Wave nature and metastability of emergent crystals in chiral magnets

Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subje...

Full description

Saved in:
Bibliographic Details
Published inCommunications physics Vol. 1; no. 1
Main Author Hu, Yangfan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2399-3650
2399-3650
DOI10.1038/s42005-018-0071-y

Cover

Abstract Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions. Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves.
AbstractList Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions.
Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions. Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves.
Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions.Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves.
ArticleNumber 82
Author Hu, Yangfan
Author_xml – sequence: 1
  givenname: Yangfan
  surname: Hu
  fullname: Hu, Yangfan
  email: huyf3@mail.sysu.edu.cn
  organization: Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University
BookMark eNp9kE1LAzEQhoNUsNb-AG8Bz6v52OwmR6mfUPCieAzZdFJTdrM1SYX9926poAh6moF5n5nhOUWT0AdA6JySS0q4vEolI0QUhMqCkJoWwxGaMq5UwStBJj_6EzRPaUMIYbQkNa-m6ObVfAAOJu8iYBNWuINsUjaNb30ecO8wdBDXEDK2cRgHbcI-YPvmo2lxZ9YBcjpDx24cwPyrztDL3e3z4qFYPt0_Lq6XheVC5QIsL5uVVEJa5cAabigpWdOI2jVl5WwDDeHCOnArwSVnRkoCyjBnXFUzJ_gMXRz2bmP_voOU9abfxTCe1IxLVSlWs3pM1YeUjX1KEZy2Ppvs-5Cj8a2mRO-t6YM1PVrTe2t6GEn6i9xG35k4_MuwA5PGbFhD_P7pb-gTzxyCjg
CitedBy_id crossref_primary_10_1103_PhysRevB_99_180406
crossref_primary_10_1103_PhysRevB_100_144424
crossref_primary_10_1088_1367_2630_abdd6d
crossref_primary_10_1088_1367_2630_ac3a82
crossref_primary_10_1103_PhysRevB_98_174427
crossref_primary_10_1088_1361_648X_ad266f
crossref_primary_10_1088_1367_2630_ab5ec2
crossref_primary_10_1103_PhysRevB_99_214412
crossref_primary_10_3389_fphy_2021_684346
Cites_doi 10.1126/science.1214143
10.1103/PhysRevLett.110.177205
10.1088/1367-2630/aa9507
10.1103/PhysRevB.95.024415
10.1038/nature09124
10.1007/978-3-662-10184-1
10.1016/S0304-8853(98)01038-5
10.1021/nl401687d
10.1002/adma.201600889
10.1038/nmat2916
10.1088/1367-2630/18/9/095004
10.1088/1367-2630/aab702
10.1016/j.physrep.2017.08.001
10.1021/acs.nanolett.6b04821
10.1103/PhysRevLett.107.217206
10.1038/ncomms4198
10.1038/nnano.2015.113
10.1038/nmat4752
10.1017/CBO9780511804236
10.1103/PhysRevLett.107.136804
10.1038/nphys2045
10.1038/nature05056
10.1103/PhysRevLett.107.127203
10.1038/nature23466
10.1126/science.1166767
10.1103/PhysRevLett.108.267201
10.1103/PhysRevB.90.174434
10.1038/ncomms9504
10.1103/PhysRevLett.111.067203
10.1016/0304-8853(94)90046-9
10.1103/PhysRevB.91.054411
10.1038/ncomms9193
10.1126/science.1195709
10.1103/PhysRevB.95.224405
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1038/s42005-018-0071-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
ExternalDocumentID 10_1038_s42005_018_0071_y
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11772360
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R~
88I
AAFWJ
ABDBF
ABJCF
ABUWG
ACGFS
ACUHS
ADBBV
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PIMPY
PTHSS
RNT
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c359t-ec34bd8958c9feca3a1042bb57fb46fcbeb035cfefd53832a880e9a2faf672f53
IEDL.DBID 8FG
ISSN 2399-3650
IngestDate Fri Jul 25 12:01:09 EDT 2025
Tue Jul 01 04:29:27 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Fri Feb 21 02:37:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ec34bd8958c9feca3a1042bb57fb46fcbeb035cfefd53832a880e9a2faf672f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2389692727?pq-origsite=%requestingapplication%
PQID 2389692727
PQPubID 4669724
ParticipantIDs proquest_journals_2389692727
crossref_citationtrail_10_1038_s42005_018_0071_y
crossref_primary_10_1038_s42005_018_0071_y
springer_journals_10_1038_s42005_018_0071_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-19
PublicationDateYYYYMMDD 2018-11-19
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References RosslerUKBogdanovANPfleidererCNature20064427972006Natur.442..797R10.1038/nature05056
HuYWangBNew J. Phys.2017191230022017NJPh...19l3002H10.1088/1367-2630/aa9507
SekiSYuXZIshiwataSTokuraYScience20123361982012Sci...336..198S10.1126/science.1214143
KongLZangJPhys. Rev. Lett.20131110672032013PhRvL.111f7203K10.1103/PhysRevLett.111.067203
LeonovAOBogdanovANNew J. Phys.2018200430172018NJPh...20d3017L10.1088/1367-2630/aab702
Altland, A. and Simons, B. D. Condensed Matter Field Theory, 636 (Cambridge University Press, Cambridge, 2006)
MontoyaSAPhys. Rev. B2017950244152017PhRvB..95b4415M10.1103/PhysRevB.95.024415
NayakAKNature20175485612017Natur.548..561N10.1038/nature23466
McGroutherDNew J. Phys.2016180950042016NJPh...18i5004M10.1088/1367-2630/18/9/095004
DzyaloshinskiiISov. Phys. JETP196419960
YuXZNat. Commun.2014510.1038/ncomms4198
HeinzeSNat. Phys.2011771310.1038/nphys2045
MontoyaSAPhys. Rev. B2017952244052017PhRvB..95v4405M10.1103/PhysRevB.95.224405
BogdanovANHubertAJ. Magn. Magn. Mater.19941382551994JMMM..138..255B10.1016/0304-8853(94)90046-9
Hu, Y. and Wang, B. Emergent elasticity of skyrmion lattice in chiral magnets. Preprint at http://arxiv.org/abs/1608.04840 (2016)
WilhelmHBaenitzMSchmidtMRosslerUKLeonovAOBogdanovANPhys. Rev. Lett.20111071272032011PhRvL.107l7203W10.1103/PhysRevLett.107.127203
FinazziMPhys. Rev. Lett.20131101772052013PhRvL.110q7205F10.1103/PhysRevLett.110.177205
YuXZNat. Mater.2011101062011AIPC.1388..106Y10.1038/nmat2916
BogdanovANYablonskiiDAZh. Eksp. Teor. Fiz.198995182
KarubeKNat. Mater.20161512372016NatMa..15.1237K10.1038/nmat4752
JonietzFScience201033016482010Sci...330.1648J10.1126/science.1195709
YuXZNature20104659012010Natur.465..901Y10.1038/nature09124
DuHFNingWTianMLZhangYHPhys. Rev. B201387142
WangWHAdv. Mater.201628688710.1002/adma.201600889
AdamsTPhys. Rev. Lett.20111072172062011PhRvL.107u7206A10.1103/PhysRevLett.107.217206
MorikawaDNano Lett.20171716372017NanoL..17.1637M10.1021/acs.nanolett.6b04821
DuHFNat. Commun.2015610.1038/ncomms9504
JiangWPhys. Rep.201770412017PhR...704....1J370468310.1016/j.physrep.2017.08.001
SchutteCIwasakiJRoschANagaosaNPhys. Rev. B2014901744342014PhRvB..90q4434S10.1103/PhysRevB.90.174434
Haken, H. Synergetics: Introduction and Advanced Topics, 218 (Springer, Heidelberg, 2004)
HuangSXChienCLPhys. Rev. Lett.20121082672012012PhRvL.108z7201H10.1103/PhysRevLett.108.267201
BogdanovANHubertAJ. Magn. Magn. Mater.19991951821999JMMM..195..182B10.1016/S0304-8853(98)01038-5
ZangJMostovoyMHanJHNagaosaNPhys. Rev. Lett.20111071368042011PhRvL.107m6804Z10.1103/PhysRevLett.107.136804
MuhlbauerSScience20093239152009Sci...323..915M10.1126/science.1166767
ZhouYNat. Commun.2015610.1038/ncomms9193
YuXZNano Lett.20131337552013NanoL..13.3755Y10.1021/nl401687d
ShibataKNat. Nanotechnol.2015105892015NatNa..10..589S10.1038/nnano.2015.113
Canuto, C. G., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. Spectral Methods: Fundamentals in Single Domains, 52 (Springer, Heidelberg, 2010).
Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1 p. 105, (Interscience Publishers Inc, New York, NY, 1953).
Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B91, 054411 (2015)
T Adams (71_CR17) 2011; 107
SA Montoya (71_CR15) 2017; 95
K Karube (71_CR18) 2016; 15
WH Wang (71_CR25) 2016; 28
AN Bogdanov (71_CR26) 1989; 95
M Finazzi (71_CR8) 2013; 110
J Zang (71_CR5) 2011; 107
K Shibata (71_CR10) 2015; 10
SX Huang (71_CR22) 2012; 108
AO Leonov (71_CR35) 2018; 20
S Heinze (71_CR23) 2011; 7
I Dzyaloshinskii (71_CR30) 1964; 19
XZ Yu (71_CR20) 2011; 10
HF Du (71_CR39) 2013; 87
D McGrouther (71_CR29) 2016; 18
L Kong (71_CR9) 2013; 111
AK Nayak (71_CR13) 2017; 548
Y Hu (71_CR31) 2017; 19
D Morikawa (71_CR36) 2017; 17
S Seki (71_CR21) 2012; 336
71_CR40
SA Montoya (71_CR16) 2017; 95
AN Bogdanov (71_CR2) 1994; 138
UK Rossler (71_CR27) 2006; 442
XZ Yu (71_CR14) 2014; 5
W Jiang (71_CR24) 2017; 704
F Jonietz (71_CR4) 2010; 330
XZ Yu (71_CR6) 2013; 13
AN Bogdanov (71_CR3) 1999; 195
Y Zhou (71_CR11) 2015; 6
S Muhlbauer (71_CR1) 2009; 323
71_CR37
71_CR38
HF Du (71_CR7) 2015; 6
H Wilhelm (71_CR34) 2011; 107
C Schutte (71_CR28) 2014; 90
71_CR33
71_CR12
XZ Yu (71_CR19) 2010; 465
71_CR32
References_xml – reference: Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B91, 054411 (2015)
– reference: HeinzeSNat. Phys.2011771310.1038/nphys2045
– reference: YuXZNano Lett.20131337552013NanoL..13.3755Y10.1021/nl401687d
– reference: JonietzFScience201033016482010Sci...330.1648J10.1126/science.1195709
– reference: WilhelmHBaenitzMSchmidtMRosslerUKLeonovAOBogdanovANPhys. Rev. Lett.20111071272032011PhRvL.107l7203W10.1103/PhysRevLett.107.127203
– reference: MorikawaDNano Lett.20171716372017NanoL..17.1637M10.1021/acs.nanolett.6b04821
– reference: HuYWangBNew J. Phys.2017191230022017NJPh...19l3002H10.1088/1367-2630/aa9507
– reference: McGroutherDNew J. Phys.2016180950042016NJPh...18i5004M10.1088/1367-2630/18/9/095004
– reference: YuXZNat. Commun.2014510.1038/ncomms4198
– reference: Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1 p. 105, (Interscience Publishers Inc, New York, NY, 1953).
– reference: MuhlbauerSScience20093239152009Sci...323..915M10.1126/science.1166767
– reference: Haken, H. Synergetics: Introduction and Advanced Topics, 218 (Springer, Heidelberg, 2004)
– reference: DuHFNingWTianMLZhangYHPhys. Rev. B201387142
– reference: JiangWPhys. Rep.201770412017PhR...704....1J370468310.1016/j.physrep.2017.08.001
– reference: MontoyaSAPhys. Rev. B2017952244052017PhRvB..95v4405M10.1103/PhysRevB.95.224405
– reference: DuHFNat. Commun.2015610.1038/ncomms9504
– reference: YuXZNature20104659012010Natur.465..901Y10.1038/nature09124
– reference: NayakAKNature20175485612017Natur.548..561N10.1038/nature23466
– reference: ZhouYNat. Commun.2015610.1038/ncomms9193
– reference: KarubeKNat. Mater.20161512372016NatMa..15.1237K10.1038/nmat4752
– reference: DzyaloshinskiiISov. Phys. JETP196419960
– reference: ShibataKNat. Nanotechnol.2015105892015NatNa..10..589S10.1038/nnano.2015.113
– reference: Altland, A. and Simons, B. D. Condensed Matter Field Theory, 636 (Cambridge University Press, Cambridge, 2006)
– reference: LeonovAOBogdanovANNew J. Phys.2018200430172018NJPh...20d3017L10.1088/1367-2630/aab702
– reference: Canuto, C. G., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. Spectral Methods: Fundamentals in Single Domains, 52 (Springer, Heidelberg, 2010).
– reference: MontoyaSAPhys. Rev. B2017950244152017PhRvB..95b4415M10.1103/PhysRevB.95.024415
– reference: HuangSXChienCLPhys. Rev. Lett.20121082672012012PhRvL.108z7201H10.1103/PhysRevLett.108.267201
– reference: RosslerUKBogdanovANPfleidererCNature20064427972006Natur.442..797R10.1038/nature05056
– reference: KongLZangJPhys. Rev. Lett.20131110672032013PhRvL.111f7203K10.1103/PhysRevLett.111.067203
– reference: BogdanovANYablonskiiDAZh. Eksp. Teor. Fiz.198995182
– reference: Hu, Y. and Wang, B. Emergent elasticity of skyrmion lattice in chiral magnets. Preprint at http://arxiv.org/abs/1608.04840 (2016)
– reference: AdamsTPhys. Rev. Lett.20111072172062011PhRvL.107u7206A10.1103/PhysRevLett.107.217206
– reference: ZangJMostovoyMHanJHNagaosaNPhys. Rev. Lett.20111071368042011PhRvL.107m6804Z10.1103/PhysRevLett.107.136804
– reference: WangWHAdv. Mater.201628688710.1002/adma.201600889
– reference: SekiSYuXZIshiwataSTokuraYScience20123361982012Sci...336..198S10.1126/science.1214143
– reference: SchutteCIwasakiJRoschANagaosaNPhys. Rev. B2014901744342014PhRvB..90q4434S10.1103/PhysRevB.90.174434
– reference: YuXZNat. Mater.2011101062011AIPC.1388..106Y10.1038/nmat2916
– reference: BogdanovANHubertAJ. Magn. Magn. Mater.19991951821999JMMM..195..182B10.1016/S0304-8853(98)01038-5
– reference: FinazziMPhys. Rev. Lett.20131101772052013PhRvL.110q7205F10.1103/PhysRevLett.110.177205
– reference: BogdanovANHubertAJ. Magn. Magn. Mater.19941382551994JMMM..138..255B10.1016/0304-8853(94)90046-9
– volume: 336
  start-page: 198
  year: 2012
  ident: 71_CR21
  publication-title: Science
  doi: 10.1126/science.1214143
– volume: 95
  start-page: 182
  year: 1989
  ident: 71_CR26
  publication-title: Zh. Eksp. Teor. Fiz.
– volume: 110
  start-page: 177205
  year: 2013
  ident: 71_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.177205
– volume: 19
  start-page: 123002
  year: 2017
  ident: 71_CR31
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa9507
– volume: 95
  start-page: 024415
  year: 2017
  ident: 71_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.024415
– volume: 465
  start-page: 901
  year: 2010
  ident: 71_CR19
  publication-title: Nature
  doi: 10.1038/nature09124
– ident: 71_CR40
  doi: 10.1007/978-3-662-10184-1
– ident: 71_CR33
– volume: 195
  start-page: 182
  year: 1999
  ident: 71_CR3
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)01038-5
– ident: 71_CR12
– volume: 13
  start-page: 3755
  year: 2013
  ident: 71_CR6
  publication-title: Nano Lett.
  doi: 10.1021/nl401687d
– volume: 28
  start-page: 6887
  year: 2016
  ident: 71_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600889
– volume: 10
  start-page: 106
  year: 2011
  ident: 71_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2916
– volume: 18
  start-page: 095004
  year: 2016
  ident: 71_CR29
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/095004
– volume: 19
  start-page: 960
  year: 1964
  ident: 71_CR30
  publication-title: Sov. Phys. JETP
– volume: 20
  start-page: 043017
  year: 2018
  ident: 71_CR35
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aab702
– volume: 704
  start-page: 1
  year: 2017
  ident: 71_CR24
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.08.001
– volume: 17
  start-page: 1637
  year: 2017
  ident: 71_CR36
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04821
– volume: 107
  start-page: 217206
  year: 2011
  ident: 71_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.217206
– volume: 5
  year: 2014
  ident: 71_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4198
– volume: 10
  start-page: 589
  year: 2015
  ident: 71_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.113
– volume: 15
  start-page: 1237
  year: 2016
  ident: 71_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4752
– ident: 71_CR37
  doi: 10.1017/CBO9780511804236
– volume: 107
  start-page: 136804
  year: 2011
  ident: 71_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.136804
– volume: 7
  start-page: 713
  year: 2011
  ident: 71_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2045
– volume: 442
  start-page: 797
  year: 2006
  ident: 71_CR27
  publication-title: Nature
  doi: 10.1038/nature05056
– volume: 107
  start-page: 127203
  year: 2011
  ident: 71_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.127203
– ident: 71_CR32
– volume: 548
  start-page: 561
  year: 2017
  ident: 71_CR13
  publication-title: Nature
  doi: 10.1038/nature23466
– volume: 323
  start-page: 915
  year: 2009
  ident: 71_CR1
  publication-title: Science
  doi: 10.1126/science.1166767
– volume: 108
  start-page: 267201
  year: 2012
  ident: 71_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.267201
– volume: 90
  start-page: 174434
  year: 2014
  ident: 71_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.174434
– volume: 6
  year: 2015
  ident: 71_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9504
– volume: 111
  start-page: 067203
  year: 2013
  ident: 71_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.067203
– volume: 87
  start-page: 142
  year: 2013
  ident: 71_CR39
  publication-title: Phys. Rev. B
– volume: 138
  start-page: 255
  year: 1994
  ident: 71_CR2
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)90046-9
– ident: 71_CR38
  doi: 10.1103/PhysRevB.91.054411
– volume: 6
  year: 2015
  ident: 71_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9193
– volume: 330
  start-page: 1648
  year: 2010
  ident: 71_CR4
  publication-title: Science
  doi: 10.1126/science.1195709
– volume: 95
  start-page: 224405
  year: 2017
  ident: 71_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.224405
SSID ssj0002140736
Score 2.141097
Snippet Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 639/301/119/2792
639/705/1041
639/766/119/2795
639/766/119/997
639/766/530/2795
Coupling
Crystal structure
Crystallinity
Crystals
Dipoles
Hypothetical particles
Long range order
Magnetic materials
Magnets
Metastable state
Particle theory
Phase transitions
Physics
Physics and Astronomy
Spin density waves
Topology
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zIngRf-J0Sg6elGDbNGlylOkYgp4c7haSNNHB1slahf73pmm7oaLgOT8IX5r3vtf35QWAi4TL0Jm8CCnLYxRTxRCTCUHEYBxbjVPli1U_PNLROL6fkEkHhO1dGC_a9yUtvZlu1WHXeexrZgYhQ5VXROUG2GQJDisV34AOVr9VIhcwJJi2-UvMfo786oHWtPJbJtQ7mOEu2GmYIbyp17IHOibbB1teoanzA3D7LD8MrBcNXfgP56aQjtp5cWsJFxaa-iZlAfWydA2zHE4zqF-nSzfrXL5kpsgPwXh49zQYoeYJBKQx4QUyGscqZZwwza3REksXPkVKkcSqmFqtjAow0dbY1FkuHEl3HA2XkZWWJpEl-Ah0s0VmjgEMwjQ0ONWaMBqnjHIspeJuN4x0IYw2PRC0sAjd1AevnqmYCZ-nxkzUSAqHpKiQFGUPXK6GvNXFMf7q3G-xFs05yYUjDJzyyJGoHrhq8V83_zrZyb96n4LtqNr_Sr3H-6BbLN_NmeMShTr3X88n3zrE1g
  priority: 102
  providerName: Springer Nature
Title Wave nature and metastability of emergent crystals in chiral magnets
URI https://link.springer.com/article/10.1038/s42005-018-0071-y
https://www.proquest.com/docview/2389692727
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: ABDBF
  dateStart: 20180107
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: ADMLS
  dateStart: 20180107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0jhw8KWFr0qTJSXRuDsEh4tBbSdJEha2baxX235v0w6Ggx5LmHX4ved95D4DTSMjAiTyMlBUhCpniiMuIImoICa0miSqaVd-N2WgS3j7T5yrgllVllbVMLAR1Mtc-Rt51qkUwgZ26vVi8Iz81ymdXqxEam6AZYHeS_Evx4c13jAU77yEirE5mEt7NwqL1Zi_gyCtXtPqpjtY25q-0aKFthjtguzIT4WXJ112wYdI9cP0kPw0sW3FCmSZwZnLprLuivnUF5xaa8jFlDvVy5RamGXxLoX59WzpaM_mSmjzbB5Ph4LE_QtUUBKQJFTkymoQq4YJyLazRkkjnQWGlaGRVyKxWRvUI1dbYxAkvgqW7kUZIbKVlEbaUHIBGOk_NIYC9IAkMSbSmnIUJZ4JIqYRjiJHOi9GmBXo1GLGuWoT7SRXTuEhVEx6X-MUOv9jjF69a4Ox7y6Lsj_Hfz-0a4bi6Klm8ZmwLnNeor5f_JHb0P7FjsIU9m33FnmiDRr78MCfOfshVpzgkHdC8GozvH9xXn_U7hS_-BUW7x5Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpLBaJVtwXqA720sti1ncQ-VBXqsizlcQKVm2s7Y4oEWdiEVvlT_EbGyWZXRYIbZycj5fOXeXg8M4RsZ9oOUOVx5oKWTKZOMWWzhCUghAxe5K5pVn18ko7P5M_z5HyJ3He1MPFaZacTG0WdT3w8I99B06JTzdHcfr-5ZXFqVMyudiM0WlocQv0PQ7by28EQ9_cz56O90x9jNpsqwLxIdMXAC-lypRPldQBvhcWIhDuXZMHJNHgHri8SHyDkqAwEt8hw0JYHG9KMhzglAlX-ihT4MbEyfbQ_P9PhGK1kIu2Sp0LtlLJp9dkfKBaNOav_N38Ln_ZRGraxbqNV8mbmltLdlkdrZAmKdTL8Zf8CbVt_Ulvk9Boqi95kc5-2ppNAoS3erKif1rhwVdLLgvo_l1OUdW0vCqjKt-TsRfB5R5aLSQHvCe0P8gGI3PtEpTJXqRbWOo0EAItRk4ce6XdgGD9rSR4nY1yZJjUulGnxM4ififiZuke-zF-5aftxPPfwRoewmf2apVkQqUe-dqgvlp8U9uF5YZ_Iq_Hp8ZE5Ojg5_Ehe87jl8bag3iDL1fQONtF3qdxWQxhKfr80Qx8A8xkDlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qRfEiPrE-c_CkRNvNJpscxVp8Fg-K3kKSTVTQtXRXof_ebLZbUVHwnAfhS2bmm8xkArCbCNXxKi_C2okYx0xzzFVCMbWExM6QVIdi1Vd9dnobn9_T-wbQ-i1MSNoPJS2Dmq6zww7zONTMbHc4Lq0iHh0MUjcF0zzxElLGaNnx5Gol8k5DQlgdwyT85-ivVuiTWn6LhgYj01uA-TE7REfVehahYbMlmAlZmiZfhu6dereoWjhSWYpebKE8vQsJriP06pCtXlMWyAxHvuE5R08ZMo9PQz_ri3rIbJGvwG3v5Ob4FI-_QcCGUFFga0isUy4oN8JZo4jyLlSkNU2cjpkz2uo2ocZZl3rtRSLlRdIKFTnlWBI5Slahmb1mdg1Qu5N2LEmNoZzFKWeCKKWF3xGrvBtjbAvaNSzSjGuEl19VPMsQqyZcVkhKj6QskZSjFuxNhgyqAhl_dd6ssZZjWcmlJw2CicgTqRbs1_h_Nv862fq_eu_A7HW3Jy_P-hcbMBeVR6FM5hOb0CyGb3bLU4tCb4eD9AFHi8jX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+nature+and+metastability+of+emergent+crystals+in+chiral+magnets&rft.jtitle=Communications+physics&rft.au=Hu+Yangfan&rft.date=2018-11-19&rft.pub=Nature+Publishing+Group&rft.eissn=2399-3650&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1038%2Fs42005-018-0071-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon