Output-Feedback Path-Following Control of Autonomous Underwater Vehicles Based on an Extended State Observer and Projection Neural Networks

This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocitie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 4; pp. 535 - 544
Main Authors Peng, Zhouhua, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2017.2697447

Cover

Abstract This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by internal model uncertainty and external disturbance. At the kinematic level, a commanded guidance law is developed based on a vertical line-of-sight guidance scheme and the observed velocities. To optimize guidance signals, optimization-based reference governors are formulated as bound-constrained quadratic programming problems for computing optimal reference signals. Two globally convergent recurrent neural networks called projection neural networks are used to solve the optimization problems in real-time. Based on the optimal reference signals and ESO, a kinetic control law with disturbance rejection capability is constructed at the kinetic level. It is proved that all error signals in the closed-loop system are uniformly and ultimately bounded. Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles.
AbstractList This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by internal model uncertainty and external disturbance. At the kinematic level, a commanded guidance law is developed based on a vertical line-of-sight guidance scheme and the observed velocities. To optimize guidance signals, optimization-based reference governors are formulated as bound-constrained quadratic programming problems for computing optimal reference signals. Two globally convergent recurrent neural networks called projection neural networks are used to solve the optimization problems in real-time. Based on the optimal reference signals and ESO, a kinetic control law with disturbance rejection capability is constructed at the kinetic level. It is proved that all error signals in the closed-loop system are uniformly and ultimately bounded. Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles.
Author Peng, Zhouhua
Wang, Jun
Author_xml – sequence: 1
  givenname: Zhouhua
  surname: Peng
  fullname: Peng, Zhouhua
  email: zhpeng@dlmu.edu.cn
  organization: School of Marine Engineering, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BookMark eNp9kLFOwzAQhi0EElB4AMRiiTnFdhw7GaGigAQUqYU1cuwrpAS72A6FZ-ClcVXEwMD03_D9d7pvH21bZwGhI0qGlJLqdDa9HQ0ZoXLIRCU5l1toj1FRZozlbPt3pmIXHYawIIRQVoqciD30Nenjso_ZGMA0Sr_gexWfs7HrOrdq7RMeORu967Cb47M-OuteXR_wgzXgVyqCx4_w3OoOAj5XAQx2FiuLLz4iJMTgaUwQnjQB_HuClTX43rsF6Ngm8g56r7oUceX8SzhAO3PVBTj8yQF6GF_MRlfZzeTyenR2k-m8qGIGmispc8WoKaQSOW9MoRkpiGnKSkultaG8MFoZ2vBGGKaBg6Gl5rxQRVXmA3Sy2bv07q2HEOuF671NJ2tGJS9YmTORKLmhtHcheJjXuk3ftGshqu1qSuq1_Hotv17Lr3_kpyb901z69lX5z387x5tOCwC_vKwYE4zn3y03lGw
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2915160
crossref_primary_10_1016_j_oceaneng_2022_110971
crossref_primary_10_1007_s11071_020_05720_5
crossref_primary_10_1109_TIE_2023_3241256
crossref_primary_10_1109_TIV_2020_3038785
crossref_primary_10_1007_s40815_022_01356_2
crossref_primary_10_1016_j_neucom_2024_127733
crossref_primary_10_1109_TSMC_2017_2788902
crossref_primary_10_1080_00207721_2017_1381889
crossref_primary_10_1109_TSMC_2018_2847706
crossref_primary_10_1007_s12555_022_0357_4
crossref_primary_10_1016_j_oceaneng_2020_108099
crossref_primary_10_1002_rnc_5262
crossref_primary_10_1016_j_oceaneng_2022_111494
crossref_primary_10_1109_TCST_2020_2998798
crossref_primary_10_1109_JIOT_2023_3289221
crossref_primary_10_1016_j_oceaneng_2024_117117
crossref_primary_10_1109_TNNLS_2018_2884797
crossref_primary_10_1016_j_isatra_2019_04_035
crossref_primary_10_1177_10775463241287885
crossref_primary_10_3390_s19224987
crossref_primary_10_1016_j_oceaneng_2021_109915
crossref_primary_10_1109_TNNLS_2021_3093330
crossref_primary_10_1109_TNNLS_2020_3025807
crossref_primary_10_1016_j_isatra_2022_11_014
crossref_primary_10_1109_TMECH_2021_3066211
crossref_primary_10_1109_TSMC_2020_3013150
crossref_primary_10_1109_TAC_2021_3133376
crossref_primary_10_1109_TII_2020_2974485
crossref_primary_10_1109_TSMC_2021_3126343
crossref_primary_10_1016_j_oceaneng_2021_110232
crossref_primary_10_1016_j_engappai_2023_106102
crossref_primary_10_1109_ACCESS_2018_2883081
crossref_primary_10_3390_math10234539
crossref_primary_10_1016_j_inffus_2023_02_008
crossref_primary_10_1016_j_oceaneng_2019_02_023
crossref_primary_10_1109_TIE_2021_3120442
crossref_primary_10_3390_drones8040158
crossref_primary_10_1109_TASE_2023_3264237
crossref_primary_10_1109_TSMC_2019_2917635
crossref_primary_10_1016_j_oceaneng_2021_110104
crossref_primary_10_1109_TSMC_2020_3036120
crossref_primary_10_1016_j_oceaneng_2022_112327
crossref_primary_10_1007_s00773_022_00890_w
crossref_primary_10_1109_ACCESS_2019_2909733
crossref_primary_10_1016_j_ijnaoe_2022_100456
crossref_primary_10_1016_j_oceaneng_2021_110240
crossref_primary_10_3390_jmse10060721
crossref_primary_10_1016_j_amc_2022_127046
crossref_primary_10_1002_asjc_2850
crossref_primary_10_1016_j_oceaneng_2024_117137
crossref_primary_10_1109_TCYB_2021_3074396
crossref_primary_10_1016_j_robot_2017_08_005
crossref_primary_10_1109_TVT_2024_3432742
crossref_primary_10_1109_TCYB_2020_2997686
crossref_primary_10_1016_j_ifacol_2020_12_1002
crossref_primary_10_1109_TSMC_2021_3062712
crossref_primary_10_1016_j_oceaneng_2024_118333
crossref_primary_10_1109_TSMC_2022_3162862
crossref_primary_10_1007_s42243_023_00933_5
crossref_primary_10_1002_rnc_5032
crossref_primary_10_1007_s11071_019_05279_w
crossref_primary_10_1016_j_oceaneng_2019_106259
crossref_primary_10_1109_TII_2020_3036665
crossref_primary_10_1109_TSMC_2021_3095975
crossref_primary_10_1016_j_oceaneng_2024_116756
crossref_primary_10_1109_TSMC_2019_2957183
crossref_primary_10_1155_2018_4154670
crossref_primary_10_1016_j_isatra_2023_06_034
crossref_primary_10_1109_TSMC_2019_2961687
crossref_primary_10_1016_j_jfranklin_2023_11_030
crossref_primary_10_1016_j_oceaneng_2020_107524
crossref_primary_10_1007_s11071_023_08605_5
crossref_primary_10_1109_TIE_2020_3013790
crossref_primary_10_1016_j_oceaneng_2024_120101
crossref_primary_10_1080_00207179_2020_1825818
crossref_primary_10_1109_TSMC_2019_2931627
crossref_primary_10_1155_2024_5978563
crossref_primary_10_1016_j_oceaneng_2021_109661
crossref_primary_10_1109_ACCESS_2020_2974153
crossref_primary_10_32604_iasc_2020_010798
crossref_primary_10_1016_j_oceaneng_2022_112385
crossref_primary_10_1109_TCYB_2021_3057335
crossref_primary_10_1016_j_oceaneng_2023_116123
crossref_primary_10_1109_TVT_2024_3380913
crossref_primary_10_1109_TFUZZ_2020_2967294
crossref_primary_10_1016_j_neucom_2019_03_054
crossref_primary_10_2514_1_G005503
crossref_primary_10_1016_j_oceaneng_2021_108586
crossref_primary_10_1016_j_jfranklin_2021_05_023
crossref_primary_10_1016_j_jfranklin_2024_107277
crossref_primary_10_1016_j_oceaneng_2020_108283
crossref_primary_10_1109_ACCESS_2020_2987908
crossref_primary_10_1109_ACCESS_2019_2962744
crossref_primary_10_1016_j_conengprac_2023_105450
crossref_primary_10_1109_TII_2024_3452760
crossref_primary_10_1177_10775463221125987
crossref_primary_10_1109_TAES_2024_3357649
crossref_primary_10_1177_0142331221994410
crossref_primary_10_1016_j_oceaneng_2023_116570
crossref_primary_10_1016_j_oceaneng_2024_118240
crossref_primary_10_1016_j_apor_2020_102051
crossref_primary_10_1016_j_neucom_2019_01_012
crossref_primary_10_1007_s11071_022_07618_w
crossref_primary_10_1016_j_apor_2021_102694
crossref_primary_10_34133_research_0299
crossref_primary_10_1016_j_ins_2018_08_025
crossref_primary_10_1016_j_oceaneng_2021_110303
crossref_primary_10_1016_j_oceaneng_2022_110748
crossref_primary_10_1109_TSMC_2018_2855444
crossref_primary_10_1016_j_ins_2019_02_050
crossref_primary_10_1109_ACCESS_2019_2944864
crossref_primary_10_1109_TVT_2019_2957529
crossref_primary_10_1007_s11071_021_06365_8
crossref_primary_10_1109_TVT_2022_3218706
crossref_primary_10_1002_acs_2944
crossref_primary_10_1016_j_ast_2019_105325
crossref_primary_10_1016_j_jfranklin_2020_10_015
crossref_primary_10_1109_TII_2020_3042631
crossref_primary_10_1109_TITS_2024_3387999
crossref_primary_10_1080_17445302_2020_1835054
crossref_primary_10_1109_TIE_2018_2856180
crossref_primary_10_1016_j_isatra_2020_01_017
crossref_primary_10_1177_09596518241309131
crossref_primary_10_1109_TCYB_2024_3462757
crossref_primary_10_1016_j_oceaneng_2022_112480
crossref_primary_10_1109_TCYB_2022_3155761
crossref_primary_10_3390_electronics10232886
crossref_primary_10_1016_j_oceaneng_2020_107410
crossref_primary_10_1109_ACCESS_2019_2951282
crossref_primary_10_1016_j_isatra_2020_01_024
crossref_primary_10_1007_s40815_017_0401_3
crossref_primary_10_1109_ACCESS_2019_2959560
crossref_primary_10_1109_TSMC_2021_3062077
crossref_primary_10_1109_TCYB_2019_2959201
crossref_primary_10_1016_j_jfranklin_2019_07_019
crossref_primary_10_1016_j_jfranklin_2022_10_020
crossref_primary_10_1080_00207721_2020_1820624
crossref_primary_10_1002_acs_3804
crossref_primary_10_1109_TSMC_2019_2895499
crossref_primary_10_1177_09544070231179073
crossref_primary_10_1016_j_conengprac_2023_105792
crossref_primary_10_1016_j_oceaneng_2022_113160
crossref_primary_10_1109_TIE_2020_2978713
crossref_primary_10_1007_s11071_020_05808_y
crossref_primary_10_1016_j_conengprac_2022_105158
crossref_primary_10_3390_app14010294
crossref_primary_10_1177_09596518211056415
crossref_primary_10_1109_TCST_2017_2699167
crossref_primary_10_3390_a12120259
crossref_primary_10_1109_TII_2023_3288217
crossref_primary_10_1109_TSMC_2019_2894171
crossref_primary_10_1109_TNSE_2023_3305969
crossref_primary_10_1007_s11071_022_07646_6
crossref_primary_10_1016_j_ijnaoe_2021_08_003
crossref_primary_10_1109_ACCESS_2019_2900998
crossref_primary_10_1109_ACCESS_2019_2911194
crossref_primary_10_1109_TSMC_2019_2944521
crossref_primary_10_1109_TITS_2019_2912389
crossref_primary_10_1109_TIM_2024_3488155
crossref_primary_10_1002_rnc_5653
crossref_primary_10_1007_s10846_022_01710_4
crossref_primary_10_1016_j_neunet_2021_03_039
crossref_primary_10_1108_IR_06_2021_0120
crossref_primary_10_1109_TFUZZ_2019_2893339
crossref_primary_10_1109_TSMC_2023_3279368
crossref_primary_10_1016_j_cam_2024_116448
crossref_primary_10_1002_rnc_6648
crossref_primary_10_1016_j_oceaneng_2022_110673
crossref_primary_10_1109_TCYB_2020_3008998
crossref_primary_10_1016_j_isatra_2024_05_050
crossref_primary_10_3390_jmse10091297
crossref_primary_10_1007_s40815_017_0396_9
crossref_primary_10_1109_TSMC_2023_3256371
crossref_primary_10_1109_TCNS_2022_3210885
crossref_primary_10_1109_TSMC_2018_2871672
crossref_primary_10_1016_j_isatra_2024_05_052
crossref_primary_10_1109_ACCESS_2019_2928897
crossref_primary_10_1016_j_oceaneng_2022_113014
crossref_primary_10_1109_JAS_2023_123051
crossref_primary_10_1002_rnc_6997
crossref_primary_10_1016_j_oceaneng_2023_113671
crossref_primary_10_1016_j_oceaneng_2023_115298
crossref_primary_10_1016_j_apor_2021_102947
crossref_primary_10_1016_j_neucom_2019_03_033
crossref_primary_10_1002_rnc_7612
crossref_primary_10_1109_TITS_2020_2970472
crossref_primary_10_1109_TSMC_2018_2870698
crossref_primary_10_1007_s13344_020_0058_9
crossref_primary_10_1016_j_neucom_2021_09_062
crossref_primary_10_1109_TII_2019_2949007
crossref_primary_10_1109_TFUZZ_2022_3154433
crossref_primary_10_1109_TVT_2024_3457590
crossref_primary_10_1007_s12555_018_0291_7
crossref_primary_10_1177_1729881420919941
crossref_primary_10_1109_TSMC_2021_3129798
crossref_primary_10_1002_asjc_1990
crossref_primary_10_1109_TCST_2021_3136334
crossref_primary_10_1016_j_oceaneng_2020_106949
crossref_primary_10_1109_TSMC_2019_2944942
crossref_primary_10_1016_j_oceaneng_2020_107920
crossref_primary_10_1109_TIM_2020_3028400
crossref_primary_10_1109_TSMC_2019_2956806
crossref_primary_10_1016_j_oceaneng_2024_118786
crossref_primary_10_1016_j_oceaneng_2020_107242
crossref_primary_10_1109_TIE_2022_3194637
crossref_primary_10_1109_TCYB_2020_3001581
crossref_primary_10_1109_TCYB_2020_3009992
crossref_primary_10_1109_TCYB_2020_3026190
crossref_primary_10_1002_rnc_4517
crossref_primary_10_1109_ACCESS_2021_3057162
crossref_primary_10_1007_s41315_021_00184_1
crossref_primary_10_1016_j_neucom_2021_12_010
crossref_primary_10_1109_TFUZZ_2020_3006562
crossref_primary_10_3390_jmse12040645
crossref_primary_10_1016_j_oceaneng_2019_01_025
crossref_primary_10_1109_TNNLS_2021_3107623
crossref_primary_10_1177_1475090220927242
crossref_primary_10_1109_TSMC_2019_2896382
crossref_primary_10_1109_TSMC_2019_2916750
crossref_primary_10_1007_s40815_022_01444_3
crossref_primary_10_3390_app132312549
crossref_primary_10_1109_TSMC_2019_2895873
crossref_primary_10_1002_int_22576
crossref_primary_10_1002_asjc_3475
crossref_primary_10_1142_S1793005725500103
crossref_primary_10_1109_TIE_2019_2903752
crossref_primary_10_1016_j_pnucene_2022_104231
crossref_primary_10_1007_s10489_022_04059_1
crossref_primary_10_1016_j_jfranklin_2024_107300
crossref_primary_10_1109_JAS_2022_105524
crossref_primary_10_1016_j_oceaneng_2022_111670
crossref_primary_10_1016_j_ijnaoe_2021_11_005
crossref_primary_10_1017_aer_2020_54
crossref_primary_10_1177_1729881419871807
crossref_primary_10_1007_s11424_022_1502_0
crossref_primary_10_1109_TSMC_2019_2946127
crossref_primary_10_1109_TVT_2024_3376597
crossref_primary_10_1109_TVT_2024_3357731
crossref_primary_10_1016_j_ejcon_2020_07_006
crossref_primary_10_1109_TCYB_2018_2883335
crossref_primary_10_1016_j_isatra_2021_09_005
crossref_primary_10_1016_j_isatra_2018_12_051
crossref_primary_10_1109_TSMC_2020_2966077
crossref_primary_10_1016_j_jfranklin_2023_03_054
crossref_primary_10_46519_ij3dptdi_1017297
crossref_primary_10_1017_S0263574718001303
crossref_primary_10_1109_TIV_2023_3240517
Cites_doi 10.1016/j.robot.2014.09.024
10.1016/j.cor.2016.09.017
10.1109/TCST.2016.2617321
10.1109/TSMC.2015.2505687
10.1109/JOE.2016.2569218
10.1109/TMECH.2016.2632304
10.1016/j.isatra.2016.09.008
10.1016/j.automatica.2014.06.003
10.1109/81.995659
10.1109/TNNLS.2015.2508926
10.1016/j.oceaneng.2003.08.006
10.1109/TCST.2014.2306774
10.1109/TNNLS.2013.2293499
10.1016/j.robot.2014.10.011
10.3390/s16081335
10.1109/TCYB.2016.2554621
10.1007/s11071-014-1513-z
10.1109/TFUZZ.2015.2486811
10.1016/j.oceaneng.2015.02.002
10.1016/j.sysconle.2011.03.008
10.1177/0142331215625770
10.4310/CIS.2015.v15.n3.a3
10.1109/TSMC.2016.2606159
10.1109/TIE.2008.2011621
10.1109/TMECH.2016.2618901
10.1109/JOE.2012.2201797
10.1109/TCST.2014.2338354
10.1016/j.neucom.2012.12.026
10.1109/TCST.2012.2183676
10.1016/j.oceaneng.2010.07.006
10.1109/TCYB.2014.2370645
10.1016/j.oceaneng.2016.07.057
10.1109/72.857782
10.1109/TCYB.2015.2452217
10.1109/.2005.1469806
10.1109/TAC.2016.2610945
10.1109/TSMC.2016.2531649
10.1016/j.ins.2015.04.025
10.1016/j.neucom.2015.11.017
10.1016/j.automatica.2016.08.013
10.1109/TMECH.2015.2508647
10.1016/j.oceaneng.2016.06.041
10.1109/TIE.2017.2652346
10.1016/j.automatica.2004.01.021
10.1109/TFUZZ.2015.2486817
10.1016/j.oceaneng.2006.10.019
10.1109/TCST.2011.2181513
10.1109/JOE.2008.923554
10.1109/TCYB.2015.2411285
10.1109/TAC.2007.902731
10.1109/TNNLS.2013.2275732
10.1016/j.isatra.2015.09.018
10.1109/TII.2016.2526648
10.1109/TCST.2008.922560
10.1109/TIE.2016.2574301
10.1109/TSMC.2016.2645699
10.1109/TCYB.2015.2475376
10.1016/j.neucom.2015.08.033
10.1016/j.oceaneng.2004.04.006
10.1023/A:1004611224835
10.1109/TNN.2011.2146788
10.1109/TCST.2013.2281211
10.1109/TNNLS.2013.2244908
10.1049/iet-cta.2010.0429
10.1109/JAS.2014.7004662
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2017.2697447
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 544
ExternalDocumentID 10_1109_TSMC_2017_2697447
7922624
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Scholars Program
  grantid: XJ2015009
– fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: 14207614
– fundername: National Natural Science Foundation of China
  grantid: 51579023
  funderid: 10.13039/501100001809
– fundername: China Post-Doctoral Science Foundation
  grantid: 2015M570247
  funderid: 10.13039/501100002858
– fundername: High Level Talent Innovation and Entrepreneurship Program of Dalian
  grantid: 2016RQ036
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132016313
– fundername: National Natural Science Foundation of China
  grantid: 61673330
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c359t-ec4a773a21d57a634bd5c2050db89c7accd145dcad1b4b6d2ce4ed18c445a5983
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Mon Jun 30 05:02:16 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Wed Oct 01 03:10:13 EDT 2025
Wed Aug 27 02:52:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ec4a773a21d57a634bd5c2050db89c7accd145dcad1b4b6d2ce4ed18c445a5983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1305-5735
PQID 2174528326
PQPubID 75739
PageCount 10
ParticipantIDs proquest_journals_2174528326
crossref_primary_10_1109_TSMC_2017_2697447
crossref_citationtrail_10_1109_TSMC_2017_2697447
ieee_primary_7922624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
krstic (ref69) 1995
ref42
ref44
ref43
ref49
ref8
ref7
peng (ref38) 0
ref9
ref4
ref3
ref6
ref5
ref40
gao (ref41) 2003
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref68
ref24
ref67
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
yan (ref16) 2012; 37
ref60
liu (ref32) 2011; 22
ref62
chen (ref23) 2014; 1
khalil (ref61) 2015
References_xml – ident: ref20
  doi: 10.1016/j.robot.2014.09.024
– ident: ref5
  doi: 10.1016/j.cor.2016.09.017
– ident: ref11
  doi: 10.1109/TCST.2016.2617321
– ident: ref57
  doi: 10.1109/TSMC.2015.2505687
– ident: ref66
  doi: 10.1109/JOE.2016.2569218
– ident: ref12
  doi: 10.1109/TMECH.2016.2632304
– ident: ref63
  doi: 10.1016/j.isatra.2016.09.008
– ident: ref59
  doi: 10.1016/j.automatica.2014.06.003
– ident: ref53
  doi: 10.1109/81.995659
– ident: ref46
  doi: 10.1109/TNNLS.2015.2508926
– ident: ref33
  doi: 10.1016/j.oceaneng.2003.08.006
– ident: ref62
  doi: 10.1109/TCST.2014.2306774
– ident: ref39
  doi: 10.1109/TNNLS.2013.2293499
– ident: ref26
  doi: 10.1016/j.robot.2014.10.011
– ident: ref9
  doi: 10.3390/s16081335
– ident: ref45
  doi: 10.1109/TCYB.2016.2554621
– ident: ref4
  doi: 10.1007/s11071-014-1513-z
– ident: ref30
  doi: 10.1109/TFUZZ.2015.2486811
– ident: ref43
  doi: 10.1016/j.oceaneng.2015.02.002
– ident: ref42
  doi: 10.1016/j.sysconle.2011.03.008
– ident: ref47
  doi: 10.1177/0142331215625770
– year: 2015
  ident: ref61
  publication-title: Nonlinear Control
– ident: ref60
  doi: 10.4310/CIS.2015.v15.n3.a3
– ident: ref48
  doi: 10.1109/TSMC.2016.2606159
– ident: ref40
  doi: 10.1109/TIE.2008.2011621
– ident: ref17
  doi: 10.1109/TMECH.2016.2618901
– volume: 37
  start-page: 717
  year: 2012
  ident: ref16
  article-title: Model predictive control for tracking of underactuated vessels based on recurrent neural networks
  publication-title: IEEE J Ocean Eng
  doi: 10.1109/JOE.2012.2201797
– ident: ref64
  doi: 10.1109/TCST.2014.2338354
– ident: ref18
  doi: 10.1016/j.neucom.2012.12.026
– ident: ref50
  doi: 10.1109/TCST.2012.2183676
– ident: ref3
  doi: 10.1016/j.oceaneng.2010.07.006
– ident: ref28
  doi: 10.1109/TCYB.2014.2370645
– ident: ref65
  doi: 10.1016/j.oceaneng.2016.07.057
– ident: ref52
  doi: 10.1109/72.857782
– ident: ref31
  doi: 10.1109/TCYB.2015.2452217
– year: 0
  ident: ref38
  article-title: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref34
  doi: 10.1109/.2005.1469806
– ident: ref55
  doi: 10.1109/TAC.2016.2610945
– ident: ref54
  doi: 10.1109/TSMC.2016.2531649
– ident: ref10
  doi: 10.1016/j.ins.2015.04.025
– ident: ref21
  doi: 10.1016/j.neucom.2015.11.017
– ident: ref51
  doi: 10.1016/j.automatica.2016.08.013
– ident: ref25
  doi: 10.1109/TMECH.2015.2508647
– ident: ref36
  doi: 10.1016/j.oceaneng.2016.06.041
– ident: ref35
  doi: 10.1109/TIE.2017.2652346
– ident: ref19
  doi: 10.1016/j.automatica.2004.01.021
– ident: ref29
  doi: 10.1109/TFUZZ.2015.2486817
– ident: ref2
  doi: 10.1016/j.oceaneng.2006.10.019
– ident: ref22
  doi: 10.1109/TCST.2011.2181513
– ident: ref1
  doi: 10.1109/JOE.2008.923554
– ident: ref49
  doi: 10.1109/TCYB.2015.2411285
– ident: ref14
  doi: 10.1109/TAC.2007.902731
– ident: ref56
  doi: 10.1109/TNNLS.2013.2275732
– year: 1995
  ident: ref69
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref8
  doi: 10.1016/j.isatra.2015.09.018
– ident: ref13
  doi: 10.1109/TII.2016.2526648
– ident: ref58
  doi: 10.1109/TCST.2008.922560
– ident: ref24
  doi: 10.1109/TIE.2016.2574301
– ident: ref15
  doi: 10.1109/TSMC.2016.2645699
– ident: ref7
  doi: 10.1109/TCYB.2015.2475376
– ident: ref37
  doi: 10.1016/j.neucom.2015.08.033
– ident: ref27
  doi: 10.1016/j.oceaneng.2004.04.006
– ident: ref67
  doi: 10.1023/A:1004611224835
– volume: 22
  start-page: 1162
  year: 2011
  ident: ref32
  article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2146788
– ident: ref44
  doi: 10.1109/TCST.2013.2281211
– ident: ref68
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref6
  doi: 10.1049/iet-cta.2010.0429
– start-page: 4989
  year: 2003
  ident: ref41
  article-title: Scaling and bandwidth-parameterization based controller tuning
  publication-title: Proc Amer Control Conf
– volume: 1
  start-page: 337
  year: 2014
  ident: ref23
  article-title: Coordinated adaptive control for coordinated path-following surface vessels with a time-invariant orbital velocity
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2014.7004662
SSID ssj0001286306
Score 2.5407965
Snippet This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms Autonomous underwater vehicles
Computer simulation
Control systems
Control theory
Error signals
extended state observer (ESO)
Feedback control
Governors
Guidance (motion)
Kinetic theory
Marine vehicles
Neural networks
Observers
Optimization
Output feedback
path-following
projection neural networks
Quadratic programming
Recurrent neural networks
Reference signals
State observers
Surges
Uncertainty
Vehicle dynamics
Title Output-Feedback Path-Following Control of Autonomous Underwater Vehicles Based on an Extended State Observer and Projection Neural Networks
URI https://ieeexplore.ieee.org/document/7922624
https://www.proquest.com/docview/2174528326
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFD6oT_WhrbWlW1eZB5-KWZPJXDKP28VFhFWhWnwLc1sKSiJugtC_0D_tmUl2WVTElxDImWHgO5PzzZlzATjMjcgc0wZ3WoYHlEL5xEhtEzMXBVpnLZUKucOzc3F6zc5u-M0GHK1yYbz3MfjMj8JrvMt3tW2Dq-xYKiQLlG3CpixEl6u15k8pRB5badJMIPj47C8xs1QdX_2eTUIclxxRgQw6NFNZM0Oxr8qLn3G0MNNPMFuurQssuR21jRnZf8_KNr538Z_hY081ybjTjR3Y8NUX2F4rQLgL_y_a5r5tkinaMKPtLblEQphMUTfqRxQgky6QndRzMm6bkP9QtwsSeyU9Ikl9IH_83xhXR36hNXSkroiuyEnvWCeRyZILEzy_KKwrRy47zw9qAwl1QXB9510g-uIrXE9PrianSd-eIbE5V03iLdNS5ppmjkstcmYctzTlqTOFsgi4dRnjzmqXGWaEo9Yz77LCMsY1V0X-DbaquvLfgViqWI4ftKAWp_GaUmcks3Mkl5z7dADpEq3S9rXLQwuNuzKeYVJVBoDLAHDZAzyAn6sh913hjreEdwNgK8EeqwEMlypR9lt7UYYzXKiIQ8WP10ftwQecu-jCe4aw1Ty0fh-ZS2MOoso-AToQ7HM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQ9tLQUdXnVB06oWRLHduIjXbFaWnZB6lJxi_xaIYESxCZC4i_0TzN2sqtVqapeokgZJ5a-cebzeB4Ah6kWiWVK40pLcIOSSxfpTJlIz0SO1lllUvrc4fFEjK7Y92t-vQZfl7kwzrkQfOb6_jac5dvKNN5VdpxJJAuUvYINzhjjbbbWikclF2lopkkTgfDjtTvGTGJ5PP05HvhIrqxPBXJo305lxRCFziovfsfBxgzfw3gxuza05Lbf1Lpvnv4o3Pi_09-Edx3ZJCetdnyANVd-hLcrJQi34PdFU983dTREK6aVuSWXSAmjIWpH9YgCZNCGspNqRk6a2mdAVM2chG5Jj0hTH8gvdxMi68g3tIeWVCVRJTntXOskcFlyob3vF4VVacll6_tBfSC-MgjOb9KGos8_wdXwdDoYRV2DhsikXNaRM0xlWapoYnmmRMq05YbGPLY6lwYhNzZh3BplE820sNQ45mySGwRPcZmn27BeVqX7DMRQyVJ8oAQ1-BqnKLU6Y2aG9JJzF_cgXqBVmK56uW-icVeEXUwsCw9w4QEuOoB7cLQcct-W7viX8JYHbCnYYdWDvYVKFN3inhd-F-dr4lCx8_dRX-D1aDo-L87PJj924Q1-J2-DffZgvX5o3D7ymFofBPV9Br0C78A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output-Feedback+Path-Following+Control+of+Autonomous+Underwater+Vehicles+Based+on+an+Extended+State+Observer+and+Projection+Neural+Networks&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Peng%2C+Zhouhua&rft.au=Wang%2C+Jun&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=48&rft.issue=4&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1109%2FTSMC.2017.2697447&rft.externalDocID=7922624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon