Wave nature and metastability of emergent crystals in chiral magnets
Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subje...
Saved in:
Published in | Communications physics Vol. 1; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2399-3650 2399-3650 |
DOI | 10.1038/s42005-018-0071-y |
Cover
Abstract | Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions.
Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves. |
---|---|
AbstractList | Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions. Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions. Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves. Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these emergent crystals as gathering “particles” or coupling waves, the answer of which affects almost every aspect of our understanding on the subject. Here we prove that 2-D emergent crystals with long-range order in helimagnets, such as skyrmion crystals and dipole skyrmion crystals, have a wave nature. We systematically study their equilibrium properties, metastability, and phase transition path when unstable. We show that the robustness of a skyrmion crystal derives from its metastability, and that its phase transition dynamics at low (high) magnetic field is mediated by a soft mode which breaks (maintains) its hexagonal symmetry. Different from ordinary crystals which are formed by. and breaks into atoms, emergent crystals have a new formation (destruction) mechanism: they appear from (turn to) “single-Q” spin-density-wave states through nonlinear mode-mode interactions.Topological spin textures called skyrmions usually occur in magnetic materials in a crystalline state. The author addresses the nature of this skyrmion crystal and other emergent crystals by considering theoretically whether they are constructed from a gathering of particles or a coupling of waves. |
ArticleNumber | 82 |
Author | Hu, Yangfan |
Author_xml | – sequence: 1 givenname: Yangfan surname: Hu fullname: Hu, Yangfan email: huyf3@mail.sysu.edu.cn organization: Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University |
BookMark | eNp9kE1LAzEQhoNUsNb-AG8Bz6v52OwmR6mfUPCieAzZdFJTdrM1SYX9926poAh6moF5n5nhOUWT0AdA6JySS0q4vEolI0QUhMqCkJoWwxGaMq5UwStBJj_6EzRPaUMIYbQkNa-m6ObVfAAOJu8iYBNWuINsUjaNb30ecO8wdBDXEDK2cRgHbcI-YPvmo2lxZ9YBcjpDx24cwPyrztDL3e3z4qFYPt0_Lq6XheVC5QIsL5uVVEJa5cAabigpWdOI2jVl5WwDDeHCOnArwSVnRkoCyjBnXFUzJ_gMXRz2bmP_voOU9abfxTCe1IxLVSlWs3pM1YeUjX1KEZy2Ppvs-5Cj8a2mRO-t6YM1PVrTe2t6GEn6i9xG35k4_MuwA5PGbFhD_P7pb-gTzxyCjg |
CitedBy_id | crossref_primary_10_1103_PhysRevB_99_180406 crossref_primary_10_1103_PhysRevB_100_144424 crossref_primary_10_1088_1367_2630_abdd6d crossref_primary_10_1088_1367_2630_ac3a82 crossref_primary_10_1103_PhysRevB_98_174427 crossref_primary_10_1088_1361_648X_ad266f crossref_primary_10_1088_1367_2630_ab5ec2 crossref_primary_10_1103_PhysRevB_99_214412 crossref_primary_10_3389_fphy_2021_684346 |
Cites_doi | 10.1126/science.1214143 10.1103/PhysRevLett.110.177205 10.1088/1367-2630/aa9507 10.1103/PhysRevB.95.024415 10.1038/nature09124 10.1007/978-3-662-10184-1 10.1016/S0304-8853(98)01038-5 10.1021/nl401687d 10.1002/adma.201600889 10.1038/nmat2916 10.1088/1367-2630/18/9/095004 10.1088/1367-2630/aab702 10.1016/j.physrep.2017.08.001 10.1021/acs.nanolett.6b04821 10.1103/PhysRevLett.107.217206 10.1038/ncomms4198 10.1038/nnano.2015.113 10.1038/nmat4752 10.1017/CBO9780511804236 10.1103/PhysRevLett.107.136804 10.1038/nphys2045 10.1038/nature05056 10.1103/PhysRevLett.107.127203 10.1038/nature23466 10.1126/science.1166767 10.1103/PhysRevLett.108.267201 10.1103/PhysRevB.90.174434 10.1038/ncomms9504 10.1103/PhysRevLett.111.067203 10.1016/0304-8853(94)90046-9 10.1103/PhysRevB.91.054411 10.1038/ncomms9193 10.1126/science.1195709 10.1103/PhysRevB.95.224405 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1038/s42005-018-0071-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2399-3650 |
ExternalDocumentID | 10_1038_s42005_018_0071_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11772360 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 88I AAFWJ ABDBF ABJCF ABUWG ACGFS ACUHS ADBBV ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BGLVJ C6C CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ H13 HCIFZ M2P M7S M~E NAO O9- OK1 PIMPY PTHSS RNT AAYXX AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c359t-ec34bd8958c9feca3a1042bb57fb46fcbeb035cfefd53832a880e9a2faf672f53 |
IEDL.DBID | 8FG |
ISSN | 2399-3650 |
IngestDate | Fri Jul 25 12:01:09 EDT 2025 Tue Jul 01 04:29:27 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Fri Feb 21 02:37:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ec34bd8958c9feca3a1042bb57fb46fcbeb035cfefd53832a880e9a2faf672f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2389692727?pq-origsite=%requestingapplication% |
PQID | 2389692727 |
PQPubID | 4669724 |
ParticipantIDs | proquest_journals_2389692727 crossref_citationtrail_10_1038_s42005_018_0071_y crossref_primary_10_1038_s42005_018_0071_y springer_journals_10_1038_s42005_018_0071_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-19 |
PublicationDateYYYYMMDD | 2018-11-19 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications physics |
PublicationTitleAbbrev | Commun Phys |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | RosslerUKBogdanovANPfleidererCNature20064427972006Natur.442..797R10.1038/nature05056 HuYWangBNew J. Phys.2017191230022017NJPh...19l3002H10.1088/1367-2630/aa9507 SekiSYuXZIshiwataSTokuraYScience20123361982012Sci...336..198S10.1126/science.1214143 KongLZangJPhys. Rev. Lett.20131110672032013PhRvL.111f7203K10.1103/PhysRevLett.111.067203 LeonovAOBogdanovANNew J. Phys.2018200430172018NJPh...20d3017L10.1088/1367-2630/aab702 Altland, A. and Simons, B. D. Condensed Matter Field Theory, 636 (Cambridge University Press, Cambridge, 2006) MontoyaSAPhys. Rev. B2017950244152017PhRvB..95b4415M10.1103/PhysRevB.95.024415 NayakAKNature20175485612017Natur.548..561N10.1038/nature23466 McGroutherDNew J. Phys.2016180950042016NJPh...18i5004M10.1088/1367-2630/18/9/095004 DzyaloshinskiiISov. Phys. JETP196419960 YuXZNat. Commun.2014510.1038/ncomms4198 HeinzeSNat. Phys.2011771310.1038/nphys2045 MontoyaSAPhys. Rev. B2017952244052017PhRvB..95v4405M10.1103/PhysRevB.95.224405 BogdanovANHubertAJ. Magn. Magn. Mater.19941382551994JMMM..138..255B10.1016/0304-8853(94)90046-9 Hu, Y. and Wang, B. Emergent elasticity of skyrmion lattice in chiral magnets. Preprint at http://arxiv.org/abs/1608.04840 (2016) WilhelmHBaenitzMSchmidtMRosslerUKLeonovAOBogdanovANPhys. Rev. Lett.20111071272032011PhRvL.107l7203W10.1103/PhysRevLett.107.127203 FinazziMPhys. Rev. Lett.20131101772052013PhRvL.110q7205F10.1103/PhysRevLett.110.177205 YuXZNat. Mater.2011101062011AIPC.1388..106Y10.1038/nmat2916 BogdanovANYablonskiiDAZh. Eksp. Teor. Fiz.198995182 KarubeKNat. Mater.20161512372016NatMa..15.1237K10.1038/nmat4752 JonietzFScience201033016482010Sci...330.1648J10.1126/science.1195709 YuXZNature20104659012010Natur.465..901Y10.1038/nature09124 DuHFNingWTianMLZhangYHPhys. Rev. B201387142 WangWHAdv. Mater.201628688710.1002/adma.201600889 AdamsTPhys. Rev. Lett.20111072172062011PhRvL.107u7206A10.1103/PhysRevLett.107.217206 MorikawaDNano Lett.20171716372017NanoL..17.1637M10.1021/acs.nanolett.6b04821 DuHFNat. Commun.2015610.1038/ncomms9504 JiangWPhys. Rep.201770412017PhR...704....1J370468310.1016/j.physrep.2017.08.001 SchutteCIwasakiJRoschANagaosaNPhys. Rev. B2014901744342014PhRvB..90q4434S10.1103/PhysRevB.90.174434 Haken, H. Synergetics: Introduction and Advanced Topics, 218 (Springer, Heidelberg, 2004) HuangSXChienCLPhys. Rev. Lett.20121082672012012PhRvL.108z7201H10.1103/PhysRevLett.108.267201 BogdanovANHubertAJ. Magn. Magn. Mater.19991951821999JMMM..195..182B10.1016/S0304-8853(98)01038-5 ZangJMostovoyMHanJHNagaosaNPhys. Rev. Lett.20111071368042011PhRvL.107m6804Z10.1103/PhysRevLett.107.136804 MuhlbauerSScience20093239152009Sci...323..915M10.1126/science.1166767 ZhouYNat. Commun.2015610.1038/ncomms9193 YuXZNano Lett.20131337552013NanoL..13.3755Y10.1021/nl401687d ShibataKNat. Nanotechnol.2015105892015NatNa..10..589S10.1038/nnano.2015.113 Canuto, C. G., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. Spectral Methods: Fundamentals in Single Domains, 52 (Springer, Heidelberg, 2010). Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1 p. 105, (Interscience Publishers Inc, New York, NY, 1953). Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B91, 054411 (2015) T Adams (71_CR17) 2011; 107 SA Montoya (71_CR15) 2017; 95 K Karube (71_CR18) 2016; 15 WH Wang (71_CR25) 2016; 28 AN Bogdanov (71_CR26) 1989; 95 M Finazzi (71_CR8) 2013; 110 J Zang (71_CR5) 2011; 107 K Shibata (71_CR10) 2015; 10 SX Huang (71_CR22) 2012; 108 AO Leonov (71_CR35) 2018; 20 S Heinze (71_CR23) 2011; 7 I Dzyaloshinskii (71_CR30) 1964; 19 XZ Yu (71_CR20) 2011; 10 HF Du (71_CR39) 2013; 87 D McGrouther (71_CR29) 2016; 18 L Kong (71_CR9) 2013; 111 AK Nayak (71_CR13) 2017; 548 Y Hu (71_CR31) 2017; 19 D Morikawa (71_CR36) 2017; 17 S Seki (71_CR21) 2012; 336 71_CR40 SA Montoya (71_CR16) 2017; 95 AN Bogdanov (71_CR2) 1994; 138 UK Rossler (71_CR27) 2006; 442 XZ Yu (71_CR14) 2014; 5 W Jiang (71_CR24) 2017; 704 F Jonietz (71_CR4) 2010; 330 XZ Yu (71_CR6) 2013; 13 AN Bogdanov (71_CR3) 1999; 195 Y Zhou (71_CR11) 2015; 6 S Muhlbauer (71_CR1) 2009; 323 71_CR37 71_CR38 HF Du (71_CR7) 2015; 6 H Wilhelm (71_CR34) 2011; 107 C Schutte (71_CR28) 2014; 90 71_CR33 71_CR12 XZ Yu (71_CR19) 2010; 465 71_CR32 |
References_xml | – reference: Yu, X. Z. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B91, 054411 (2015) – reference: HeinzeSNat. Phys.2011771310.1038/nphys2045 – reference: YuXZNano Lett.20131337552013NanoL..13.3755Y10.1021/nl401687d – reference: JonietzFScience201033016482010Sci...330.1648J10.1126/science.1195709 – reference: WilhelmHBaenitzMSchmidtMRosslerUKLeonovAOBogdanovANPhys. Rev. Lett.20111071272032011PhRvL.107l7203W10.1103/PhysRevLett.107.127203 – reference: MorikawaDNano Lett.20171716372017NanoL..17.1637M10.1021/acs.nanolett.6b04821 – reference: HuYWangBNew J. Phys.2017191230022017NJPh...19l3002H10.1088/1367-2630/aa9507 – reference: McGroutherDNew J. Phys.2016180950042016NJPh...18i5004M10.1088/1367-2630/18/9/095004 – reference: YuXZNat. Commun.2014510.1038/ncomms4198 – reference: Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1 p. 105, (Interscience Publishers Inc, New York, NY, 1953). – reference: MuhlbauerSScience20093239152009Sci...323..915M10.1126/science.1166767 – reference: Haken, H. Synergetics: Introduction and Advanced Topics, 218 (Springer, Heidelberg, 2004) – reference: DuHFNingWTianMLZhangYHPhys. Rev. B201387142 – reference: JiangWPhys. Rep.201770412017PhR...704....1J370468310.1016/j.physrep.2017.08.001 – reference: MontoyaSAPhys. Rev. B2017952244052017PhRvB..95v4405M10.1103/PhysRevB.95.224405 – reference: DuHFNat. Commun.2015610.1038/ncomms9504 – reference: YuXZNature20104659012010Natur.465..901Y10.1038/nature09124 – reference: NayakAKNature20175485612017Natur.548..561N10.1038/nature23466 – reference: ZhouYNat. Commun.2015610.1038/ncomms9193 – reference: KarubeKNat. Mater.20161512372016NatMa..15.1237K10.1038/nmat4752 – reference: DzyaloshinskiiISov. Phys. JETP196419960 – reference: ShibataKNat. Nanotechnol.2015105892015NatNa..10..589S10.1038/nnano.2015.113 – reference: Altland, A. and Simons, B. D. Condensed Matter Field Theory, 636 (Cambridge University Press, Cambridge, 2006) – reference: LeonovAOBogdanovANNew J. Phys.2018200430172018NJPh...20d3017L10.1088/1367-2630/aab702 – reference: Canuto, C. G., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. Spectral Methods: Fundamentals in Single Domains, 52 (Springer, Heidelberg, 2010). – reference: MontoyaSAPhys. Rev. B2017950244152017PhRvB..95b4415M10.1103/PhysRevB.95.024415 – reference: HuangSXChienCLPhys. Rev. Lett.20121082672012012PhRvL.108z7201H10.1103/PhysRevLett.108.267201 – reference: RosslerUKBogdanovANPfleidererCNature20064427972006Natur.442..797R10.1038/nature05056 – reference: KongLZangJPhys. Rev. Lett.20131110672032013PhRvL.111f7203K10.1103/PhysRevLett.111.067203 – reference: BogdanovANYablonskiiDAZh. Eksp. Teor. Fiz.198995182 – reference: Hu, Y. and Wang, B. Emergent elasticity of skyrmion lattice in chiral magnets. Preprint at http://arxiv.org/abs/1608.04840 (2016) – reference: AdamsTPhys. Rev. Lett.20111072172062011PhRvL.107u7206A10.1103/PhysRevLett.107.217206 – reference: ZangJMostovoyMHanJHNagaosaNPhys. Rev. Lett.20111071368042011PhRvL.107m6804Z10.1103/PhysRevLett.107.136804 – reference: WangWHAdv. Mater.201628688710.1002/adma.201600889 – reference: SekiSYuXZIshiwataSTokuraYScience20123361982012Sci...336..198S10.1126/science.1214143 – reference: SchutteCIwasakiJRoschANagaosaNPhys. Rev. B2014901744342014PhRvB..90q4434S10.1103/PhysRevB.90.174434 – reference: YuXZNat. Mater.2011101062011AIPC.1388..106Y10.1038/nmat2916 – reference: BogdanovANHubertAJ. Magn. Magn. Mater.19991951821999JMMM..195..182B10.1016/S0304-8853(98)01038-5 – reference: FinazziMPhys. Rev. Lett.20131101772052013PhRvL.110q7205F10.1103/PhysRevLett.110.177205 – reference: BogdanovANHubertAJ. Magn. Magn. Mater.19941382551994JMMM..138..255B10.1016/0304-8853(94)90046-9 – volume: 336 start-page: 198 year: 2012 ident: 71_CR21 publication-title: Science doi: 10.1126/science.1214143 – volume: 95 start-page: 182 year: 1989 ident: 71_CR26 publication-title: Zh. Eksp. Teor. Fiz. – volume: 110 start-page: 177205 year: 2013 ident: 71_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.177205 – volume: 19 start-page: 123002 year: 2017 ident: 71_CR31 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa9507 – volume: 95 start-page: 024415 year: 2017 ident: 71_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.024415 – volume: 465 start-page: 901 year: 2010 ident: 71_CR19 publication-title: Nature doi: 10.1038/nature09124 – ident: 71_CR40 doi: 10.1007/978-3-662-10184-1 – ident: 71_CR33 – volume: 195 start-page: 182 year: 1999 ident: 71_CR3 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)01038-5 – ident: 71_CR12 – volume: 13 start-page: 3755 year: 2013 ident: 71_CR6 publication-title: Nano Lett. doi: 10.1021/nl401687d – volume: 28 start-page: 6887 year: 2016 ident: 71_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201600889 – volume: 10 start-page: 106 year: 2011 ident: 71_CR20 publication-title: Nat. Mater. doi: 10.1038/nmat2916 – volume: 18 start-page: 095004 year: 2016 ident: 71_CR29 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/9/095004 – volume: 19 start-page: 960 year: 1964 ident: 71_CR30 publication-title: Sov. Phys. JETP – volume: 20 start-page: 043017 year: 2018 ident: 71_CR35 publication-title: New J. Phys. doi: 10.1088/1367-2630/aab702 – volume: 704 start-page: 1 year: 2017 ident: 71_CR24 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.001 – volume: 17 start-page: 1637 year: 2017 ident: 71_CR36 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04821 – volume: 107 start-page: 217206 year: 2011 ident: 71_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.217206 – volume: 5 year: 2014 ident: 71_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms4198 – volume: 10 start-page: 589 year: 2015 ident: 71_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.113 – volume: 15 start-page: 1237 year: 2016 ident: 71_CR18 publication-title: Nat. Mater. doi: 10.1038/nmat4752 – ident: 71_CR37 doi: 10.1017/CBO9780511804236 – volume: 107 start-page: 136804 year: 2011 ident: 71_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.136804 – volume: 7 start-page: 713 year: 2011 ident: 71_CR23 publication-title: Nat. Phys. doi: 10.1038/nphys2045 – volume: 442 start-page: 797 year: 2006 ident: 71_CR27 publication-title: Nature doi: 10.1038/nature05056 – volume: 107 start-page: 127203 year: 2011 ident: 71_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.127203 – ident: 71_CR32 – volume: 548 start-page: 561 year: 2017 ident: 71_CR13 publication-title: Nature doi: 10.1038/nature23466 – volume: 323 start-page: 915 year: 2009 ident: 71_CR1 publication-title: Science doi: 10.1126/science.1166767 – volume: 108 start-page: 267201 year: 2012 ident: 71_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.267201 – volume: 90 start-page: 174434 year: 2014 ident: 71_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.174434 – volume: 6 year: 2015 ident: 71_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms9504 – volume: 111 start-page: 067203 year: 2013 ident: 71_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.067203 – volume: 87 start-page: 142 year: 2013 ident: 71_CR39 publication-title: Phys. Rev. B – volume: 138 start-page: 255 year: 1994 ident: 71_CR2 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(94)90046-9 – ident: 71_CR38 doi: 10.1103/PhysRevB.91.054411 – volume: 6 year: 2015 ident: 71_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms9193 – volume: 330 start-page: 1648 year: 2010 ident: 71_CR4 publication-title: Science doi: 10.1126/science.1195709 – volume: 95 start-page: 224405 year: 2017 ident: 71_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.224405 |
SSID | ssj0002140736 |
Score | 2.141097 |
Snippet | Topological spin textures emerging in magnetic materials usually appear in crystalline states. A long-standing dilemma is whether we should understand these... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 639/301/119/2792 639/705/1041 639/766/119/2795 639/766/119/997 639/766/530/2795 Coupling Crystal structure Crystallinity Crystals Dipoles Hypothetical particles Long range order Magnetic materials Magnets Metastable state Particle theory Phase transitions Physics Physics and Astronomy Spin density waves Topology |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zIngRf-J0Sg6elGDbNGlylOkYgp4c7haSNNHB1slahf73pmm7oaLgOT8IX5r3vtf35QWAi4TL0Jm8CCnLYxRTxRCTCUHEYBxbjVPli1U_PNLROL6fkEkHhO1dGC_a9yUtvZlu1WHXeexrZgYhQ5VXROUG2GQJDisV34AOVr9VIhcwJJi2-UvMfo786oHWtPJbJtQ7mOEu2GmYIbyp17IHOibbB1teoanzA3D7LD8MrBcNXfgP56aQjtp5cWsJFxaa-iZlAfWydA2zHE4zqF-nSzfrXL5kpsgPwXh49zQYoeYJBKQx4QUyGscqZZwwza3REksXPkVKkcSqmFqtjAow0dbY1FkuHEl3HA2XkZWWJpEl-Ah0s0VmjgEMwjQ0ONWaMBqnjHIspeJuN4x0IYw2PRC0sAjd1AevnqmYCZ-nxkzUSAqHpKiQFGUPXK6GvNXFMf7q3G-xFs05yYUjDJzyyJGoHrhq8V83_zrZyb96n4LtqNr_Sr3H-6BbLN_NmeMShTr3X88n3zrE1g priority: 102 providerName: Springer Nature |
Title | Wave nature and metastability of emergent crystals in chiral magnets |
URI | https://link.springer.com/article/10.1038/s42005-018-0071-y https://www.proquest.com/docview/2389692727 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2399-3650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: ABDBF dateStart: 20180107 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: ADMLS dateStart: 20180107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2399-3650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0jhw8KWFr0qTJSXRuDsEh4tBbSdJEha2baxX235v0w6Ggx5LmHX4ved95D4DTSMjAiTyMlBUhCpniiMuIImoICa0miSqaVd-N2WgS3j7T5yrgllVllbVMLAR1Mtc-Rt51qkUwgZ26vVi8Iz81ymdXqxEam6AZYHeS_Evx4c13jAU77yEirE5mEt7NwqL1Zi_gyCtXtPqpjtY25q-0aKFthjtguzIT4WXJ112wYdI9cP0kPw0sW3FCmSZwZnLprLuivnUF5xaa8jFlDvVy5RamGXxLoX59WzpaM_mSmjzbB5Ph4LE_QtUUBKQJFTkymoQq4YJyLazRkkjnQWGlaGRVyKxWRvUI1dbYxAkvgqW7kUZIbKVlEbaUHIBGOk_NIYC9IAkMSbSmnIUJZ4JIqYRjiJHOi9GmBXo1GLGuWoT7SRXTuEhVEx6X-MUOv9jjF69a4Ox7y6Lsj_Hfz-0a4bi6Klm8ZmwLnNeor5f_JHb0P7FjsIU9m33FnmiDRr78MCfOfshVpzgkHdC8GozvH9xXn_U7hS_-BUW7x5Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpLBaJVtwXqA720sti1ncQ-VBXqsizlcQKVm2s7Y4oEWdiEVvlT_EbGyWZXRYIbZycj5fOXeXg8M4RsZ9oOUOVx5oKWTKZOMWWzhCUghAxe5K5pVn18ko7P5M_z5HyJ3He1MPFaZacTG0WdT3w8I99B06JTzdHcfr-5ZXFqVMyudiM0WlocQv0PQ7by28EQ9_cz56O90x9jNpsqwLxIdMXAC-lypRPldQBvhcWIhDuXZMHJNHgHri8SHyDkqAwEt8hw0JYHG9KMhzglAlX-ihT4MbEyfbQ_P9PhGK1kIu2Sp0LtlLJp9dkfKBaNOav_N38Ln_ZRGraxbqNV8mbmltLdlkdrZAmKdTL8Zf8CbVt_Ulvk9Boqi95kc5-2ppNAoS3erKif1rhwVdLLgvo_l1OUdW0vCqjKt-TsRfB5R5aLSQHvCe0P8gGI3PtEpTJXqRbWOo0EAItRk4ce6XdgGD9rSR4nY1yZJjUulGnxM4ififiZuke-zF-5aftxPPfwRoewmf2apVkQqUe-dqgvlp8U9uF5YZ_Iq_Hp8ZE5Ojg5_Ehe87jl8bag3iDL1fQONtF3qdxWQxhKfr80Qx8A8xkDlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qRfEiPrE-c_CkRNvNJpscxVp8Fg-K3kKSTVTQtXRXof_ebLZbUVHwnAfhS2bmm8xkArCbCNXxKi_C2okYx0xzzFVCMbWExM6QVIdi1Vd9dnobn9_T-wbQ-i1MSNoPJS2Dmq6zww7zONTMbHc4Lq0iHh0MUjcF0zzxElLGaNnx5Gol8k5DQlgdwyT85-ivVuiTWn6LhgYj01uA-TE7REfVehahYbMlmAlZmiZfhu6dereoWjhSWYpebKE8vQsJriP06pCtXlMWyAxHvuE5R08ZMo9PQz_ri3rIbJGvwG3v5Ob4FI-_QcCGUFFga0isUy4oN8JZo4jyLlSkNU2cjpkz2uo2ocZZl3rtRSLlRdIKFTnlWBI5Slahmb1mdg1Qu5N2LEmNoZzFKWeCKKWF3xGrvBtjbAvaNSzSjGuEl19VPMsQqyZcVkhKj6QskZSjFuxNhgyqAhl_dd6ssZZjWcmlJw2CicgTqRbs1_h_Nv862fq_eu_A7HW3Jy_P-hcbMBeVR6FM5hOb0CyGb3bLU4tCb4eD9AFHi8jX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+nature+and+metastability+of+emergent+crystals+in+chiral+magnets&rft.jtitle=Communications+physics&rft.au=Hu+Yangfan&rft.date=2018-11-19&rft.pub=Nature+Publishing+Group&rft.eissn=2399-3650&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1038%2Fs42005-018-0071-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon |