Enhancing Cybersecurity With P-Code Analysis and XGBoost: A Novel Approach for Malicious VBA Macro Detection in Office Documents
In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection...
Saved in:
| Published in | IEEE access Vol. 12; pp. 71746 - 71760 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3402956 |
Cover
| Abstract | In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection techniques. This study introduces a comprehensive framework employing P-Code Analysis and XGBoost, a leading-edge machine learning algorithm, to address this issue. The proposed solution synergizes static analysis of VBA source code with dynamic P-Code structural analysis, enhanced by Natural Language Processing (NLP) techniques for effective feature extraction. By integrating these methodologies, our model adeptly distinguishes between benign and malicious macros, achieving an unprecedented detection accuracy of 98.70% and an F1-score of 98.81% in rigorous testing environments. The core contribution of this research lies in its innovative approach to malicious macro detection, offering a robust framework that significantly improves upon existing methods. Additionally, the utilization of XGBoost for machine learning analysis introduces a novel application in cybersecurity defenses against macro-based threats. The results underscore the efficacy of combining P-Code analysis with machine learning for cybersecurity, marking a significant stride in the detection of sophisticated cyber threats. This study not only advances the domain of cybersecurity but also lays the groundwork for future research, advocating for the exploration of further optimizations and the adaptation of our model to combat evolving attack vectors. Recommended terms: Cybersecurity, Malicious VBA Macro Detection, P-Code Analysis, XGBoost, Machine Learning. |
|---|---|
| AbstractList | In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection techniques. This study introduces a comprehensive framework employing P-Code Analysis and XGBoost, a leading-edge machine learning algorithm, to address this issue. The proposed solution synergizes static analysis of VBA source code with dynamic P-Code structural analysis, enhanced by Natural Language Processing (NLP) techniques for effective feature extraction. By integrating these methodologies, our model adeptly distinguishes between benign and malicious macros, achieving an unprecedented detection accuracy of 98.70% and an F1-score of 98.81% in rigorous testing environments. The core contribution of this research lies in its innovative approach to malicious macro detection, offering a robust framework that significantly improves upon existing methods. Additionally, the utilization of XGBoost for machine learning analysis introduces a novel application in cybersecurity defenses against macro-based threats. The results underscore the efficacy of combining P-Code analysis with machine learning for cybersecurity, marking a significant stride in the detection of sophisticated cyber threats. This study not only advances the domain of cybersecurity but also lays the groundwork for future research, advocating for the exploration of further optimizations and the adaptation of our model to combat evolving attack vectors. Recommended terms: Cybersecurity, Malicious VBA Macro Detection, P-Code Analysis, XGBoost, Machine Learning. |
| Author | Chen, Jiann-Liang Ahmadi, Candra Lai, Yi-Cheng |
| Author_xml | – sequence: 1 givenname: Candra orcidid: 0000-0001-6583-2156 surname: Ahmadi fullname: Ahmadi, Candra email: D11007809@mail.ntust.edu.tw organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 2 givenname: Jiann-Liang orcidid: 0000-0003-0400-5514 surname: Chen fullname: Chen, Jiann-Liang organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 3 givenname: Yi-Cheng surname: Lai fullname: Lai, Yi-Cheng organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan |
| BookMark | eNplkU9v1DAQxSNUJErpJ4CDJc5Z7NhOYm5pupRKhSKVfzdr1hl3vUrtrZ2AcuOjkyUVqsDSyJ7RvJ-l955nRz54zLKXjK4Yo-pN07brm5tVQQux4oIWSpZPsuOClSrnkpdHj97PstOUdnQ-9TyS1XH2a-234I3zt6SdNhgTmjG6YSLf3LAln_I2dEgaD_2UXCLgO_L94iyENLwlDfkYfmBPmv0-BjBbYkMkH6B3xoUxka9nzdyZGMg5DmgGFzxxnlxb6wyS82DGO_RDepE9tdAnPH24T7Iv79af2_f51fXFZdtc5YZLNeTIqQFrCrkxHKVVNYWiYCgUlIYZA0yqTrDKlBJqqgS3wGu7UTAXtxY5P8kuF24XYKf30d1BnHQAp_8MQrzVEAdnetRK1byyklWdqUQlCih5UUsGrJv_U3BgiYU1-j1MP6Hv_wIZ1YdQNBiDKelDKPohlFn2epHNft2PmAa9C2OcvU2a05IJqbiS8xZftmbrUopo_2Mvgf_LfrWoHCI-UkguirrmvwGb56b6 |
| CODEN | IAECCG |
| Cites_doi | 10.1109/sp46214.2022.9833765 10.1016/j.elerap.2020.101003 10.1007/s10207-023-00736-5 10.1109/iciptm54933.2022.9754044 10.1145/3564625.3567982 10.1109/ntms.2019.8763851 10.1145/3513025 10.1109/icmt58149.2023.10171257 10.1016/j.gltp.2022.04.004 10.1145/2939672.2939785 10.1109/access.2021.3114148 10.1109/access.2020.3037330 10.1016/j.patcog.2023.109663 10.1016/j.jisa.2021.103096 10.1109/issrew53611.2021.00054 10.1109/pacificvis53943.2022.00010 10.1109/access.2022.3207287 10.1007/s40745-022-00444-2 10.1016/j.future.2019.09.025 10.1109/isncc49221.2020.9297272 10.1016/j.eswa.2016.07.010 10.1109/sp46214.2022.9833756 10.1109/iaict52856.2021.9532521 10.1109/access.2022.3213644 10.1109/jstars.2022.3213749 10.1007/978-3-031-42430-4_5 10.1007/s10207-021-00553-8 10.1109/access.2020.3012674 10.1109/jiot.2022.3179231 10.1109/icghit49656.2020.00021 10.1016/j.cose.2021.102582 10.1007/978-981-33-6835-4_22 10.1007/978-3-030-66583-8_5 10.1109/icssit55814.2023.10061139 10.1109/wd.2019.8734193 10.1109/icict57646.2023.10134374 10.1109/icse48619.2023.00108 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3402956 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 71760 |
| ExternalDocumentID | oai_doaj_org_article_99837f517dc74742a632851a1de499a3 10.1109/access.2024.3402956 10_1109_ACCESS_2024_3402956 10534288 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-e30cafc25bc3e5f980a221e49a6c1cca159d417c65a80943fa38fb9afb93ffe33 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:39:07 EDT 2025 Sun Sep 07 10:45:35 EDT 2025 Mon Jun 30 02:26:05 EDT 2025 Wed Oct 01 04:52:34 EDT 2025 Wed Aug 27 02:05:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-e30cafc25bc3e5f980a221e49a6c1cca159d417c65a80943fa38fb9afb93ffe33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0400-5514 0000-0001-6583-2156 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10534288 |
| PQID | 3061459395 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2024_3402956 crossref_primary_10_1109_ACCESS_2024_3402956 ieee_primary_10534288 doaj_primary_oai_doaj_org_article_99837f517dc74742a632851a1de499a3 proquest_journals_3061459395 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | (ref33) 2024 ref14 ref52 ref11 ref10 (ref6) 2023 ref19 ref51 ref50 (ref17) 2023 ref46 ref45 ref48 ref47 (ref24) 2023 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 (ref16) 2023 ref3 ref40 Lagadec (ref22) 2023 (ref13) 2023 ref35 ref37 ref36 ref31 ref30 ref32 (ref15) 2023 (ref25) 2023 ref2 ref1 ref39 ref38 Lagadec (ref23) 2023 (ref12) 2023 (ref5) 2024 ref26 ref21 (ref34) 2024 ref28 ref27 ref29 (ref20) 2023 (ref18) 2023 |
| References_xml | – volume-title: Concept Virus year: 2023 ident: ref16 – volume-title: Vba2Graph—Generates the VBA Call Graph year: 2023 ident: ref24 – volume-title: What is Cuckoo? year: 2023 ident: ref25 – ident: ref48 doi: 10.1109/sp46214.2022.9833765 – ident: ref39 doi: 10.1016/j.elerap.2020.101003 – volume-title: Open XML Formats and File Name Extensions year: 2023 ident: ref12 – volume-title: VBA Language Specification year: 2023 ident: ref13 – ident: ref36 doi: 10.1007/s10207-023-00736-5 – ident: ref47 doi: 10.1109/iciptm54933.2022.9754044 – volume-title: S0367 Software: Emotet year: 2023 ident: ref17 – ident: ref30 doi: 10.1145/3564625.3567982 – volume-title: ViperMonkey—VBA Emulation Engine year: 2023 ident: ref23 – volume-title: VirusTotal Malware Trends Report: Emerging Formats and Delivery Techniques year: 2023 ident: ref6 – ident: ref11 doi: 10.1109/ntms.2019.8763851 – ident: ref29 doi: 10.1145/3513025 – ident: ref3 doi: 10.1109/icmt58149.2023.10171257 – ident: ref31 doi: 10.1016/j.gltp.2022.04.004 – ident: ref32 doi: 10.1145/2939672.2939785 – ident: ref43 doi: 10.1109/access.2021.3114148 – ident: ref14 doi: 10.1109/access.2020.3037330 – volume-title: T1564.007 Hide Artifacts: VBA Stomping year: 2023 ident: ref15 – ident: ref40 doi: 10.1016/j.patcog.2023.109663 – ident: ref10 doi: 10.1016/j.jisa.2021.103096 – ident: ref37 doi: 10.1109/issrew53611.2021.00054 – ident: ref42 doi: 10.1109/pacificvis53943.2022.00010 – ident: ref49 doi: 10.1109/access.2022.3207287 – ident: ref35 doi: 10.1007/s40745-022-00444-2 – volume-title: Excel VBA Macros year: 2024 ident: ref34 – ident: ref41 doi: 10.1016/j.future.2019.09.025 – ident: ref8 doi: 10.1109/isncc49221.2020.9297272 – ident: ref52 doi: 10.1016/j.eswa.2016.07.010 – volume-title: Netskope Threat Labs Stats for January 2024 year: 2024 ident: ref5 – ident: ref21 doi: 10.1109/sp46214.2022.9833756 – volume-title: Oletools—Python Tools to Analyze OLE and MS Office Files year: 2023 ident: ref22 – ident: ref26 doi: 10.1109/iaict52856.2021.9532521 – ident: ref28 doi: 10.1109/access.2022.3213644 – ident: ref44 doi: 10.1109/jstars.2022.3213749 – ident: ref46 doi: 10.1007/978-3-031-42430-4_5 – ident: ref27 doi: 10.1007/s10207-021-00553-8 – volume-title: Security Bulletin 2021 Statistics year: 2023 ident: ref20 – ident: ref38 doi: 10.1109/access.2020.3012674 – ident: ref1 doi: 10.1109/jiot.2022.3179231 – ident: ref9 doi: 10.1109/icghit49656.2020.00021 – ident: ref4 doi: 10.1016/j.cose.2021.102582 – ident: ref7 doi: 10.1007/978-981-33-6835-4_22 – ident: ref19 doi: 10.1007/978-3-030-66583-8_5 – ident: ref50 doi: 10.1109/icssit55814.2023.10061139 – ident: ref51 doi: 10.1109/wd.2019.8734193 – volume-title: Contextures Excel Resources year: 2024 ident: ref33 – ident: ref2 doi: 10.1109/icict57646.2023.10134374 – ident: ref45 doi: 10.1109/icse48619.2023.00108 – volume-title: S0089 Software: BlackEnergy year: 2023 ident: ref18 |
| SSID | ssj0000816957 |
| Score | 2.329159 |
| Snippet | In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 71746 |
| SubjectTerms | Algorithms Codes Computer security Cybersecurity Documents Evolution Feature extraction Machine learning Macros malicious code detection Natural language processing natural language processing (NLP) office documents security P-code analysis Source code Static analysis Static code analysis Structural analysis Vectors Visual Basic for Applications visual basic for applications (VBA) XGBoost algorithm XML |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xb9UwELZQF2BABYoILZUHRkzjXJzEbO-lLRVSCwOFt1mOY9NKlVPRPFA3fjpnx69KxcDCkCFRlFz8XeLvSy7fEfKm7MK3OalZ0TjHyqrSTOZ9w2qbl7yuBOhosXF6Vp2clx9XYjVr9RVqwiZ74GngDlAOQO0Er3uDzLcsdAUFsgTNe4tkXUefz7yRMzEVn8ENr6Sok80Qz-XBom3xilAQFuU7QNEkQ8vq2VQUHftTi5V7bPPh2l_r21_66mo28RxvkyeJMdLFFOlT8sD6Z-TxzEfwOfl95C-Cb4b_TtvbDgldakpHv12OF_Qza4fe0o39CNW-p6sPy2G4Gd_TBT0bflo8fPIWp0hi6SmScxOKY-nX5QLXMH56aMdYteXppaefgvGEpThDreMvcjvk_PjoS3vCUmsFZkDIkVnIjXamEJ0BK5xscl0UHEdUV4YjqEhyesTKVEI3ofbQaWhcJzUu4JwFeEG2_ODtS0JdaTk43vW9bEoDlQ6tj7gBCRqQjdQZebsZZXU9OWioqDxyqSZQVABFJVAysgxI3O0a7K_jBkwKlZJC_SspMrITcJydTwDqrCYjextgVbpXbxQEUSwkSJERdgf2X7Hq2MDyXqyv_kesu-RROOb0WmePbI0_1vY1Ep2x2485_QdnAPTn priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge0Ac-CwipSAfOOIlzsROzC0bWiqkLj2wsJwix7Hbiiqp2GxROfHTGWe91S5ICA45JHIS2_Msv9GM3xDyMq19bE5pluTOsVRKzVTc5CyzccozKUAPEhvHU3k0S9_PxTzobPuzMJvxex6r13ooG4h-XJKOAX0dpPO3yY4USLxHZGc2PSm--PJxXCoGQyDy2V_e3Np7Bon-UFNli17eWbaX-vq7vrjY2GkO76-OcC8GgUKfYPJ1vOzrsfnxm3zjPw7iAbkXGCctVhB5SG7Z9hG5u6FD-Jj8PGjPvO5Ge0rL6xoJYShqRz-f92f0hJVdY-lavoTqtqHzd5OuW_RvaEGn3ZXFzwdtcookmB4juTc-uZZ-mhR4h9NB39p-yPpq6XlLP3jhCktxh1sOR-x2yezw4GN5xEJpBmZAqJ5ZiI12JhG1ASucymOdJNyi0aXhCAokSQ3a2kihc5-76DTkrlYaL3DOAjwho7Zr7VNCXWo5OF43jcpTA1L70kncgAINyGayiLxaG626XClwVIPnEquqKEuEaeUntgoTG5GJN-xNUy-fPTxAg1RhNVboY0LmBM8ag-5UmmgJCVJPzRscgtIQkV0Pi43_CUA_LY_I_honVVjriwq8Uy0UKBERdoOdP_q6AsFWX_f-s_0-GfXflvY50qC-fhHg_wtIQQCC priority: 102 providerName: Unpaywall |
| Title | Enhancing Cybersecurity With P-Code Analysis and XGBoost: A Novel Approach for Malicious VBA Macro Detection in Office Documents |
| URI | https://ieeexplore.ieee.org/document/10534288 https://www.proquest.com/docview/3061459395 https://doi.org/10.1109/access.2024.3402956 https://doaj.org/article/99837f517dc74742a632851a1de499a3 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RcgAOfBYRKCsfOJIlycRJzG03bamQuvTAwnKKHMduK6qkYrOgcuKnM3a8qy0IiUOkJLJiO28sv7HHbwBepbXdmxMyTApjwjTLZCiipghzHaVxnnGUTmLjZJYdz9P3C77wh9XdWRittQs-02N76_bym06t7FIZjXCORJeLHdjJi2w4rLVZULEZJATPvbJQHIk3k7KkTpAPmKRjJD9J2CzVW7OPE-n3WVVuEMw7q_ZKXv-Ql5dbc83RA5itWzmEmHwdr_p6rH7-IeD43914CPc962STwUwewS3dPoZ7W1qET-DXYXtutTfaM1Ze10QKfWI79vmiP2enYdk1mq0lTJhsG7Z4N-26Zf-WTdis-67p816fnBERZidE8JUNsGWfphN6oh_CDnTvIr9adtGyD1a8QrMD397lHsyPDj-Wx6FPzxAq5KIPNUZKGpXwWqHmRhSRTJJYE_CZiskwiCg1hLfKuCxs_KKRWJhaSLrQGI34FHbbrtXPgJlUx2jiumlEkSrMpE2fFCsUKJEYTR7A6zVs1dWgwlE57yUS1YByZVGuPMoBTC20m6JWQtu9IBgqPyIr8jMxNzzOG0UuVZrIDBOinzJuqAtCYgB7Frqt-gbUAthfW0rlx_uyQutYc4GCBxBurOevtkqXBPNGW5__o5oXcNcWG1Z79mG3_7bSL4n_9PXIrRuMnPWP4PZ8djr58hsa8ALj |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHAYHfg5RGOADR1KSPDuJubXZRoG1cNigN8txbDZtSqY1BY0TfzrPjlt1ICQOkZIoie18z_L37OfvEfKKVW5tTqgoLayNWJapSMR1EeUmZkmecVBeYmM6yybH7MOcz8Nmdb8Xxhjjg8_M0J36tfy61Us3VYY9nAPS5eImucUZY7zfrrWeUnE5JATPg7ZQEos3o7LEZqAXmLIhoKckXJ7qjfHHy_SHvCrXKOb2srlQVz_U-fnGaHNwj8xW9eyDTM6Gy64a6p9_SDj-d0Puk7uBd9JRbygPyA3TPCR3NtQIH5Ff-82JU99ovtHyqkJaGFLb0a-n3Qn9HJVtbehKxISqpqbzd-O2XXRv6YjO2u8GPx8UyilSYTpFiq9diC39Mh7hFf4Qumc6H_vV0NOGfnLyFYbuhfoudsjxwf5ROYlCgoZIAxddZCDWyuqUVxoMt6KIVZomBqHPdIKmgVSpRsR1xlXhIhitgsJWQuEB1hqAx2SraRvzhFDLTAI2qepaFExDplwCpUSDAAXIafIBeb2CTV70OhzS-y-xkD3K0qEsA8oDMnbQrh91Itr-BsIgQ5-U6GlCbnmS1xqdKpaqDFIkoCqpsQlCwYDsOOg2yutRG5DdlaXI0OMXEpxrzQUIPiDR2nr-qqvyaTCv1fXpP4p5SbYnR9NDefh-9vEZue1e6ed-dslWd7k0z5ENddUL3wd-A5GpA4s |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge0Ac-CwipSAfOOIlzsROzC0bWiqkLj2wsJwix7Hbiiqp2GxROfHTGWe91S5ICA45JHIS2_Msv9GM3xDyMq19bE5pluTOsVRKzVTc5CyzccozKUAPEhvHU3k0S9_PxTzobPuzMJvxex6r13ooG4h-XJKOAX0dpPO3yY4USLxHZGc2PSm--PJxXCoGQyDy2V_e3Np7Bon-UFNli17eWbaX-vq7vrjY2GkO76-OcC8GgUKfYPJ1vOzrsfnxm3zjPw7iAbkXGCctVhB5SG7Z9hG5u6FD-Jj8PGjPvO5Ge0rL6xoJYShqRz-f92f0hJVdY-lavoTqtqHzd5OuW_RvaEGn3ZXFzwdtcookmB4juTc-uZZ-mhR4h9NB39p-yPpq6XlLP3jhCktxh1sOR-x2yezw4GN5xEJpBmZAqJ5ZiI12JhG1ASucymOdJNyi0aXhCAokSQ3a2kihc5-76DTkrlYaL3DOAjwho7Zr7VNCXWo5OF43jcpTA1L70kncgAINyGayiLxaG626XClwVIPnEquqKEuEaeUntgoTG5GJN-xNUy-fPTxAg1RhNVboY0LmBM8ag-5UmmgJCVJPzRscgtIQkV0Pi43_CUA_LY_I_honVVjriwq8Uy0UKBERdoOdP_q6AsFWX_f-s_0-GfXflvY50qC-fhHg_wtIQQCC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Cybersecurity+With+P-Code+Analysis+and+XGBoost%3A+A+Novel+Approach+for+Malicious+VBA+Macro+Detection+in+Office+Documents&rft.jtitle=IEEE+access&rft.au=Ahmadi%2C+Candra&rft.au=Chen%2C+Jiann-Liang&rft.au=Lai%2C+Yi-Cheng&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=71746&rft.epage=71760&rft_id=info:doi/10.1109%2FACCESS.2024.3402956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3402956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |