Automated Microsampling Technologies and Enhancements in the 3Rs
Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, ti...
        Saved in:
      
    
          | Published in | ILAR journal Vol. 57; no. 2; pp. 166 - 177 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        01.12.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1084-2020 1930-6180 1930-6180  | 
| DOI | 10.1093/ilar/ilw020 | 
Cover
| Abstract | Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, time-consuming and costly, and required many animals when using small models with low fluid volumes, such as rats or mice. Utilizing automated microsampling (AMS) alone or in an integrative pharmacology approach to evaluate multiple physiological, pharmacokinetic, and pharmacodynamic endpoints simultaneously in the same animal accomplishes multiple experimental goals. Use of AMS robotics and associated instrumentation can assist in achieving significant reduction and refinement of animal use. Automated robotic instrumentation for specimen collection from living animal models can now be used to provide better quality pharmacokinetic and pharmacodynamic data, reduce time, provide more data with less variability, reduce animal use, and refine animal model use to reduce pain and stress. Instrumentation in common use for automated sampling and dosing is briefly discussed. In parallel with advances in automated instrumentation, recent advances in analytical detection methods complement the use of automated technology for data and specimen collection. Methods requiring much smaller volumes can now be utilized. Microsampling (small biological samples in volumes of 5-100 μL) can facilitate reduction in animal numbers while minimizing stresses associated with excessive fluid volume removal. Innovations in automation, microsampling techniques, and analytical methods have facilitated advances in data collection that allow for more robust and accurate data, reduction in animal use, and refinement in techniques that improve animal welfare. These innovations offer opportunities for wider application in nonclinical investigations by collection of multiple data streams simultaneously from individual animals. Many benefits are achievable through the use integrative pharmacology designs utilizing AMS, including decreased time for completion of composite data collection, decreased personnel resources, lower costs, improved safety, higher quality and multiple data-sets, and improvements in aspects of the 3Rs. | 
    
|---|---|
| AbstractList | Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, time-consuming and costly, and required many animals when using small models with low fluid volumes, such as rats or mice. Utilizing automated microsampling (AMS) alone or in an integrative pharmacology approach to evaluate multiple physiological, pharmacokinetic, and pharmacodynamic endpoints simultaneously in the same animal accomplishes multiple experimental goals. Use of AMS robotics and associated instrumentation can assist in achieving significant reduction and refinement of animal use. Automated robotic instrumentation for specimen collection from living animal models can now be used to provide better quality pharmacokinetic and pharmacodynamic data, reduce time, provide more data with less variability, reduce animal use, and refine animal model use to reduce pain and stress. Instrumentation in common use for automated sampling and dosing is briefly discussed. In parallel with advances in automated instrumentation, recent advances in analytical detection methods complement the use of automated technology for data and specimen collection. Methods requiring much smaller volumes can now be utilized. Microsampling (small biological samples in volumes of 5-100 μL) can facilitate reduction in animal numbers while minimizing stresses associated with excessive fluid volume removal. Innovations in automation, microsampling techniques, and analytical methods have facilitated advances in data collection that allow for more robust and accurate data, reduction in animal use, and refinement in techniques that improve animal welfare. These innovations offer opportunities for wider application in nonclinical investigations by collection of multiple data streams simultaneously from individual animals. Many benefits are achievable through the use integrative pharmacology designs utilizing AMS, including decreased time for completion of composite data collection, decreased personnel resources, lower costs, improved safety, higher quality and multiple data-sets, and improvements in aspects of the 3Rs. | 
    
| Author | David Hopper, L. | 
    
| Author_xml | – sequence: 1 givenname: L. surname: David Hopper fullname: David Hopper, L.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28053070$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kM1LwzAUwINM3KaevEuPglZfmq5Lb44xP2AiyDyXLH3ZImk6m5Sx_96MTg-CXt57PH7vg9-Q9GxtkZALCrcUcnanjWhC2EICR2RAcwZxRjn0Qg08jZPQ75Ohcx8AyTjP-AnpJxxGDMYwIPeT1teV8FhGL1o2tRPVxmi7ihYo17Y29Uqji4Qto5ldCyuxQutdpG3k1xixN3dGjpUwDs8P-ZS8P8wW06d4_vr4PJ3MY8lGuY_LNFwsUxq-4QhUpAlPmGJUUp7lpVSKsSVSZChA8ZCpGHPGpFqykqmcp-yU3HR7W7sRu60wptg0uhLNrqBQ7EUUexFFJyLgVx2-aerPFp0vKu0kGiMs1q0rkoxlaQ6QZQG9PKDtssLyZ-23pADQDtj7cQ2qQmovvK6tb4Q2f9y__jXz37dfa-OKIw | 
    
