Knowledge Distillation-Based Domain-Invariant Representation Learning for Domain Generalization
Domain generalization (DG) aims to generalize the knowledge learned from multiple source domains to unseen target domains. Existing DG techniques can be subsumed under two broad categories, i.e., domain-invariant representation learning and domain manipulation. Nevertheless, it is extremely difficul...
        Saved in:
      
    
          | Published in | IEEE Transactions on Multimedia Vol. 26; pp. 245 - 255 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English Japanese  | 
| Published | 
            IEEE
    
        2024
     Institute of Electrical and Electronics Engineers (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1520-9210 1941-0077  | 
| DOI | 10.1109/TMM.2023.3263549 | 
Cover
| Abstract | Domain generalization (DG) aims to generalize the knowledge learned from multiple source domains to unseen target domains. Existing DG techniques can be subsumed under two broad categories, i.e., domain-invariant representation learning and domain manipulation. Nevertheless, it is extremely difficult to explicitly augment or generate the unseen target data. And when source domain variety increases, developing a domain-invariant model by simply aligning more domain-specific information becomes more challenging. In this article, we propose a simple yet effective method for domain generalization, named Knowledge Distillation based Domain-invariant Representation Learning (KDDRL), that learns domain-invariant representation while encouraging the model to maintain domain-specific features, which recently turned out to be effective for domain generalization. To this end, our method incorporates multiple auxiliary student models and one student leader model to perform a two-stage distillation. In the first-stage distillation, each domain-specific auxiliary student treats the ensemble of other auxiliary students' predictions as a target, which helps to excavate the domain-invariant representation. Also, we present an error removal module to prevent the transfer of faulty information by eliminating incorrect predictions compared to the true labels. In the second-stage distillation, the student leader model with domain-specific features combines the domain-invariant representation learned from the group of auxiliary students to make the final prediction. Extensive experiments and in-depth analysis on popular DG benchmark datasets demonstrate that our KDDRL significantly outperforms the current state-of-the-art methods. | 
    
|---|---|
| AbstractList | Domain generalization (DG) aims to generalize the knowledge learned from multiple source domains to unseen target domains. Existing DG techniques can be subsumed under two broad categories, i.e., domain-invariant representation learning and domain manipulation. Nevertheless, it is extremely difficult to explicitly augment or generate the unseen target data. And when source domain variety increases, developing a domain-invariant model by simply aligning more domain-specific information becomes more challenging. In this article, we propose a simple yet effective method for domain generalization, named Knowledge Distillation based Domain-invariant Representation Learning (KDDRL), that learns domain-invariant representation while encouraging the model to maintain domain-specific features, which recently turned out to be effective for domain generalization. To this end, our method incorporates multiple auxiliary student models and one student leader model to perform a two-stage distillation. In the first-stage distillation, each domain-specific auxiliary student treats the ensemble of other auxiliary students' predictions as a target, which helps to excavate the domain-invariant representation. Also, we present an error removal module to prevent the transfer of faulty information by eliminating incorrect predictions compared to the true labels. In the second-stage distillation, the student leader model with domain-specific features combines the domain-invariant representation learned from the group of auxiliary students to make the final prediction. Extensive experiments and in-depth analysis on popular DG benchmark datasets demonstrate that our KDDRL significantly outperforms the current state-of-the-art methods. | 
    
| Author | Niu, Ziwei Xu, Yingying Chen, Yen-Wei Liu, Jing Ma, Xu Yuan, Junkun Lin, Lanfen Tong, Ruofeng  | 
    
| Author_xml | – sequence: 1 givenname: Ziwei orcidid: 0000-0003-0171-5158 surname: Niu fullname: Niu, Ziwei email: nzw@zju.edu.cn organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Junkun orcidid: 0000-0003-0012-7397 surname: Yuan fullname: Yuan, Junkun email: yuanjk@zju.edu.cn organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Xu orcidid: 0000-0003-2864-4708 surname: Ma fullname: Ma, Xu email: maxu@zju.edu.cn organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Yingying orcidid: 0000-0003-1217-0448 surname: Xu fullname: Xu, Yingying email: cs_ying@zju.edu.cn organization: Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China – sequence: 5 givenname: Jing orcidid: 0000-0002-9031-6433 surname: Liu fullname: Liu, Jing email: liujinglj@zhejianglab.edu.cn organization: Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China – sequence: 6 givenname: Yen-Wei orcidid: 0000-0002-5952-0188 surname: Chen fullname: Chen, Yen-Wei email: chen@is.ritsumei.ac.jp organization: College of Information Science and Engineering, Ritsumeikan University, Kyoto, Japan – sequence: 7 givenname: Ruofeng orcidid: 0000-0002-8167-5354 surname: Tong fullname: Tong, Ruofeng email: trf@zju.edu.cn organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 8 givenname: Lanfen orcidid: 0000-0003-4098-588X surname: Lin fullname: Lin, Lanfen email: llf@zju.edu.cn organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China  | 
    
| BackLink | https://cir.nii.ac.jp/crid/1870302167810357504$$DView record in CiNii | 
    
| BookMark | eNp9kDFPwzAQRi1UJNrCzsCQgTXlzo7jeIQWSkUrJFTmyCTnyih1KicCwa8nbTogBpa7G9473X0jNvC1J8YuESaIoG_Wq9WEAxcTwVMhE33ChqgTjAGUGnSz5BBrjnDGRk3zDoCJBDVk-ZOvPysqNxTNXNO6qjKtq318Zxoqo1m9Nc7HC_9hgjO-jV5oF6gh3x6oaEkmeOc3ka3DEY7m5CmYyn0fkHN2ak3V0MWxj9nrw_16-hgvn-eL6e0yLoTUbUxCaakKa0tUVIIx3KQ24xLfSkgtCkUGuMkUaEhAW2tJkdYdjTYrM1RizKDfW4S6aQLZfBfc1oSvHCHfB5R3AeX7gPJjQJ2S_lEK1__VBuOq_8TrXvTOdc6-YneaAI6pyhCEVBKSDrvqMUdEv84BLUAk4gdJwIEG | 
    
| CODEN | ITMUF8 | 
    
| CitedBy_id | crossref_primary_10_1145_3595380 crossref_primary_10_1109_TMM_2024_3521671 crossref_primary_10_3390_rs16162877 crossref_primary_10_1109_TMM_2024_3521719 crossref_primary_10_1109_TKDE_2023_3271851 crossref_primary_10_1145_3724398 crossref_primary_10_1007_s00530_024_01613_4 crossref_primary_10_1145_3659953 crossref_primary_10_1109_TIP_2024_3354420  | 
    
| Cites_doi | 10.1109/ICCV.2017.609 10.1109/CVPR.2018.00145 10.1609/aaai.v32i1.11682 10.1145/3065386 10.1109/ICASSP40776.2020.9053273 10.1609/aaai.v34i04.5757 10.1109/ICCV48922.2021.00876 10.1109/CVPR42600.2020.00414 10.1109/TCSVT.2022.3152615 10.1109/CVPR46437.2021.00107 10.1109/tpami.2022.3195549 10.1109/TMM.2021.3104379 10.1109/ICCV.2013.208 10.1109/72.788640 10.1007/s10994-009-5152-4 10.1109/CVPR46437.2021.00682 10.1109/CVPR.2018.00566 10.1609/aaai.v34i07.7003 10.1007/978-3-319-49409-8_35 10.1109/CVPR.2009.5206848 10.1109/CVPR46437.2021.01362 10.1109/ICCV.2019.00153 10.1109/CVPR.2017.572 10.1109/CVPR.2017.316 10.5555/2946645.2946704 10.1609/aaai.v32i1.11596 10.1109/IROS.2017.8202133 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00734 10.1007/978-3-030-58536-5_8 10.21437/Interspeech.2017-614 10.1609/aaai.v34i04.5746 10.1109/WACVW54805.2022.00027 10.1007/978-3-030-01267-0_38 10.1109/CVPR42600.2020.01257 10.1007/978-3-030-58517-4_33 10.1109/ICCV.2017.591 10.1109/CVPR52688.2022.00788 10.1007/978-3-030-66415-2_39 10.1109/CVPR.2019.00233 10.1109/CVPR46437.2021.00858 10.1016/j.neucom.2020.09.091 10.1007/978-3-030-58545-7_10  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE RYH AAYXX CITATION  | 
    
| DOI | 10.1109/TMM.2023.3263549 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CiNii Complete CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1941-0077 | 
    
| EndPage | 255 | 
    
| ExternalDocumentID | 10_1109_TMM_2023_3263549 10093034  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0293 funderid: 10.13039/501100002858 – fundername: Major Scientific Research Project of Zhejiang Lab grantid: 2020ND8AD01 – fundername: Postdoctor Research from Zhejiang Province grantid: ZJ2021028 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ22F020012 – fundername: Japanese Ministry for Education, Science, Culture and Sports grantid: 20KK0234; 21H03470; 20K21821 – fundername: Major Technological Innovation Project of Hangzhou grantid: 2022AIZD0147  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 RYH AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c359t-e37957cffd17ed0aa2a6f8251bd06f137ea02a87090409fffe7e99fd11f8d8173 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1520-9210 | 
    
| IngestDate | Thu Apr 24 22:52:08 EDT 2025 Wed Oct 01 02:36:22 EDT 2025 Thu Jun 26 23:36:42 EDT 2025 Wed Aug 27 02:37:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English Japanese  | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-e37957cffd17ed0aa2a6f8251bd06f137ea02a87090409fffe7e99fd11f8d8173 | 
    
| ORCID | 0000-0003-2864-4708 0000-0002-9031-6433 0000-0003-4098-588X 0000-0002-8167-5354 0000-0002-5952-0188 0000-0003-0171-5158 0000-0003-0012-7397 0000-0003-1217-0448  | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1109_TMM_2023_3263549 nii_cinii_1870302167810357504 crossref_citationtrail_10_1109_TMM_2023_3263549 ieee_primary_10093034  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-01-01 2024-00-00  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE Transactions on Multimedia | 
    
| PublicationTitleAbbrev | TMM | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE)  | 
    
| References | ref13 ref57 ref12 Zhou (ref10) 2021 ref15 ref52 ref55 ref54 Li (ref40) 2018 Sagawa (ref59) ref17 ref16 ref19 Tolstikhin (ref30) 2018 Zhang (ref31) 2018 Zhang (ref65) 2021 ref51 Maaten (ref67) 2008; 9 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Blanchard (ref21) 2011; 24 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Dou (ref11) 2019; 32 ref5 Goodfellow (ref18) 2014; 27 ref34 Blanchard (ref63) 2021; 22 ref33 ref32 Hinton (ref39) 2015; 14 ref2 ref1 ref38 Muandet (ref22) 2013 Gulrajani (ref53) 2020 Li (ref36) 2023 Long (ref14) 2015 Arjovsky (ref58) 2019 Balaji (ref50) 2018; 31 ref24 ref23 ref26 ref25 Bui (ref35) 2021; 34 ref64 Shankar (ref56) 2018 ref28 ref27 Motiian (ref20) 2017; 30 Li (ref37) 2022 Kingma (ref29) 2013 ref60 ref62 Krueger (ref66) 2021 ref61  | 
    
| References_xml | – ident: ref54 doi: 10.1109/ICCV.2017.609 – volume: 22 start-page: 46 issue: 1 year: 2021 ident: ref63 article-title: Domain generalization by marginal transfer learning publication-title: J. Mach. Learn. Res. – ident: ref19 doi: 10.1109/CVPR.2018.00145 – ident: ref23 doi: 10.1609/aaai.v32i1.11682 – ident: ref48 doi: 10.1145/3065386 – ident: ref32 doi: 10.1109/ICASSP40776.2020.9053273 – ident: ref1 doi: 10.1609/aaai.v34i04.5757 – ident: ref9 doi: 10.1109/ICCV48922.2021.00876 – start-page: 97 volume-title: Proc. Int. Conf. Mach. Learn. year: 2015 ident: ref14 article-title: Learning transferable features with deep adaptation networks – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref20 article-title: Few-shot adversarial domain adaptation – ident: ref2 doi: 10.1109/CVPR42600.2020.00414 – year: 2018 ident: ref40 article-title: Exploring knowledge distillation of deep neural nets for efficient hardware solutions – start-page: 10 volume-title: Proc. Int. Conf. Mach. Learn. year: 2013 ident: ref22 article-title: Domain generalization via invariant feature representation – ident: ref27 doi: 10.1109/TCSVT.2022.3152615 – year: 2021 ident: ref65 article-title: Adaptive risk minimization: A meta-learning approach for tackling group shift – ident: ref33 doi: 10.1109/CVPR46437.2021.00107 – ident: ref52 doi: 10.1109/tpami.2022.3195549 – ident: ref8 doi: 10.1109/TMM.2021.3104379 – ident: ref44 doi: 10.1109/ICCV.2013.208 – ident: ref57 doi: 10.1109/72.788640 – ident: ref13 doi: 10.1007/s10994-009-5152-4 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2014 ident: ref18 article-title: Generative adversarial nets – ident: ref28 doi: 10.1109/CVPR46437.2021.00682 – year: 2022 ident: ref37 article-title: Domain generalization using pretrained models without fine-tuning – ident: ref15 doi: 10.1109/CVPR.2018.00566 – year: 2019 ident: ref58 article-title: Invariant risk minimization – ident: ref7 doi: 10.1609/aaai.v34i07.7003 – ident: ref61 doi: 10.1007/978-3-319-49409-8_35 – ident: ref49 doi: 10.1109/CVPR.2009.5206848 – start-page: 2021 volume-title: Proc. Int. Conf. Learn. Representations ident: ref59 article-title: Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization – ident: ref5 doi: 10.1109/CVPR46437.2021.01362 – ident: ref51 doi: 10.1109/ICCV.2019.00153 – ident: ref45 doi: 10.1109/CVPR.2017.572 – ident: ref16 doi: 10.1109/CVPR.2017.316 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2023 ident: ref36 article-title: Sparse fusion mixture-of-experts are domain generalizable learners – ident: ref17 doi: 10.5555/2946645.2946704 – volume: 32 start-page: 1013 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2019 ident: ref11 article-title: Domain generalization via model-agnostic learning of semantic features – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2020 ident: ref53 article-title: In search of lost domain generalization – ident: ref60 doi: 10.1609/aaai.v32i1.11596 – ident: ref25 doi: 10.1109/IROS.2017.8202133 – ident: ref47 doi: 10.1109/CVPR.2016.90 – ident: ref4 doi: 10.1109/CVPR.2019.00734 – ident: ref46 doi: 10.1007/978-3-030-58536-5_8 – volume: 14 start-page: 38 issue: 7 year: 2015 ident: ref39 article-title: Distilling the knowledge in a neural network publication-title: Comput. Sci. – ident: ref41 doi: 10.21437/Interspeech.2017-614 – ident: ref42 doi: 10.1609/aaai.v34i04.5746 – ident: ref3 doi: 10.1109/WACVW54805.2022.00027 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref10 article-title: Domain generalization with mixstyle – ident: ref62 doi: 10.1007/978-3-030-01267-0_38 – volume: 24 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2011 ident: ref21 article-title: Generalizing from several related classification tasks to a new unlabeled sample – ident: ref34 doi: 10.1109/CVPR42600.2020.01257 – ident: ref26 doi: 10.1007/978-3-030-58517-4_33 – ident: ref43 doi: 10.1109/ICCV.2017.591 – year: 2013 ident: ref29 article-title: Auto-encoding variational bayes – ident: ref38 doi: 10.1109/CVPR52688.2022.00788 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref67 article-title: Visualizing data using T-SNE publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 21189 year: 2021 ident: ref35 article-title: Exploiting domain-specific features to enhance domain generalization publication-title: Adv. Neural Inf. Process. Syst. – ident: ref55 doi: 10.1007/978-3-030-66415-2_39 – start-page: 5815 volume-title: Proc. Int. Conf. Mach. Learn. year: 2021 ident: ref66 article-title: Out-of-distribution generalization via risk extrapolation (REX) – ident: ref6 doi: 10.1109/CVPR.2019.00233 – ident: ref64 doi: 10.1109/CVPR46437.2021.00858 – start-page: 1 volume-title: Proc. 6th Int. Conf. Learn. Representations year: 2018 ident: ref30 article-title: Wasserstein auto-encoders – ident: ref24 doi: 10.1016/j.neucom.2020.09.091 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref31 article-title: mixup: Beyond empirical risk minimization – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2018 ident: ref50 article-title: Metareg: Towards domain generalization using meta-regularization – ident: ref12 doi: 10.1007/978-3-030-58545-7_10 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref56 article-title: Generalizing across domains via cross-gradient training  | 
    
| SSID | ssj0014507 ssib009367267 ssib004837832 ssib017384912 ssib000212134 ssib053393536  | 
    
| Score | 2.514361 | 
    
| Snippet | Domain generalization (DG) aims to generalize the knowledge learned from multiple source domains to unseen target domains. Existing DG techniques can be... | 
    
| SourceID | crossref nii ieee  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 245 | 
    
| SubjectTerms | Adaptation models Computational modeling Data models Domain generalization domain invariant representation Feature extraction knowledge distillation Predictive models Representation learning Training  | 
    
| Title | Knowledge Distillation-Based Domain-Invariant Representation Learning for Domain Generalization | 
    
| URI | https://ieeexplore.ieee.org/document/10093034 https://cir.nii.ac.jp/crid/1870302167810357504  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB4BFRS8DsQeD7mgoXCw13EclzzFQ0txAokucvxAKyCL0O4V9-tvnDhohQSiiVKME0ufxzNjz3wDcMikNVaxnHq01jT3wtHa8ZoG602hy6EtZaxGHt0VVw_5zaN8TMXqbS2M975NPvNZfG3v8t3EzuJRGWo4xt9M5IuwqMqiK9b6uDLIZVsbjfaIUY2BTH8nyfTx_WiUxTbhmYjUK5E2c84GtU1V0LI04_GcZblcg7t-Tl1CyXM2m9aZ_feJrvHHk16H1eRjkpNuUWzAgm82Ya3v30CSOm_CyhwZ4S-obvvjNXIeFf-ly5Kjp2jnHDmfvJpxQ6-bvxhcIxrkT5tCmyqXGpJ4Wp8IOsFJmCRK61TpuQUPlxf3Z1c0tV-gVkg9RfSUlsqG4LjyjhkzNEWIla61Y0XgQnnDhgb1XeNGoEMIXnmtUZqH0pVciW1YaiaN3wHinBZSoCWM3ovWRnMhLdOlV5ZjWOwHcNwDUtnETR5bZLxUbYzCdIUQVhHCKkE4gKOPEW8dL8c3slsRljm5DpEB7CPo-MP45GXc-4YcjTdnQkbW-99fjNuFZfx83h3E7MHS9H3m99E1mdYH7ZL8D5_T3O8 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPQCHUh5VU0rxgUsPXuzYzq6PtBSFR3JAQeK28vqBotINQgkHfj3jXS-KKhVxWe1hLFv6PJ4Ze-YbgCOmrLE5k9SjtabSC0crxysarDcDXfRtoWI18mg8GN7Ii1t1m4rVm1oY732TfOaz-Nu85buZXcSrMtRwjL-ZkKvwQUkpVVuu9fpoIFVTHY0WiVGNoUz3Ksn08WQ0ymKj8ExE8pVInLlkhZq2Kmhb6ul0ybacbcG4W1WbUvInW8yrzD7_Q9j47mV_go_JyyQn7bbYhhVf78BW18GBJIXegc0lOsJdKC-7CzZyGlX_vs2Toz_R0jlyOvtrpjU9r58wvEY8yHWTRJtql2qSmFrvCLrBSZgkUutU67kHN2e_J7-GNDVgoFYoPUf8cq1yG4LjuXfMmL4ZhFjrWjk2CFzk3rC-QY3XeBToEILPvdYozUPhCp6Lz7BWz2r_BYhzWiiBtjD6L1obzYWyTBc-txwDY9-D4w6Q0iZ28tgk475sohSmS4SwjBCWCcIe_Hgd8dAyc7whuxdhWZJrEenBAYKOE8YvL-Lp1-dovjkTKvLef_3PuENYH05GV-XV-fhyHzZwKtley3yDtfnjwh-gozKvvjfb8wVdv-A8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Distillation-Based+Domain-Invariant+Representation+Learning+for+Domain+Generalization&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Niu%2C+Ziwei&rft.au=Yuan%2C+Junkun&rft.au=Ma%2C+Xu&rft.au=Xu%2C+Yingying&rft.date=2024&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=26&rft.spage=245&rft.epage=255&rft_id=info:doi/10.1109%2FTMM.2023.3263549&rft.externalDocID=10093034 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |