Automated Microsampling Technologies and Enhancements in the 3Rs

Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, ti...

Full description

Saved in:
Bibliographic Details
Published inILAR journal Vol. 57; no. 2; pp. 166 - 177
Main Author David Hopper, L.
Format Journal Article
LanguageEnglish
Published England 01.12.2016
Subjects
Online AccessGet full text
ISSN1084-2020
1930-6180
1930-6180
DOI10.1093/ilar/ilw020

Cover

Abstract Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, time-consuming and costly, and required many animals when using small models with low fluid volumes, such as rats or mice. Utilizing automated microsampling (AMS) alone or in an integrative pharmacology approach to evaluate multiple physiological, pharmacokinetic, and pharmacodynamic endpoints simultaneously in the same animal accomplishes multiple experimental goals. Use of AMS robotics and associated instrumentation can assist in achieving significant reduction and refinement of animal use. Automated robotic instrumentation for specimen collection from living animal models can now be used to provide better quality pharmacokinetic and pharmacodynamic data, reduce time, provide more data with less variability, reduce animal use, and refine animal model use to reduce pain and stress. Instrumentation in common use for automated sampling and dosing is briefly discussed. In parallel with advances in automated instrumentation, recent advances in analytical detection methods complement the use of automated technology for data and specimen collection. Methods requiring much smaller volumes can now be utilized. Microsampling (small biological samples in volumes of 5-100 μL) can facilitate reduction in animal numbers while minimizing stresses associated with excessive fluid volume removal. Innovations in automation, microsampling techniques, and analytical methods have facilitated advances in data collection that allow for more robust and accurate data, reduction in animal use, and refinement in techniques that improve animal welfare. These innovations offer opportunities for wider application in nonclinical investigations by collection of multiple data streams simultaneously from individual animals. Many benefits are achievable through the use integrative pharmacology designs utilizing AMS, including decreased time for completion of composite data collection, decreased personnel resources, lower costs, improved safety, higher quality and multiple data-sets, and improvements in aspects of the 3Rs.
AbstractList Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, time-consuming and costly, and required many animals when using small models with low fluid volumes, such as rats or mice. Utilizing automated microsampling (AMS) alone or in an integrative pharmacology approach to evaluate multiple physiological, pharmacokinetic, and pharmacodynamic endpoints simultaneously in the same animal accomplishes multiple experimental goals. Use of AMS robotics and associated instrumentation can assist in achieving significant reduction and refinement of animal use. Automated robotic instrumentation for specimen collection from living animal models can now be used to provide better quality pharmacokinetic and pharmacodynamic data, reduce time, provide more data with less variability, reduce animal use, and refine animal model use to reduce pain and stress. Instrumentation in common use for automated sampling and dosing is briefly discussed. In parallel with advances in automated instrumentation, recent advances in analytical detection methods complement the use of automated technology for data and specimen collection. Methods requiring much smaller volumes can now be utilized. Microsampling (small biological samples in volumes of 5-100 μL) can facilitate reduction in animal numbers while minimizing stresses associated with excessive fluid volume removal. Innovations in automation, microsampling techniques, and analytical methods have facilitated advances in data collection that allow for more robust and accurate data, reduction in animal use, and refinement in techniques that improve animal welfare. These innovations offer opportunities for wider application in nonclinical investigations by collection of multiple data streams simultaneously from individual animals. Many benefits are achievable through the use integrative pharmacology designs utilizing AMS, including decreased time for completion of composite data collection, decreased personnel resources, lower costs, improved safety, higher quality and multiple data-sets, and improvements in aspects of the 3Rs.
Author David Hopper, L.
Author_xml – sequence: 1
  givenname: L.
  surname: David Hopper
  fullname: David Hopper, L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28053070$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1LwzAUwINM3KaevEuPglZfmq5Lb44xP2AiyDyXLH3ZImk6m5Sx_96MTg-CXt57PH7vg9-Q9GxtkZALCrcUcnanjWhC2EICR2RAcwZxRjn0Qg08jZPQ75Ohcx8AyTjP-AnpJxxGDMYwIPeT1teV8FhGL1o2tRPVxmi7ihYo17Y29Uqji4Qto5ldCyuxQutdpG3k1xixN3dGjpUwDs8P-ZS8P8wW06d4_vr4PJ3MY8lGuY_LNFwsUxq-4QhUpAlPmGJUUp7lpVSKsSVSZChA8ZCpGHPGpFqykqmcp-yU3HR7W7sRu60wptg0uhLNrqBQ7EUUexFFJyLgVx2-aerPFp0vKu0kGiMs1q0rkoxlaQ6QZQG9PKDtssLyZ-23pADQDtj7cQ2qQmovvK6tb4Q2f9y__jXz37dfa-OKIw
CitedBy_id crossref_primary_10_1016_j_vascn_2021_107066
crossref_primary_10_1016_j_jpba_2019_07_020
crossref_primary_10_3389_fphys_2025_1519701
crossref_primary_10_3390_antibiotics12040700
crossref_primary_10_1016_j_vascn_2021_107109
crossref_primary_10_1093_ilar_ilab018
Cites_doi 10.1016/j.vascn.2011.06.002
10.1002/bem.2250160710
10.1016/j.jpba.2011.06.022
10.1016/j.ejps.2006.10.005
10.1039/b910508e
10.1016/0165-0270(85)90084-6
10.1016/j.jpba.2012.04.013
10.1677/joe.0.1800145
10.4155/bio.12.25
10.1016/S0169-409X(00)00106-X
10.1677/joe.0.1110027
10.1016/S1056-8719(03)00058-3
10.1208/s12248-010-9188-y
10.4155/bio.11.227
10.1111/vcp.12272
10.1016/S0928-0987(02)00149-5
10.1080/03091900802185970
10.4155/bio.12.91
10.1016/j.chroma.2014.12.086
10.1016/j.taap.2013.01.032
10.4155/bio.13.58
10.1186/1475-925X-10-1
10.1016/S1570-0232(02)00087-9
10.7120/09627286.24.1.015
10.1021/js9801485
10.1002/rcm.7033
10.7120/09627286.21.2.197
10.1208/s12248-013-9482-6
10.4155/bio.14.184
10.1371/journal.pone.0131587
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
ADTOC
UNPAY
DOI 10.1093/ilar/ilw020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1930-6180
EndPage 177
ExternalDocumentID 10.1093/ilar/ilw020
28053070
10_1093_ilar_ilw020
Genre Journal Article
GroupedDBID ---
0R~
1TH
2WC
34G
39C
4.4
48X
53G
5GY
5RE
5VS
AAIMJ
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABPTD
ABQLI
ABXVV
ACCCW
ACFRR
ACGFS
ACUFI
ACUTJ
ACVCV
ADBBV
ADGZP
ADHKW
ADHZD
ADQBN
ADRTK
ADYVW
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFIYH
AFOFC
AGINJ
AGMDO
AGSYK
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
AQDSO
ARIXL
AVWKF
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CDBKE
CITATION
DAKXR
DILTD
E3Z
EBS
EJD
ELUNK
F5P
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
HAR
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
MBTAY
NLBLG
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
PAFKI
PEELM
Q5Y
RUSNO
RXO
TLC
TR2
YAYTL
YKOAZ
YXANX
ZGI
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-d4053d412028e01a42823f31c1869dcff33be1e3ea0f81e31a7833cfb3d3f9843
IEDL.DBID UNPAY
ISSN 1084-2020
1930-6180
IngestDate Wed Oct 01 16:27:05 EDT 2025
Thu Jul 10 22:52:24 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords toxicology
automated
microsampling
animal welfare
integrated pharmacology
nonclinical development
refinement
reduction
Language English
License The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d4053d412028e01a42823f31c1869dcff33be1e3ea0f81e31a7833cfb3d3f9843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/ilarjournal/article-pdf/57/2/166/24706873/ilw020.pdf
PMID 28053070
PQID 2636490066
PQPubID 24069
PageCount 12
ParticipantIDs unpaywall_primary_10_1093_ilar_ilw020
proquest_miscellaneous_2636490066
pubmed_primary_28053070
crossref_citationtrail_10_1093_ilar_ilw020
crossref_primary_10_1093_ilar_ilw020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle ILAR journal
PublicationTitleAlternate ILAR J
PublicationYear 2016
References Reinhardt (2017010404551843000_57.2.166.34) 1991; 42
Wong (2017010404551843000_57.2.166.48) 2011; 56
2017010404551843000_57.2.166.28
Bowen (2017010404551843000_57.2.166.3) 2013; 5
Shen (2017010404551843000_57.2.166.42) 2012; 67–68
2017010404551843000_57.2.166.24
2017010404551843000_57.2.166.25
2017010404551843000_57.2.166.26
Bohs (2017010404551843000_57.2.166.2) 2000; 18
2017010404551843000_57.2.166.20
2017010404551843000_57.2.166.21
2017010404551843000_57.2.166.22
Hilt (2017010404551843000_57.2.166.19) 2002; 41
Tian (2017010404551843000_57.2.166.44) 2002; 772
Li (2017010404551843000_57.2.166.27) 2009; 9
Beier (2017010404551843000_57.2.166.1) 2007; 30
2017010404551843000_57.2.166.38
2017010404551843000_57.2.166.39
Saylor (2017010404551843000_57.2.166.40) 2015; 1382
2017010404551843000_57.2.166.35
2017010404551843000_57.2.166.37
2017010404551843000_57.2.166.30
2017010404551843000_57.2.166.32
Roth (2017010404551843000_57.2.166.36) 2013; 15
Gunaratna (2017010404551843000_57.2.166.14) 2004; 49
Cronier (2017010404551843000_57.2.166.6) 2003; 35
Marchant-Forde (2017010404551843000_57.2.166.29) 2012; 21
Uyeda (2017010404551843000_57.2.166.45) 2011; 3
Soto (2017010404551843000_57.2.166.43) 2014; 6
Katugampola (2017010404551843000_57.2.166.23) 2011; 64
Peters (2017010404551843000_57.2.166.33) 2000; 18
Wan (2017010404551843000_57.2.166.46) 2012; 4
2017010404551843000_57.2.166.5
2017010404551843000_57.2.166.4
2017010404551843000_57.2.166.47
Woods (2017010404551843000_57.2.166.49) 2007; 22
2017010404551843000_57.2.166.41
2017010404551843000_57.2.166.8
DeBoer (2017010404551843000_57.2.166.7) 2015; 24
Graham (2017010404551843000_57.2.166.13) 1993; 34
De La Riva (2017010404551843000_57.2.166.9) 1985; 14
Hawkins (2017010404551843000_57.2.166.17) 2014; 4
2017010404551843000_57.2.166.16
2017010404551843000_57.2.166.18
2017010404551843000_57.2.166.12
Oliveira (2017010404551843000_57.2.166.31) 2014; 28
2017010404551843000_57.2.166.15
Zhu (2017010404551843000_57.2.166.50) 2006; 6
2017010404551843000_57.2.166.10
2017010404551843000_57.2.166.11
References_xml – ident: 2017010404551843000_57.2.166.21
– volume: 64
  start-page: 158
  year: 2011
  ident: 2017010404551843000_57.2.166.23
  article-title: Automated blood sampling to identify pharmacodynamics biomarkers of corticotrophin releasing factor receptor 1 antagonism
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/j.vascn.2011.06.002
– ident: 2017010404551843000_57.2.166.35
  doi: 10.1002/bem.2250160710
– volume: 56
  start-page: 604
  issue: 3
  year: 2011
  ident: 2017010404551843000_57.2.166.48
  article-title: Application of automated serial blood sampling and dried blood spot technique with liquid chromatography-tandem mass spectrometry for pharmacokinetic studies in mice
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2011.06.022
– volume: 41
  start-page: 25
  issue: 4
  year: 2002
  ident: 2017010404551843000_57.2.166.19
  article-title: Automated blood sampling with concurrent electrocardiograms for laboratory animals
  publication-title: Contemp Top Lab Anim Sci
– ident: 2017010404551843000_57.2.166.11
– volume: 30
  start-page: 75
  year: 2007
  ident: 2017010404551843000_57.2.166.1
  article-title: Peritoneal microdialysis in freely moving rodents: an alternative to blood sampling for pharmacokinetic studies in the rat and mouse
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2006.10.005
– volume: 9
  start-page: 3495
  issue: 24
  year: 2009
  ident: 2017010404551843000_57.2.166.27
  article-title: A blood sampling microsystem for pharmacokinetic applications: design, fabrication, and initial results
  publication-title: Lab Chip
  doi: 10.1039/b910508e
– volume: 14
  start-page: 233
  issue: 4
  year: 1985
  ident: 2017010404551843000_57.2.166.9
  article-title: Repeated determination of cerebrospinal fluid amine metabolites by automated direct sampling from an implanted cannula in freely moving rats
  publication-title: J Neuorsci Methods
  doi: 10.1016/0165-0270(85)90084-6
– volume: 67–68
  start-page: 92
  year: 2012
  ident: 2017010404551843000_57.2.166.42
  article-title: Metabolite profiling of dasatinib dosed to Wistar Han rats using automated dried blood spot collection
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2012.04.013
– ident: 2017010404551843000_57.2.166.38
  doi: 10.1677/joe.0.1800145
– ident: 2017010404551843000_57.2.166.25
– ident: 2017010404551843000_57.2.166.22
  doi: 10.4155/bio.12.25
– ident: 2017010404551843000_57.2.166.8
  doi: 10.1016/S0169-409X(00)00106-X
– ident: 2017010404551843000_57.2.166.5
  doi: 10.1677/joe.0.1110027
– volume: 34
  start-page: 1357
  issue: 8
  year: 1993
  ident: 2017010404551843000_57.2.166.13
  article-title: High-speed automated discrete blood sampling for positron emission tomography
  publication-title: J Nucl Med
– volume: 49
  start-page: 57
  year: 2004
  ident: 2017010404551843000_57.2.166.14
  article-title: An automated blood sampler for simultaneous sampling of systemic blood and brain microdialysates for drug absorption, distribution, metabolism, and elimination studies
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/S1056-8719(03)00058-3
– ident: 2017010404551843000_57.2.166.32
– ident: 2017010404551843000_57.2.166.12
– ident: 2017010404551843000_57.2.166.37
  doi: 10.1208/s12248-010-9188-y
– volume: 3
  start-page: 2349
  issue: 20
  year: 2011
  ident: 2017010404551843000_57.2.166.45
  article-title: Application of automated dried blood spot sampling and LC-MS/MS for pharmacokinetic studies of AMG 517 in rats
  publication-title: Bioanalysis
  doi: 10.4155/bio.11.227
– ident: 2017010404551843000_57.2.166.41
  doi: 10.1111/vcp.12272
– ident: 2017010404551843000_57.2.166.10
  doi: 10.1016/S0928-0987(02)00149-5
– ident: 2017010404551843000_57.2.166.18
  doi: 10.1080/03091900802185970
– ident: 2017010404551843000_57.2.166.26
– ident: 2017010404551843000_57.2.166.47
– volume: 4
  start-page: 1351
  issue: 11
  year: 2012
  ident: 2017010404551843000_57.2.166.46
  article-title: Toxicokinetic evaluation of atrasentan in mice utilizing serial microsampling: validation and sample analysis in a GLP study
  publication-title: Bioanalysis
  doi: 10.4155/bio.12.91
– volume: 1382
  start-page: 48
  year: 2015
  ident: 2017010404551843000_57.2.166.40
  article-title: A review of microdialysis coupled to microchip electrophoresis for monitoring biological events
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2014.12.086
– ident: 2017010404551843000_57.2.166.4
  doi: 10.1016/j.taap.2013.01.032
– volume: 5
  start-page: 1131
  issue: 9
  year: 2013
  ident: 2017010404551843000_57.2.166.3
  article-title: A novel approach to capillary plasma microsampling for quantitative bioanalysis
  publication-title: Bioanalysis
  doi: 10.4155/bio.13.58
– ident: 2017010404551843000_57.2.166.28
  doi: 10.1186/1475-925X-10-1
– volume: 772
  start-page: 173
  year: 2002
  ident: 2017010404551843000_57.2.166.44
  article-title: Liquid chromatography coupled with multi-channel electrochemical detection for the determination of daidzin in rat blood sampled by an automated blood sampling system
  publication-title: J Chromatogr B
  doi: 10.1016/S1570-0232(02)00087-9
– volume: 24
  start-page: 15
  issue: 1
  year: 2015
  ident: 2017010404551843000_57.2.166.7
  article-title: An initial investigation into the effects of isolation and enrichment on the welfare of laboratory pigs housed in the PigTurn® system, assessed using tear staining, behavior, physiology and haematology
  publication-title: Anim Welf
  doi: 10.7120/09627286.24.1.015
– volume: 4
  start-page: 361
  issue: 2
  volume-title: Animals (Basel)
  year: 2014
  ident: 2017010404551843000_57.2.166.17
– ident: 2017010404551843000_57.2.166.16
  doi: 10.1021/js9801485
– volume: 18
  start-page: 147
  issue: 4
  year: 2000
  ident: 2017010404551843000_57.2.166.2
  article-title: Culex automated blood sampler Part II: managing freely-moving animals and monitoring their activity
  publication-title: Curr Sep
– volume: 18
  start-page: 139
  issue: 4
  year: 2000
  ident: 2017010404551843000_57.2.166.33
  article-title: Culex ABS Part I: automated blood sampling
  publication-title: Curr Sep
– volume: 42
  start-page: 83
  issue: 2
  year: 1991
  ident: 2017010404551843000_57.2.166.34
  article-title: Avoiding undue cortisol responses to venipuncture in adult male rhesus macaques
  publication-title: Anim Technol
– volume: 28
  start-page: 2415
  issue: 22
  year: 2014
  ident: 2017010404551843000_57.2.166.31
  article-title: Automated high-capacity on-line extraction and bioanalysis of dried blood spot samples using liquid chromatography/high-resolution accurate mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.7033
– volume: 21
  start-page: 2197
  year: 2012
  ident: 2017010404551843000_57.2.166.29
  article-title: Plasma cortisol and noradrenalin concentrations in pigs: automated sampling of freely moving pigs housed in the PigTurn® versus manually sampled and restrained pigs
  publication-title: Anim Welf
  doi: 10.7120/09627286.21.2.197
– volume: 22
  start-page: 21
  issue: 1
  year: 2007
  ident: 2017010404551843000_57.2.166.49
  article-title: Comparison of automated and manual oral dosing on the absorption, conversion, and locomotor-activating effects of nicotine
  publication-title: Curr Sep
– ident: 2017010404551843000_57.2.166.24
– volume: 15
  start-page: 763
  issue: 3
  year: 2013
  ident: 2017010404551843000_57.2.166.36
  article-title: Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing
  publication-title: AAPS J
  doi: 10.1208/s12248-013-9482-6
– ident: 2017010404551843000_57.2.166.20
– volume: 6
  start-page: 2135
  issue: 16
  year: 2014
  ident: 2017010404551843000_57.2.166.43
  article-title: Evaluation of matrix microsampling methods for therapeutic drug candidate quantification in discovery-stage rodent pharmacokinetic studies
  publication-title: Bioanalysis
  doi: 10.4155/bio.14.184
– volume: 6
  start-page: 121
  issue: 2
  year: 2006
  ident: 2017010404551843000_57.2.166.50
  article-title: How a rodent is dosed and sampled is equally important to how the samples are analyzed: automated dosing, sampling, and LC/MSMS with ion traps and triple quads
  publication-title: Asian J Pharmacodynam Pharmacokinet
– ident: 2017010404551843000_57.2.166.30
– volume: 35
  start-page: 143
  issue: supp.1
  year: 2003
  ident: 2017010404551843000_57.2.166.6
  article-title: Application of an automated blood sampling method to pharmacokinetic studies in rodents in drug discovery
  publication-title: Drug Metab Rev
– ident: 2017010404551843000_57.2.166.39
– ident: 2017010404551843000_57.2.166.15
  doi: 10.1371/journal.pone.0131587
SSID ssj0027968
Score 2.1608777
Snippet Data collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 166
SubjectTerms Animal Experimentation
animal models
animal use reduction
Animal Welfare
Animals
Animals, Laboratory
automation
Blood Specimen Collection - methods
data collection
Drug Evaluation, Preclinical
drugs
human resources
instrumentation
labor
Mice
Models, Animal
pain
pharmacodynamics
pharmacokinetics
Rats
robots
Title Automated Microsampling Technologies and Enhancements in the 3Rs
URI https://www.ncbi.nlm.nih.gov/pubmed/28053070
https://www.proquest.com/docview/2636490066
https://academic.oup.com/ilarjournal/article-pdf/57/2/166/24706873/ilw020.pdf
UnpaywallVersion publishedVersion
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1930-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027968
  issn: 1084-2020
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1930-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027968
  issn: 1084-2020
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61WyHgwLPQ5VEZCS5I2U1sx7FvrFCrCrQVIFYqXCIntqFi5V11E1Xw6xknzoqXEAdOOWQ81own8TeehwGe1lYrnRZVokTBEu5qlyhnaWJ5ZXKrqDFduGB-Kk4W_NVZfrYD86EWRses8MlQ0nCODl5U6zQqM1kbFxx5Os2EmFJepEIWDCkvEftM8OUu7IkcofkI9hanb2Yf-iR7jhbRtWlEzBJcJpnGej106rtpIoefd6jfYOd1uNr6tf56qZfLH7ai45vgByH6DJQvk7apJvW3X_o7_jcpb8GNCFrJrB9yG3asvwNXPq66I_m78GLWNitEvtaQecjv2-iQpu4_ke25PbrjRHtDjvznYGVdWR059wTRJ2HvNvuwOD56__IkiTczJDXLVZMYhHnM8AwVKm2aafRhKHMsq8MFV6Z2jrHKZpZZnTqJz0wXkrHaVcwwpyRn92DkV94eAJFOOa55Zjh1XNm8ckVFEZdw7ZClyMfwfFiNso5ty8PtGcuyD5-zMuiu7NUyRuMbiNd9t44_kz0ZlrXErymESLS3q3ZTUsEEVwGHjeF-v95bRlSi0PiHHMOzrQH8bZYH_0j3EK4hChN9jswjGDUXrX2MSKepDmH39Vt5GK34O2uD_zI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SDaXpIem7m0dRob0UvGtLsmzdsoSEUNhQShfSXoxsSWnool2yNqH99R3Z8tK0IfSQkw8ejZjR2PpG8xDAu8ooqeKsjKTIWMRtZSNpDY0ML3VqJNW6DRdMz8TpjH88T883YNrXwqiQFT7qSxou0cELah0HZUZLbb0jT8eJEGPKs1jkGUPKa8Q-I3z5ADZFitB8AJuzs0-Tr12SPUeLaNs0ImbxLlMeh3o9dOrbaQKHmzvUP7DzMTxq3FL9vFbz-R9b0ckOuF6ILgPlx6ipy1H166_-jvcm5RPYDqCVTLohT2HDuGfw8NuiPZJ_DoeTpl4g8jWaTH1-30r5NHV3Qdbn9uiOE-U0OXbfvZW1ZXXk0hFEn4R9Xr2A2cnxl6PTKNzMEFUslXWkEeYxzRNUaG7iRKEPQ5llSeUvuNKVtYyVJjHMqNjm-ExUljNW2ZJpZmXO2UsYuIUzr4HkVlqueKI5tVyatLRZSRGXcGWRpUiH8KFfjaIKbcv97Rnzogufs8LrrujUMkTj64mXXbeO28ne9sta4NfkQyTKmUWzKqhggkuPw4bwqlvvNSOao9D4hxzC-7UB3DXL7n_S7cEWojDR5cjsw6C-aswBIp26fBPs9zd1uP49
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Microsampling+Technologies+and+Enhancements+in+the+3Rs&rft.jtitle=ILAR+journal&rft.au=David+Hopper%2C+L.&rft.date=2016-12-01&rft.issn=1084-2020&rft.eissn=1930-6180&rft.volume=57&rft.issue=2&rft.spage=166&rft.epage=177&rft_id=info:doi/10.1093%2Filar%2Filw020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ilar_ilw020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-2020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-2020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-2020&client=summon