| CitedBy_id | crossref_primary_10_1016_j_vascn_2021_107066 crossref_primary_10_1016_j_jpba_2019_07_020 crossref_primary_10_3389_fphys_2025_1519701 crossref_primary_10_3390_antibiotics12040700 crossref_primary_10_1016_j_vascn_2021_107109 crossref_primary_10_1093_ilar_ilab018  | 
    
| Cites_doi | 10.1016/j.vascn.2011.06.002 10.1002/bem.2250160710 10.1016/j.jpba.2011.06.022 10.1016/j.ejps.2006.10.005 10.1039/b910508e 10.1016/0165-0270(85)90084-6 10.1016/j.jpba.2012.04.013 10.1677/joe.0.1800145 10.4155/bio.12.25 10.1016/S0169-409X(00)00106-X 10.1677/joe.0.1110027 10.1016/S1056-8719(03)00058-3 10.1208/s12248-010-9188-y 10.4155/bio.11.227 10.1111/vcp.12272 10.1016/S0928-0987(02)00149-5 10.1080/03091900802185970 10.4155/bio.12.91 10.1016/j.chroma.2014.12.086 10.1016/j.taap.2013.01.032 10.4155/bio.13.58 10.1186/1475-925X-10-1 10.1016/S1570-0232(02)00087-9 10.7120/09627286.24.1.015 10.1021/js9801485 10.1002/rcm.7033 10.7120/09627286.21.2.197 10.1208/s12248-013-9482-6 10.4155/bio.14.184 10.1371/journal.pone.0131587  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com. | 
    
| Copyright_xml | – notice: The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 ADTOC UNPAY  | 
    
| DOI | 10.1093/ilar/ilw020 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Zoology | 
    
| EISSN | 1930-6180 | 
    
| EndPage | 177 | 
    
| ExternalDocumentID | 10.1093/ilar/ilw020 28053070 10_1093_ilar_ilw020  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0R~ 1TH 2WC 34G 39C 4.4 48X 53G 5GY 5RE 5VS AAIMJ AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAYXX ABEJV ABEUO ABGNP ABIXL ABJNI ABPTD ABQLI ABXVV ACCCW ACFRR ACGFS ACUFI ACUTJ ACVCV ADBBV ADGZP ADHKW ADHZD ADQBN ADRTK ADYVW AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFIYH AFOFC AGINJ AGMDO AGSYK ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH AQDSO ARIXL AVWKF AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C1A CDBKE CITATION DAKXR DILTD E3Z EBS EJD ELUNK F5P FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 HAR J21 JXSIZ KBUDW KOP KQ8 KSI MBTAY NLBLG NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 PAFKI PEELM Q5Y RUSNO RXO TLC TR2 YAYTL YKOAZ YXANX ZGI ~KM CGR CUY CVF ECM EIF NPM 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-d4053d412028e01a42823f31c1869dcff33be1e3ea0f81e31a7833cfb3d3f9843 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1084-2020 1930-6180  | 
    
| IngestDate | Wed Oct 01 16:27:05 EDT 2025 Thu Jul 10 22:52:24 EDT 2025 Mon Jul 21 06:00:04 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 22:57:06 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | toxicology automated microsampling animal welfare integrated pharmacology nonclinical development refinement reduction  | 
    
| Language | English | 
    
| License | The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-d4053d412028e01a42823f31c1869dcff33be1e3ea0f81e31a7833cfb3d3f9843 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/ilarjournal/article-pdf/57/2/166/24706873/ilw020.pdf | 
    
| PMID | 28053070 | 
    
| PQID | 2636490066 | 
    
| PQPubID | 24069 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_ilar_ilw020 proquest_miscellaneous_2636490066 pubmed_primary_28053070 crossref_citationtrail_10_1093_ilar_ilw020 crossref_primary_10_1093_ilar_ilw020  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-12-01 | 
    
| PublicationDateYYYYMMDD | 2016-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | ILAR journal | 
    
| PublicationTitleAlternate | ILAR J | 
    
| PublicationYear | 2016 | 
    
| References | Reinhardt (2017010404551843000_57.2.166.34) 1991; 42 Wong (2017010404551843000_57.2.166.48) 2011; 56 2017010404551843000_57.2.166.28 Bowen (2017010404551843000_57.2.166.3) 2013; 5 Shen (2017010404551843000_57.2.166.42) 2012; 67–68 2017010404551843000_57.2.166.24 2017010404551843000_57.2.166.25 2017010404551843000_57.2.166.26 Bohs (2017010404551843000_57.2.166.2) 2000; 18 2017010404551843000_57.2.166.20 2017010404551843000_57.2.166.21 2017010404551843000_57.2.166.22 Hilt (2017010404551843000_57.2.166.19) 2002; 41 Tian (2017010404551843000_57.2.166.44) 2002; 772 Li (2017010404551843000_57.2.166.27) 2009; 9 Beier (2017010404551843000_57.2.166.1) 2007; 30 2017010404551843000_57.2.166.38 2017010404551843000_57.2.166.39 Saylor (2017010404551843000_57.2.166.40) 2015; 1382 2017010404551843000_57.2.166.35 2017010404551843000_57.2.166.37 2017010404551843000_57.2.166.30 2017010404551843000_57.2.166.32 Roth (2017010404551843000_57.2.166.36) 2013; 15 Gunaratna (2017010404551843000_57.2.166.14) 2004; 49 Cronier (2017010404551843000_57.2.166.6) 2003; 35 Marchant-Forde (2017010404551843000_57.2.166.29) 2012; 21 Uyeda (2017010404551843000_57.2.166.45) 2011; 3 Soto (2017010404551843000_57.2.166.43) 2014; 6 Katugampola (2017010404551843000_57.2.166.23) 2011; 64 Peters (2017010404551843000_57.2.166.33) 2000; 18 Wan (2017010404551843000_57.2.166.46) 2012; 4 2017010404551843000_57.2.166.5 2017010404551843000_57.2.166.4 2017010404551843000_57.2.166.47 Woods (2017010404551843000_57.2.166.49) 2007; 22 2017010404551843000_57.2.166.41 2017010404551843000_57.2.166.8 DeBoer (2017010404551843000_57.2.166.7) 2015; 24 Graham (2017010404551843000_57.2.166.13) 1993; 34 De La Riva (2017010404551843000_57.2.166.9) 1985; 14 Hawkins (2017010404551843000_57.2.166.17) 2014; 4 2017010404551843000_57.2.166.16 2017010404551843000_57.2.166.18 2017010404551843000_57.2.166.12 Oliveira (2017010404551843000_57.2.166.31) 2014; 28 2017010404551843000_57.2.166.15 Zhu (2017010404551843000_57.2.166.50) 2006; 6 2017010404551843000_57.2.166.10 2017010404551843000_57.2.166.11  | 
    
| References_xml | – ident: 2017010404551843000_57.2.166.21 – volume: 64 start-page: 158 year: 2011 ident: 2017010404551843000_57.2.166.23 article-title: Automated blood sampling to identify pharmacodynamics biomarkers of corticotrophin releasing factor receptor 1 antagonism publication-title: J Pharmacol Toxicol Methods doi: 10.1016/j.vascn.2011.06.002 – ident: 2017010404551843000_57.2.166.35 doi: 10.1002/bem.2250160710 – volume: 56 start-page: 604 issue: 3 year: 2011 ident: 2017010404551843000_57.2.166.48 article-title: Application of automated serial blood sampling and dried blood spot technique with liquid chromatography-tandem mass spectrometry for pharmacokinetic studies in mice publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2011.06.022 – volume: 41 start-page: 25 issue: 4 year: 2002 ident: 2017010404551843000_57.2.166.19 article-title: Automated blood sampling with concurrent electrocardiograms for laboratory animals publication-title: Contemp Top Lab Anim Sci – ident: 2017010404551843000_57.2.166.11 – volume: 30 start-page: 75 year: 2007 ident: 2017010404551843000_57.2.166.1 article-title: Peritoneal microdialysis in freely moving rodents: an alternative to blood sampling for pharmacokinetic studies in the rat and mouse publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2006.10.005 – volume: 9 start-page: 3495 issue: 24 year: 2009 ident: 2017010404551843000_57.2.166.27 article-title: A blood sampling microsystem for pharmacokinetic applications: design, fabrication, and initial results publication-title: Lab Chip doi: 10.1039/b910508e – volume: 14 start-page: 233 issue: 4 year: 1985 ident: 2017010404551843000_57.2.166.9 article-title: Repeated determination of cerebrospinal fluid amine metabolites by automated direct sampling from an implanted cannula in freely moving rats publication-title: J Neuorsci Methods doi: 10.1016/0165-0270(85)90084-6 – volume: 67–68 start-page: 92 year: 2012 ident: 2017010404551843000_57.2.166.42 article-title: Metabolite profiling of dasatinib dosed to Wistar Han rats using automated dried blood spot collection publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2012.04.013 – ident: 2017010404551843000_57.2.166.38 doi: 10.1677/joe.0.1800145 – ident: 2017010404551843000_57.2.166.25 – ident: 2017010404551843000_57.2.166.22 doi: 10.4155/bio.12.25 – ident: 2017010404551843000_57.2.166.8 doi: 10.1016/S0169-409X(00)00106-X – ident: 2017010404551843000_57.2.166.5 doi: 10.1677/joe.0.1110027 – volume: 34 start-page: 1357 issue: 8 year: 1993 ident: 2017010404551843000_57.2.166.13 article-title: High-speed automated discrete blood sampling for positron emission tomography publication-title: J Nucl Med – volume: 49 start-page: 57 year: 2004 ident: 2017010404551843000_57.2.166.14 article-title: An automated blood sampler for simultaneous sampling of systemic blood and brain microdialysates for drug absorption, distribution, metabolism, and elimination studies publication-title: J Pharmacol Toxicol Methods doi: 10.1016/S1056-8719(03)00058-3 – ident: 2017010404551843000_57.2.166.32 – ident: 2017010404551843000_57.2.166.12 – ident: 2017010404551843000_57.2.166.37 doi: 10.1208/s12248-010-9188-y – volume: 3 start-page: 2349 issue: 20 year: 2011 ident: 2017010404551843000_57.2.166.45 article-title: Application of automated dried blood spot sampling and LC-MS/MS for pharmacokinetic studies of AMG 517 in rats publication-title: Bioanalysis doi: 10.4155/bio.11.227 – ident: 2017010404551843000_57.2.166.41 doi: 10.1111/vcp.12272 – ident: 2017010404551843000_57.2.166.10 doi: 10.1016/S0928-0987(02)00149-5 – ident: 2017010404551843000_57.2.166.18 doi: 10.1080/03091900802185970 – ident: 2017010404551843000_57.2.166.26 – ident: 2017010404551843000_57.2.166.47 – volume: 4 start-page: 1351 issue: 11 year: 2012 ident: 2017010404551843000_57.2.166.46 article-title: Toxicokinetic evaluation of atrasentan in mice utilizing serial microsampling: validation and sample analysis in a GLP study publication-title: Bioanalysis doi: 10.4155/bio.12.91 – volume: 1382 start-page: 48 year: 2015 ident: 2017010404551843000_57.2.166.40 article-title: A review of microdialysis coupled to microchip electrophoresis for monitoring biological events publication-title: J Chromatogr A doi: 10.1016/j.chroma.2014.12.086 – ident: 2017010404551843000_57.2.166.4 doi: 10.1016/j.taap.2013.01.032 – volume: 5 start-page: 1131 issue: 9 year: 2013 ident: 2017010404551843000_57.2.166.3 article-title: A novel approach to capillary plasma microsampling for quantitative bioanalysis publication-title: Bioanalysis doi: 10.4155/bio.13.58 – ident: 2017010404551843000_57.2.166.28 doi: 10.1186/1475-925X-10-1 – volume: 772 start-page: 173 year: 2002 ident: 2017010404551843000_57.2.166.44 article-title: Liquid chromatography coupled with multi-channel electrochemical detection for the determination of daidzin in rat blood sampled by an automated blood sampling system publication-title: J Chromatogr B doi: 10.1016/S1570-0232(02)00087-9 – volume: 24 start-page: 15 issue: 1 year: 2015 ident: 2017010404551843000_57.2.166.7 article-title: An initial investigation into the effects of isolation and enrichment on the welfare of laboratory pigs housed in the PigTurn® system, assessed using tear staining, behavior, physiology and haematology publication-title: Anim Welf doi: 10.7120/09627286.24.1.015 – volume: 4 start-page: 361 issue: 2 volume-title: Animals (Basel) year: 2014 ident: 2017010404551843000_57.2.166.17 – ident: 2017010404551843000_57.2.166.16 doi: 10.1021/js9801485 – volume: 18 start-page: 147 issue: 4 year: 2000 ident: 2017010404551843000_57.2.166.2 article-title: Culex automated blood sampler Part II: managing freely-moving animals and monitoring their activity publication-title: Curr Sep – volume: 18 start-page: 139 issue: 4 year: 2000 ident: 2017010404551843000_57.2.166.33 article-title: Culex ABS Part I: automated blood sampling publication-title: Curr Sep – volume: 42 start-page: 83 issue: 2 year: 1991 ident: 2017010404551843000_57.2.166.34 article-title: Avoiding undue cortisol responses to venipuncture in adult male rhesus macaques publication-title: Anim Technol – volume: 28 start-page: 2415 issue: 22 year: 2014 ident: 2017010404551843000_57.2.166.31 article-title: Automated high-capacity on-line extraction and bioanalysis of dried blood spot samples using liquid chromatography/high-resolution accurate mass spectrometry publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.7033 – volume: 21 start-page: 2197 year: 2012 ident: 2017010404551843000_57.2.166.29 article-title: Plasma cortisol and noradrenalin concentrations in pigs: automated sampling of freely moving pigs housed in the PigTurn® versus manually sampled and restrained pigs publication-title: Anim Welf doi: 10.7120/09627286.21.2.197 – volume: 22 start-page: 21 issue: 1 year: 2007 ident: 2017010404551843000_57.2.166.49 article-title: Comparison of automated and manual oral dosing on the absorption, conversion, and locomotor-activating effects of nicotine publication-title: Curr Sep – ident: 2017010404551843000_57.2.166.24 – volume: 15 start-page: 763 issue: 3 year: 2013 ident: 2017010404551843000_57.2.166.36 article-title: Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing publication-title: AAPS J doi: 10.1208/s12248-013-9482-6 – ident: 2017010404551843000_57.2.166.20 – volume: 6 start-page: 2135 issue: 16 year: 2014 ident: 2017010404551843000_57.2.166.43 article-title: Evaluation of matrix microsampling methods for therapeutic drug candidate quantification in discovery-stage rodent pharmacokinetic studies publication-title: Bioanalysis doi: 10.4155/bio.14.184 – volume: 6 start-page: 121 issue: 2 year: 2006 ident: 2017010404551843000_57.2.166.50 article-title: How a rodent is dosed and sampled is equally important to how the samples are analyzed: automated dosing, sampling, and LC/MSMS with ion traps and triple quads publication-title: Asian J Pharmacodynam Pharmacokinet – ident: 2017010404551843000_57.2.166.30 – volume: 35 start-page: 143 issue: supp.1 year: 2003 ident: 2017010404551843000_57.2.166.6 article-title: Application of an automated blood sampling method to pharmacokinetic studies in rodents in drug discovery publication-title: Drug Metab Rev – ident: 2017010404551843000_57.2.166.39 – ident: 2017010404551843000_57.2.166.15 doi: 10.1371/journal.pone.0131587  | 
    
| SSID | ssj0027968 | 
    
| Score | 2.1608777 | 
    
| Snippet | Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for... | 
    
| SourceID | unpaywall proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 166 | 
    
| SubjectTerms | Animal Experimentation animal models animal use reduction Animal Welfare Animals Animals, Laboratory automation Blood Specimen Collection - methods data collection Drug Evaluation, Preclinical drugs human resources instrumentation labor Mice Models, Animal pain pharmacodynamics pharmacokinetics Rats robots  | 
    
| Title | Automated Microsampling Technologies and Enhancements in the 3Rs | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28053070 https://www.proquest.com/docview/2636490066 https://academic.oup.com/ilarjournal/article-pdf/57/2/166/24706873/ilw020.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1930-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027968 issn: 1084-2020 databaseCode: KQ8 dateStart: 19890101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1930-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027968 issn: 1084-2020 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61WyHgwLPQ5VEZCS5I2U1sx7FvrFCrCrQVIFYqXCIntqFi5V11E1Xw6xknzoqXEAdOOWQ81own8TeehwGe1lYrnRZVokTBEu5qlyhnaWJ5ZXKrqDFduGB-Kk4W_NVZfrYD86EWRses8MlQ0nCODl5U6zQqM1kbFxx5Os2EmFJepEIWDCkvEftM8OUu7IkcofkI9hanb2Yf-iR7jhbRtWlEzBJcJpnGej106rtpIoefd6jfYOd1uNr6tf56qZfLH7ai45vgByH6DJQvk7apJvW3X_o7_jcpb8GNCFrJrB9yG3asvwNXPq66I_m78GLWNitEvtaQecjv2-iQpu4_ke25PbrjRHtDjvznYGVdWR059wTRJ2HvNvuwOD56__IkiTczJDXLVZMYhHnM8AwVKm2aafRhKHMsq8MFV6Z2jrHKZpZZnTqJz0wXkrHaVcwwpyRn92DkV94eAJFOOa55Zjh1XNm8ckVFEZdw7ZClyMfwfFiNso5ty8PtGcuyD5-zMuiu7NUyRuMbiNd9t44_kz0ZlrXErymESLS3q3ZTUsEEVwGHjeF-v95bRlSi0PiHHMOzrQH8bZYH_0j3EK4hChN9jswjGDUXrX2MSKepDmH39Vt5GK34O2uD_zI | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SDaXpIem7m0dRob0UvGtLsmzdsoSEUNhQShfSXoxsSWnool2yNqH99R3Z8tK0IfSQkw8ejZjR2PpG8xDAu8ooqeKsjKTIWMRtZSNpDY0ML3VqJNW6DRdMz8TpjH88T883YNrXwqiQFT7qSxou0cELah0HZUZLbb0jT8eJEGPKs1jkGUPKa8Q-I3z5ADZFitB8AJuzs0-Tr12SPUeLaNs0ImbxLlMeh3o9dOrbaQKHmzvUP7DzMTxq3FL9vFbz-R9b0ckOuF6ILgPlx6ipy1H166_-jvcm5RPYDqCVTLohT2HDuGfw8NuiPZJ_DoeTpl4g8jWaTH1-30r5NHV3Qdbn9uiOE-U0OXbfvZW1ZXXk0hFEn4R9Xr2A2cnxl6PTKNzMEFUslXWkEeYxzRNUaG7iRKEPQ5llSeUvuNKVtYyVJjHMqNjm-ExUljNW2ZJpZmXO2UsYuIUzr4HkVlqueKI5tVyatLRZSRGXcGWRpUiH8KFfjaIKbcv97Rnzogufs8LrrujUMkTj64mXXbeO28ne9sta4NfkQyTKmUWzKqhggkuPw4bwqlvvNSOao9D4hxzC-7UB3DXL7n_S7cEWojDR5cjsw6C-aswBIp26fBPs9zd1uP49 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Microsampling+Technologies+and+Enhancements+in+the+3Rs&rft.jtitle=ILAR+journal&rft.au=David+Hopper%2C+L.&rft.date=2016-12-01&rft.issn=1084-2020&rft.eissn=1930-6180&rft.volume=57&rft.issue=2&rft.spage=166&rft.epage=177&rft_id=info:doi/10.1093%2Filar%2Filw020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ilar_ilw020 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-2020&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-2020&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-2020&client=summon |