neucom_2019_03_033 crossref_primary_10_1002_rnc_7612 crossref_primary_10_1109_TITS_2020_2970472 crossref_primary_10_1109_TSMC_2018_2870698 crossref_primary_10_1007_s13344_020_0058_9 crossref_primary_10_1016_j_neucom_2021_09_062 crossref_primary_10_1109_TII_2019_2949007 crossref_primary_10_1109_TFUZZ_2022_3154433 crossref_primary_10_1109_TVT_2024_3457590 crossref_primary_10_1007_s12555_018_0291_7 crossref_primary_10_1177_1729881420919941 crossref_primary_10_1109_TSMC_2021_3129798 crossref_primary_10_1002_asjc_1990 crossref_primary_10_1109_TCST_2021_3136334 crossref_primary_10_1016_j_oceaneng_2020_106949 crossref_primary_10_1109_TSMC_2019_2944942 crossref_primary_10_1016_j_oceaneng_2020_107920 crossref_primary_10_1109_TIM_2020_3028400 crossref_primary_10_1109_TSMC_2019_2956806 crossref_primary_10_1016_j_oceaneng_2024_118786 crossref_primary_10_1016_j_oceaneng_2020_107242 crossref_primary_10_1109_TIE_2022_3194637 crossref_primary_10_1109_TCYB_2020_3001581 crossref_primary_10_1109_TCYB_2020_3009992 crossref_primary_10_1109_TCYB_2020_3026190 crossref_primary_10_1002_rnc_4517 crossref_primary_10_1109_ACCESS_2021_3057162 crossref_primary_10_1007_s41315_021_00184_1 crossref_primary_10_1016_j_neucom_2021_12_010 crossref_primary_10_1109_TFUZZ_2020_3006562 crossref_primary_10_3390_jmse12040645 crossref_primary_10_1016_j_oceaneng_2019_01_025 crossref_primary_10_1109_TNNLS_2021_3107623 crossref_primary_10_1177_1475090220927242 crossref_primary_10_1109_TSMC_2019_2896382 crossref_primary_10_1109_TSMC_2019_2916750 crossref_primary_10_1007_s40815_022_01444_3 crossref_primary_10_3390_app132312549 crossref_primary_10_1109_TSMC_2019_2895873 crossref_primary_10_1002_int_22576 crossref_primary_10_1002_asjc_3475 crossref_primary_10_1142_S1793005725500103 crossref_primary_10_1109_TIE_2019_2903752 crossref_primary_10_1016_j_pnucene_2022_104231 crossref_primary_10_1007_s10489_022_04059_1 crossref_primary_10_1016_j_jfranklin_2024_107300 crossref_primary_10_1109_JAS_2022_105524 crossref_primary_10_1016_j_oceaneng_2022_111670 crossref_primary_10_1016_j_ijnaoe_2021_11_005 crossref_primary_10_1017_aer_2020_54 crossref_primary_10_1177_1729881419871807 crossref_primary_10_1007_s11424_022_1502_0 crossref_primary_10_1109_TSMC_2019_2946127 crossref_primary_10_1109_TVT_2024_3376597 crossref_primary_10_1109_TVT_2024_3357731 crossref_primary_10_1016_j_ejcon_2020_07_006 crossref_primary_10_1109_TCYB_2018_2883335 crossref_primary_10_1016_j_isatra_2021_09_005 crossref_primary_10_1016_j_isatra_2018_12_051 crossref_primary_10_1109_TSMC_2020_2966077 crossref_primary_10_1016_j_jfranklin_2023_03_054 crossref_primary_10_46519_ij3dptdi_1017297 crossref_primary_10_1017_S0263574718001303 crossref_primary_10_1109_TIV_2023_3240517 |
| Cites_doi | 10.1016/j.robot.2014.09.024 10.1016/j.cor.2016.09.017 10.1109/TCST.2016.2617321 10.1109/TSMC.2015.2505687 10.1109/JOE.2016.2569218 10.1109/TMECH.2016.2632304 10.1016/j.isatra.2016.09.008 10.1016/j.automatica.2014.06.003 10.1109/81.995659 10.1109/TNNLS.2015.2508926 10.1016/j.oceaneng.2003.08.006 10.1109/TCST.2014.2306774 10.1109/TNNLS.2013.2293499 10.1016/j.robot.2014.10.011 10.3390/s16081335 10.1109/TCYB.2016.2554621 10.1007/s11071-014-1513-z 10.1109/TFUZZ.2015.2486811 10.1016/j.oceaneng.2015.02.002 10.1016/j.sysconle.2011.03.008 10.1177/0142331215625770 10.4310/CIS.2015.v15.n3.a3 10.1109/TSMC.2016.2606159 10.1109/TIE.2008.2011621 10.1109/TMECH.2016.2618901 10.1109/JOE.2012.2201797 10.1109/TCST.2014.2338354 10.1016/j.neucom.2012.12.026 10.1109/TCST.2012.2183676 10.1016/j.oceaneng.2010.07.006 10.1109/TCYB.2014.2370645 10.1016/j.oceaneng.2016.07.057 10.1109/72.857782 10.1109/TCYB.2015.2452217 10.1109/.2005.1469806 10.1109/TAC.2016.2610945 10.1109/TSMC.2016.2531649 10.1016/j.ins.2015.04.025 10.1016/j.neucom.2015.11.017 10.1016/j.automatica.2016.08.013 10.1109/TMECH.2015.2508647 10.1016/j.oceaneng.2016.06.041 10.1109/TIE.2017.2652346 10.1016/j.automatica.2004.01.021 10.1109/TFUZZ.2015.2486817 10.1016/j.oceaneng.2006.10.019 10.1109/TCST.2011.2181513 10.1109/JOE.2008.923554 10.1109/TCYB.2015.2411285 10.1109/TAC.2007.902731 10.1109/TNNLS.2013.2275732 10.1016/j.isatra.2015.09.018 10.1109/TII.2016.2526648 10.1109/TCST.2008.922560 10.1109/TIE.2016.2574301 10.1109/TSMC.2016.2645699 10.1109/TCYB.2015.2475376 10.1016/j.neucom.2015.08.033 10.1016/j.oceaneng.2004.04.006 10.1023/A:1004611224835 10.1109/TNN.2011.2146788 10.1109/TCST.2013.2281211 10.1109/TNNLS.2013.2244908 10.1049/iet-cta.2010.0429 10.1109/JAS.2014.7004662 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2017.2697447 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 544 |
| ExternalDocumentID | 10_1109_TSMC_2017_2697447 7922624 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hong Kong Scholars Program grantid: XJ2015009 – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: 14207614 – fundername: National Natural Science Foundation of China grantid: 51579023 funderid: 10.13039/501100001809 – fundername: China Post-Doctoral Science Foundation grantid: 2015M570247 funderid: 10.13039/501100002858 – fundername: High Level Talent Innovation and Entrepreneurship Program of Dalian grantid: 2016RQ036 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132016313 – fundername: National Natural Science Foundation of China grantid: 61673330 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c359t-ec4a773a21d57a634bd5c2050db89c7accd145dcad1b4b6d2ce4ed18c445a5983 |
| IEDL.DBID | RIE |
| ISSN | 2168-2216 |
| IngestDate | Mon Jun 30 05:02:16 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Wed Oct 01 03:10:13 EDT 2025 Wed Aug 27 02:52:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-ec4a773a21d57a634bd5c2050db89c7accd145dcad1b4b6d2ce4ed18c445a5983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1305-5735 |
| PQID | 2174528326 |
| PQPubID | 75739 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2174528326 crossref_primary_10_1109_TSMC_2017_2697447 crossref_citationtrail_10_1109_TSMC_2017_2697447 ieee_primary_7922624 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 krstic (ref69) 1995 ref42 ref44 ref43 ref49 ref8 ref7 peng (ref38) 0 ref9 ref4 ref3 ref6 ref5 ref40 gao (ref41) 2003 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref68 ref24 ref67 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 yan (ref16) 2012; 37 ref60 liu (ref32) 2011; 22 ref62 chen (ref23) 2014; 1 khalil (ref61) 2015 |
| References_xml | – ident: ref20 doi: 10.1016/j.robot.2014.09.024 – ident: ref5 doi: 10.1016/j.cor.2016.09.017 – ident: ref11 doi: 10.1109/TCST.2016.2617321 – ident: ref57 doi: 10.1109/TSMC.2015.2505687 – ident: ref66 doi: 10.1109/JOE.2016.2569218 – ident: ref12 doi: 10.1109/TMECH.2016.2632304 – ident: ref63 doi: 10.1016/j.isatra.2016.09.008 – ident: ref59 doi: 10.1016/j.automatica.2014.06.003 – ident: ref53 doi: 10.1109/81.995659 – ident: ref46 doi: 10.1109/TNNLS.2015.2508926 – ident: ref33 doi: 10.1016/j.oceaneng.2003.08.006 – ident: ref62 doi: 10.1109/TCST.2014.2306774 – ident: ref39 doi: 10.1109/TNNLS.2013.2293499 – ident: ref26 doi: 10.1016/j.robot.2014.10.011 – ident: ref9 doi: 10.3390/s16081335 – ident: ref45 doi: 10.1109/TCYB.2016.2554621 – ident: ref4 doi: 10.1007/s11071-014-1513-z – ident: ref30 doi: 10.1109/TFUZZ.2015.2486811 – ident: ref43 doi: 10.1016/j.oceaneng.2015.02.002 – ident: ref42 doi: 10.1016/j.sysconle.2011.03.008 – ident: ref47 doi: 10.1177/0142331215625770 – year: 2015 ident: ref61 publication-title: Nonlinear Control – ident: ref60 doi: 10.4310/CIS.2015.v15.n3.a3 – ident: ref48 doi: 10.1109/TSMC.2016.2606159 – ident: ref40 doi: 10.1109/TIE.2008.2011621 – ident: ref17 doi: 10.1109/TMECH.2016.2618901 – volume: 37 start-page: 717 year: 2012 ident: ref16 article-title: Model predictive control for tracking of underactuated vessels based on recurrent neural networks publication-title: IEEE J Ocean Eng doi: 10.1109/JOE.2012.2201797 – ident: ref64 doi: 10.1109/TCST.2014.2338354 – ident: ref18 doi: 10.1016/j.neucom.2012.12.026 – ident: ref50 doi: 10.1109/TCST.2012.2183676 – ident: ref3 doi: 10.1016/j.oceaneng.2010.07.006 – ident: ref28 doi: 10.1109/TCYB.2014.2370645 – ident: ref65 doi: 10.1016/j.oceaneng.2016.07.057 – ident: ref52 doi: 10.1109/72.857782 – ident: ref31 doi: 10.1109/TCYB.2015.2452217 – year: 0 ident: ref38 article-title: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref34 doi: 10.1109/.2005.1469806 – ident: ref55 doi: 10.1109/TAC.2016.2610945 – ident: ref54 doi: 10.1109/TSMC.2016.2531649 – ident: ref10 doi: 10.1016/j.ins.2015.04.025 – ident: ref21 doi: 10.1016/j.neucom.2015.11.017 – ident: ref51 doi: 10.1016/j.automatica.2016.08.013 – ident: ref25 doi: 10.1109/TMECH.2015.2508647 – ident: ref36 doi: 10.1016/j.oceaneng.2016.06.041 – ident: ref35 doi: 10.1109/TIE.2017.2652346 – ident: ref19 doi: 10.1016/j.automatica.2004.01.021 – ident: ref29 doi: 10.1109/TFUZZ.2015.2486817 – ident: ref2 doi: 10.1016/j.oceaneng.2006.10.019 – ident: ref22 doi: 10.1109/TCST.2011.2181513 – ident: ref1 doi: 10.1109/JOE.2008.923554 – ident: ref49 doi: 10.1109/TCYB.2015.2411285 – ident: ref14 doi: 10.1109/TAC.2007.902731 – ident: ref56 doi: 10.1109/TNNLS.2013.2275732 – year: 1995 ident: ref69 publication-title: Nonlinear and Adaptive Control Design – ident: ref8 doi: 10.1016/j.isatra.2015.09.018 – ident: ref13 doi: 10.1109/TII.2016.2526648 – ident: ref58 doi: 10.1109/TCST.2008.922560 – ident: ref24 doi: 10.1109/TIE.2016.2574301 – ident: ref15 doi: 10.1109/TSMC.2016.2645699 – ident: ref7 doi: 10.1109/TCYB.2015.2475376 – ident: ref37 doi: 10.1016/j.neucom.2015.08.033 – ident: ref27 doi: 10.1016/j.oceaneng.2004.04.006 – ident: ref67 doi: 10.1023/A:1004611224835 – volume: 22 start-page: 1162 year: 2011 ident: ref32 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2146788 – ident: ref44 doi: 10.1109/TCST.2013.2281211 – ident: ref68 doi: 10.1109/TNNLS.2013.2244908 – ident: ref6 doi: 10.1049/iet-cta.2010.0429 – start-page: 4989 year: 2003 ident: ref41 article-title: Scaling and bandwidth-parameterization based controller tuning publication-title: Proc Amer Control Conf – volume: 1 start-page: 337 year: 2014 ident: ref23 article-title: Coordinated adaptive control for coordinated path-following surface vessels with a time-invariant orbital velocity publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2014.7004662 |
| SSID | ssj0001286306 |
| Score | 2.5407965 |
| Snippet | This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 535 |
| SubjectTerms | Autonomous underwater vehicles Computer simulation Control systems Control theory Error signals extended state observer (ESO) Feedback control Governors Guidance (motion) Kinetic theory Marine vehicles Neural networks Observers Optimization Output feedback path-following projection neural networks Quadratic programming Recurrent neural networks Reference signals State observers Surges Uncertainty Vehicle dynamics |
| Title | Output-Feedback Path-Following Control of Autonomous Underwater Vehicles Based on an Extended State Observer and Projection Neural Networks |
| URI | https://ieeexplore.ieee.org/document/7922624 https://www.proquest.com/docview/2174528326 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFD6oT_WhrbWlW1eZB5-KWZPJXDKP28VFhFWhWnwLc1sKSiJugtC_0D_tmUl2WVTElxDImWHgO5PzzZlzATjMjcgc0wZ3WoYHlEL5xEhtEzMXBVpnLZUKucOzc3F6zc5u-M0GHK1yYbz3MfjMj8JrvMt3tW2Dq-xYKiQLlG3CpixEl6u15k8pRB5badJMIPj47C8xs1QdX_2eTUIclxxRgQw6NFNZM0Oxr8qLn3G0MNNPMFuurQssuR21jRnZf8_KNr538Z_hY081ybjTjR3Y8NUX2F4rQLgL_y_a5r5tkinaMKPtLblEQphMUTfqRxQgky6QndRzMm6bkP9QtwsSeyU9Ikl9IH_83xhXR36hNXSkroiuyEnvWCeRyZILEzy_KKwrRy47zw9qAwl1QXB9510g-uIrXE9PrianSd-eIbE5V03iLdNS5ppmjkstcmYctzTlqTOFsgi4dRnjzmqXGWaEo9Yz77LCMsY1V0X-DbaquvLfgViqWI4ftKAWp_GaUmcks3Mkl5z7dADpEq3S9rXLQwuNuzKeYVJVBoDLAHDZAzyAn6sh913hjreEdwNgK8EeqwEMlypR9lt7UYYzXKiIQ8WP10ftwQecu-jCe4aw1Ty0fh-ZS2MOoso-AToQ7HM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQ9tLQUdXnVB06oWRLHduIjXbFaWnZB6lJxi_xaIYESxCZC4i_0TzN2sqtVqapeokgZJ5a-cebzeB4Ah6kWiWVK40pLcIOSSxfpTJlIz0SO1lllUvrc4fFEjK7Y92t-vQZfl7kwzrkQfOb6_jac5dvKNN5VdpxJJAuUvYINzhjjbbbWikclF2lopkkTgfDjtTvGTGJ5PP05HvhIrqxPBXJo305lxRCFziovfsfBxgzfw3gxuza05Lbf1Lpvnv4o3Pi_09-Edx3ZJCetdnyANVd-hLcrJQi34PdFU983dTREK6aVuSWXSAmjIWpH9YgCZNCGspNqRk6a2mdAVM2chG5Jj0hTH8gvdxMi68g3tIeWVCVRJTntXOskcFlyob3vF4VVacll6_tBfSC-MgjOb9KGos8_wdXwdDoYRV2DhsikXNaRM0xlWapoYnmmRMq05YbGPLY6lwYhNzZh3BplE820sNQ45mySGwRPcZmn27BeVqX7DMRQyVJ8oAQ1-BqnKLU6Y2aG9JJzF_cgXqBVmK56uW-icVeEXUwsCw9w4QEuOoB7cLQcct-W7viX8JYHbCnYYdWDvYVKFN3inhd-F-dr4lCx8_dRX-D1aDo-L87PJj924Q1-J2-DffZgvX5o3D7ymFofBPV9Br0C78A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-Feedback+Path-Following+Control+of+Autonomous+Underwater+Vehicles+Based+on+an+Extended+State+Observer+and+Projection+Neural+Networks&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Peng%2C+Zhouhua&rft.au=Wang%2C+Jun&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=48&rft.issue=4&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1109%2FTSMC.2017.2697447&rft.externalDocID=7922624 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |