Enhancing Cybersecurity With P-Code Analysis and XGBoost: A Novel Approach for Malicious VBA Macro Detection in Office Documents

In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 71746 - 71760
Main Authors Ahmadi, Candra, Chen, Jiann-Liang, Lai, Yi-Cheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3402956

Cover

Abstract In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection techniques. This study introduces a comprehensive framework employing P-Code Analysis and XGBoost, a leading-edge machine learning algorithm, to address this issue. The proposed solution synergizes static analysis of VBA source code with dynamic P-Code structural analysis, enhanced by Natural Language Processing (NLP) techniques for effective feature extraction. By integrating these methodologies, our model adeptly distinguishes between benign and malicious macros, achieving an unprecedented detection accuracy of 98.70% and an F1-score of 98.81% in rigorous testing environments. The core contribution of this research lies in its innovative approach to malicious macro detection, offering a robust framework that significantly improves upon existing methods. Additionally, the utilization of XGBoost for machine learning analysis introduces a novel application in cybersecurity defenses against macro-based threats. The results underscore the efficacy of combining P-Code analysis with machine learning for cybersecurity, marking a significant stride in the detection of sophisticated cyber threats. This study not only advances the domain of cybersecurity but also lays the groundwork for future research, advocating for the exploration of further optimizations and the adaptation of our model to combat evolving attack vectors. Recommended terms: Cybersecurity, Malicious VBA Macro Detection, P-Code Analysis, XGBoost, Machine Learning.
AbstractList In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a formidable challenge. These macros, while integral to automation, have become potent vehicles for cyber-attacks, necessitating advanced detection techniques. This study introduces a comprehensive framework employing P-Code Analysis and XGBoost, a leading-edge machine learning algorithm, to address this issue. The proposed solution synergizes static analysis of VBA source code with dynamic P-Code structural analysis, enhanced by Natural Language Processing (NLP) techniques for effective feature extraction. By integrating these methodologies, our model adeptly distinguishes between benign and malicious macros, achieving an unprecedented detection accuracy of 98.70% and an F1-score of 98.81% in rigorous testing environments. The core contribution of this research lies in its innovative approach to malicious macro detection, offering a robust framework that significantly improves upon existing methods. Additionally, the utilization of XGBoost for machine learning analysis introduces a novel application in cybersecurity defenses against macro-based threats. The results underscore the efficacy of combining P-Code analysis with machine learning for cybersecurity, marking a significant stride in the detection of sophisticated cyber threats. This study not only advances the domain of cybersecurity but also lays the groundwork for future research, advocating for the exploration of further optimizations and the adaptation of our model to combat evolving attack vectors. Recommended terms: Cybersecurity, Malicious VBA Macro Detection, P-Code Analysis, XGBoost, Machine Learning.
Author Chen, Jiann-Liang
Ahmadi, Candra
Lai, Yi-Cheng
Author_xml – sequence: 1
  givenname: Candra
  orcidid: 0000-0001-6583-2156
  surname: Ahmadi
  fullname: Ahmadi, Candra
  email: D11007809@mail.ntust.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 2
  givenname: Jiann-Liang
  orcidid: 0000-0003-0400-5514
  surname: Chen
  fullname: Chen, Jiann-Liang
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 3
  givenname: Yi-Cheng
  surname: Lai
  fullname: Lai, Yi-Cheng
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
BookMark eNplkU9v1DAQxSNUJErpJ4CDJc5Z7NhOYm5pupRKhSKVfzdr1hl3vUrtrZ2AcuOjkyUVqsDSyJ7RvJ-l955nRz54zLKXjK4Yo-pN07brm5tVQQux4oIWSpZPsuOClSrnkpdHj97PstOUdnQ-9TyS1XH2a-234I3zt6SdNhgTmjG6YSLf3LAln_I2dEgaD_2UXCLgO_L94iyENLwlDfkYfmBPmv0-BjBbYkMkH6B3xoUxka9nzdyZGMg5DmgGFzxxnlxb6wyS82DGO_RDepE9tdAnPH24T7Iv79af2_f51fXFZdtc5YZLNeTIqQFrCrkxHKVVNYWiYCgUlIYZA0yqTrDKlBJqqgS3wGu7UTAXtxY5P8kuF24XYKf30d1BnHQAp_8MQrzVEAdnetRK1byyklWdqUQlCih5UUsGrJv_U3BgiYU1-j1MP6Hv_wIZ1YdQNBiDKelDKPohlFn2epHNft2PmAa9C2OcvU2a05IJqbiS8xZftmbrUopo_2Mvgf_LfrWoHCI-UkguirrmvwGb56b6
CODEN IAECCG
Cites_doi 10.1109/sp46214.2022.9833765
10.1016/j.elerap.2020.101003
10.1007/s10207-023-00736-5
10.1109/iciptm54933.2022.9754044
10.1145/3564625.3567982
10.1109/ntms.2019.8763851
10.1145/3513025
10.1109/icmt58149.2023.10171257
10.1016/j.gltp.2022.04.004
10.1145/2939672.2939785
10.1109/access.2021.3114148
10.1109/access.2020.3037330
10.1016/j.patcog.2023.109663
10.1016/j.jisa.2021.103096
10.1109/issrew53611.2021.00054
10.1109/pacificvis53943.2022.00010
10.1109/access.2022.3207287
10.1007/s40745-022-00444-2
10.1016/j.future.2019.09.025
10.1109/isncc49221.2020.9297272
10.1016/j.eswa.2016.07.010
10.1109/sp46214.2022.9833756
10.1109/iaict52856.2021.9532521
10.1109/access.2022.3213644
10.1109/jstars.2022.3213749
10.1007/978-3-031-42430-4_5
10.1007/s10207-021-00553-8
10.1109/access.2020.3012674
10.1109/jiot.2022.3179231
10.1109/icghit49656.2020.00021
10.1016/j.cose.2021.102582
10.1007/978-981-33-6835-4_22
10.1007/978-3-030-66583-8_5
10.1109/icssit55814.2023.10061139
10.1109/wd.2019.8734193
10.1109/icict57646.2023.10134374
10.1109/icse48619.2023.00108
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3402956
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 71760
ExternalDocumentID oai_doaj_org_article_99837f517dc74742a632851a1de499a3
10.1109/access.2024.3402956
10_1109_ACCESS_2024_3402956
10534288
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-e30cafc25bc3e5f980a221e49a6c1cca159d417c65a80943fa38fb9afb93ffe33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:39:07 EDT 2025
Sun Sep 07 10:45:35 EDT 2025
Mon Jun 30 02:26:05 EDT 2025
Wed Oct 01 04:52:34 EDT 2025
Wed Aug 27 02:05:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e30cafc25bc3e5f980a221e49a6c1cca159d417c65a80943fa38fb9afb93ffe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0400-5514
0000-0001-6583-2156
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10534288
PQID 3061459395
PQPubID 4845423
PageCount 15
ParticipantIDs unpaywall_primary_10_1109_access_2024_3402956
crossref_primary_10_1109_ACCESS_2024_3402956
ieee_primary_10534288
doaj_primary_oai_doaj_org_article_99837f517dc74742a632851a1de499a3
proquest_journals_3061459395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref33) 2024
ref14
ref52
ref11
ref10
(ref6) 2023
ref19
ref51
ref50
(ref17) 2023
ref46
ref45
ref48
ref47
(ref24) 2023
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
(ref16) 2023
ref3
ref40
Lagadec (ref22) 2023
(ref13) 2023
ref35
ref37
ref36
ref31
ref30
ref32
(ref15) 2023
(ref25) 2023
ref2
ref1
ref39
ref38
Lagadec (ref23) 2023
(ref12) 2023
(ref5) 2024
ref26
ref21
(ref34) 2024
ref28
ref27
ref29
(ref20) 2023
(ref18) 2023
References_xml – volume-title: Concept Virus
  year: 2023
  ident: ref16
– volume-title: Vba2Graph—Generates the VBA Call Graph
  year: 2023
  ident: ref24
– volume-title: What is Cuckoo?
  year: 2023
  ident: ref25
– ident: ref48
  doi: 10.1109/sp46214.2022.9833765
– ident: ref39
  doi: 10.1016/j.elerap.2020.101003
– volume-title: Open XML Formats and File Name Extensions
  year: 2023
  ident: ref12
– volume-title: VBA Language Specification
  year: 2023
  ident: ref13
– ident: ref36
  doi: 10.1007/s10207-023-00736-5
– ident: ref47
  doi: 10.1109/iciptm54933.2022.9754044
– volume-title: S0367 Software: Emotet
  year: 2023
  ident: ref17
– ident: ref30
  doi: 10.1145/3564625.3567982
– volume-title: ViperMonkey—VBA Emulation Engine
  year: 2023
  ident: ref23
– volume-title: VirusTotal Malware Trends Report: Emerging Formats and Delivery Techniques
  year: 2023
  ident: ref6
– ident: ref11
  doi: 10.1109/ntms.2019.8763851
– ident: ref29
  doi: 10.1145/3513025
– ident: ref3
  doi: 10.1109/icmt58149.2023.10171257
– ident: ref31
  doi: 10.1016/j.gltp.2022.04.004
– ident: ref32
  doi: 10.1145/2939672.2939785
– ident: ref43
  doi: 10.1109/access.2021.3114148
– ident: ref14
  doi: 10.1109/access.2020.3037330
– volume-title: T1564.007 Hide Artifacts: VBA Stomping
  year: 2023
  ident: ref15
– ident: ref40
  doi: 10.1016/j.patcog.2023.109663
– ident: ref10
  doi: 10.1016/j.jisa.2021.103096
– ident: ref37
  doi: 10.1109/issrew53611.2021.00054
– ident: ref42
  doi: 10.1109/pacificvis53943.2022.00010
– ident: ref49
  doi: 10.1109/access.2022.3207287
– ident: ref35
  doi: 10.1007/s40745-022-00444-2
– volume-title: Excel VBA Macros
  year: 2024
  ident: ref34
– ident: ref41
  doi: 10.1016/j.future.2019.09.025
– ident: ref8
  doi: 10.1109/isncc49221.2020.9297272
– ident: ref52
  doi: 10.1016/j.eswa.2016.07.010
– volume-title: Netskope Threat Labs Stats for January 2024
  year: 2024
  ident: ref5
– ident: ref21
  doi: 10.1109/sp46214.2022.9833756
– volume-title: Oletools—Python Tools to Analyze OLE and MS Office Files
  year: 2023
  ident: ref22
– ident: ref26
  doi: 10.1109/iaict52856.2021.9532521
– ident: ref28
  doi: 10.1109/access.2022.3213644
– ident: ref44
  doi: 10.1109/jstars.2022.3213749
– ident: ref46
  doi: 10.1007/978-3-031-42430-4_5
– ident: ref27
  doi: 10.1007/s10207-021-00553-8
– volume-title: Security Bulletin 2021 Statistics
  year: 2023
  ident: ref20
– ident: ref38
  doi: 10.1109/access.2020.3012674
– ident: ref1
  doi: 10.1109/jiot.2022.3179231
– ident: ref9
  doi: 10.1109/icghit49656.2020.00021
– ident: ref4
  doi: 10.1016/j.cose.2021.102582
– ident: ref7
  doi: 10.1007/978-981-33-6835-4_22
– ident: ref19
  doi: 10.1007/978-3-030-66583-8_5
– ident: ref50
  doi: 10.1109/icssit55814.2023.10061139
– ident: ref51
  doi: 10.1109/wd.2019.8734193
– volume-title: Contextures Excel Resources
  year: 2024
  ident: ref33
– ident: ref2
  doi: 10.1109/icict57646.2023.10134374
– ident: ref45
  doi: 10.1109/icse48619.2023.00108
– volume-title: S0089 Software: BlackEnergy
  year: 2023
  ident: ref18
SSID ssj0000816957
Score 2.329159
Snippet In the evolving landscape of cybersecurity, the prevalence of malicious Visual Basic for Applications (VBA) macros embedded in Office documents presents a...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 71746
SubjectTerms Algorithms
Codes
Computer security
Cybersecurity
Documents
Evolution
Feature extraction
Machine learning
Macros
malicious code detection
Natural language processing
natural language processing (NLP)
office documents security
P-code analysis
Source code
Static analysis
Static code analysis
Structural analysis
Vectors
Visual Basic for Applications
visual basic for applications (VBA)
XGBoost algorithm
XML
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xb9UwELZQF2BABYoILZUHRkzjXJzEbO-lLRVSCwOFt1mOY9NKlVPRPFA3fjpnx69KxcDCkCFRlFz8XeLvSy7fEfKm7MK3OalZ0TjHyqrSTOZ9w2qbl7yuBOhosXF6Vp2clx9XYjVr9RVqwiZ74GngDlAOQO0Er3uDzLcsdAUFsgTNe4tkXUefz7yRMzEVn8ENr6Sok80Qz-XBom3xilAQFuU7QNEkQ8vq2VQUHftTi5V7bPPh2l_r21_66mo28RxvkyeJMdLFFOlT8sD6Z-TxzEfwOfl95C-Cb4b_TtvbDgldakpHv12OF_Qza4fe0o39CNW-p6sPy2G4Gd_TBT0bflo8fPIWp0hi6SmScxOKY-nX5QLXMH56aMdYteXppaefgvGEpThDreMvcjvk_PjoS3vCUmsFZkDIkVnIjXamEJ0BK5xscl0UHEdUV4YjqEhyesTKVEI3ofbQaWhcJzUu4JwFeEG2_ODtS0JdaTk43vW9bEoDlQ6tj7gBCRqQjdQZebsZZXU9OWioqDxyqSZQVABFJVAysgxI3O0a7K_jBkwKlZJC_SspMrITcJydTwDqrCYjextgVbpXbxQEUSwkSJERdgf2X7Hq2MDyXqyv_kesu-RROOb0WmePbI0_1vY1Ep2x2485_QdnAPTn
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge0Ac-CwipSAfOOIlzsROzC0bWiqkLj2wsJwix7Hbiiqp2GxROfHTGWe91S5ICA45JHIS2_Msv9GM3xDyMq19bE5pluTOsVRKzVTc5CyzccozKUAPEhvHU3k0S9_PxTzobPuzMJvxex6r13ooG4h-XJKOAX0dpPO3yY4USLxHZGc2PSm--PJxXCoGQyDy2V_e3Np7Bon-UFNli17eWbaX-vq7vrjY2GkO76-OcC8GgUKfYPJ1vOzrsfnxm3zjPw7iAbkXGCctVhB5SG7Z9hG5u6FD-Jj8PGjPvO5Ge0rL6xoJYShqRz-f92f0hJVdY-lavoTqtqHzd5OuW_RvaEGn3ZXFzwdtcookmB4juTc-uZZ-mhR4h9NB39p-yPpq6XlLP3jhCktxh1sOR-x2yezw4GN5xEJpBmZAqJ5ZiI12JhG1ASucymOdJNyi0aXhCAokSQ3a2kihc5-76DTkrlYaL3DOAjwho7Zr7VNCXWo5OF43jcpTA1L70kncgAINyGayiLxaG626XClwVIPnEquqKEuEaeUntgoTG5GJN-xNUy-fPTxAg1RhNVboY0LmBM8ag-5UmmgJCVJPzRscgtIQkV0Pi43_CUA_LY_I_honVVjriwq8Uy0UKBERdoOdP_q6AsFWX_f-s_0-GfXflvY50qC-fhHg_wtIQQCC
  priority: 102
  providerName: Unpaywall
Title Enhancing Cybersecurity With P-Code Analysis and XGBoost: A Novel Approach for Malicious VBA Macro Detection in Office Documents
URI https://ieeexplore.ieee.org/document/10534288
https://www.proquest.com/docview/3061459395
https://doi.org/10.1109/access.2024.3402956
https://doaj.org/article/99837f517dc74742a632851a1de499a3
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RcgAOfBYRKCsfOJIlycRJzG03bamQuvTAwnKKHMduK6qkYrOgcuKnM3a8qy0IiUOkJLJiO28sv7HHbwBepbXdmxMyTApjwjTLZCiipghzHaVxnnGUTmLjZJYdz9P3C77wh9XdWRittQs-02N76_bym06t7FIZjXCORJeLHdjJi2w4rLVZULEZJATPvbJQHIk3k7KkTpAPmKRjJD9J2CzVW7OPE-n3WVVuEMw7q_ZKXv-Ql5dbc83RA5itWzmEmHwdr_p6rH7-IeD43914CPc962STwUwewS3dPoZ7W1qET-DXYXtutTfaM1Ze10QKfWI79vmiP2enYdk1mq0lTJhsG7Z4N-26Zf-WTdis-67p816fnBERZidE8JUNsGWfphN6oh_CDnTvIr9adtGyD1a8QrMD397lHsyPDj-Wx6FPzxAq5KIPNUZKGpXwWqHmRhSRTJJYE_CZiskwiCg1hLfKuCxs_KKRWJhaSLrQGI34FHbbrtXPgJlUx2jiumlEkSrMpE2fFCsUKJEYTR7A6zVs1dWgwlE57yUS1YByZVGuPMoBTC20m6JWQtu9IBgqPyIr8jMxNzzOG0UuVZrIDBOinzJuqAtCYgB7Frqt-gbUAthfW0rlx_uyQutYc4GCBxBurOevtkqXBPNGW5__o5oXcNcWG1Z79mG3_7bSL4n_9PXIrRuMnPWP4PZ8djr58hsa8ALj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHAYHfg5RGOADR1KSPDuJubXZRoG1cNigN8txbDZtSqY1BY0TfzrPjlt1ICQOkZIoie18z_L37OfvEfKKVW5tTqgoLayNWJapSMR1EeUmZkmecVBeYmM6yybH7MOcz8Nmdb8Xxhjjg8_M0J36tfy61Us3VYY9nAPS5eImucUZY7zfrrWeUnE5JATPg7ZQEos3o7LEZqAXmLIhoKckXJ7qjfHHy_SHvCrXKOb2srlQVz_U-fnGaHNwj8xW9eyDTM6Gy64a6p9_SDj-d0Puk7uBd9JRbygPyA3TPCR3NtQIH5Ff-82JU99ovtHyqkJaGFLb0a-n3Qn9HJVtbehKxISqpqbzd-O2XXRv6YjO2u8GPx8UyilSYTpFiq9diC39Mh7hFf4Qumc6H_vV0NOGfnLyFYbuhfoudsjxwf5ROYlCgoZIAxddZCDWyuqUVxoMt6KIVZomBqHPdIKmgVSpRsR1xlXhIhitgsJWQuEB1hqAx2SraRvzhFDLTAI2qepaFExDplwCpUSDAAXIafIBeb2CTV70OhzS-y-xkD3K0qEsA8oDMnbQrh91Itr-BsIgQ5-U6GlCbnmS1xqdKpaqDFIkoCqpsQlCwYDsOOg2yutRG5DdlaXI0OMXEpxrzQUIPiDR2nr-qqvyaTCv1fXpP4p5SbYnR9NDefh-9vEZue1e6ed-dslWd7k0z5ENddUL3wd-A5GpA4s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge0Ac-CwipSAfOOIlzsROzC0bWiqkLj2wsJwix7Hbiiqp2GxROfHTGWe91S5ICA45JHIS2_Msv9GM3xDyMq19bE5pluTOsVRKzVTc5CyzccozKUAPEhvHU3k0S9_PxTzobPuzMJvxex6r13ooG4h-XJKOAX0dpPO3yY4USLxHZGc2PSm--PJxXCoGQyDy2V_e3Np7Bon-UFNli17eWbaX-vq7vrjY2GkO76-OcC8GgUKfYPJ1vOzrsfnxm3zjPw7iAbkXGCctVhB5SG7Z9hG5u6FD-Jj8PGjPvO5Ge0rL6xoJYShqRz-f92f0hJVdY-lavoTqtqHzd5OuW_RvaEGn3ZXFzwdtcookmB4juTc-uZZ-mhR4h9NB39p-yPpq6XlLP3jhCktxh1sOR-x2yezw4GN5xEJpBmZAqJ5ZiI12JhG1ASucymOdJNyi0aXhCAokSQ3a2kihc5-76DTkrlYaL3DOAjwho7Zr7VNCXWo5OF43jcpTA1L70kncgAINyGayiLxaG626XClwVIPnEquqKEuEaeUntgoTG5GJN-xNUy-fPTxAg1RhNVboY0LmBM8ag-5UmmgJCVJPzRscgtIQkV0Pi43_CUA_LY_I_honVVjriwq8Uy0UKBERdoOdP_q6AsFWX_f-s_0-GfXflvY50qC-fhHg_wtIQQCC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Cybersecurity+With+P-Code+Analysis+and+XGBoost%3A+A+Novel+Approach+for+Malicious+VBA+Macro+Detection+in+Office+Documents&rft.jtitle=IEEE+access&rft.au=Ahmadi%2C+Candra&rft.au=Chen%2C+Jiann-Liang&rft.au=Lai%2C+Yi-Cheng&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=71746&rft.epage=71760&rft_id=info:doi/10.1109%2FACCESS.2024.3402956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3402956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon