SAMA: Spatially-Aware Model-Agnostic Machine Learning Framework for Geophysical Data

Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 7436 - 7449
Main Authors Yamani, Asma Z., Katterbaeur, Klemens, Alshehri, Abdallah A., Al-Zaidy, Rabeah A.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3236802

Cover

Abstract Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.620, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.161, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets.
AbstractList Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.620, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.161, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets.
Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <tex-math notation="LaTeX">$R^{2}$ </tex-math> of 0.620, an <tex-math notation="LaTeX">$RMSE$ </tex-math> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <tex-math notation="LaTeX">$R^{2}$ </tex-math> of 0.161, an <tex-math notation="LaTeX">$RMSE$ </tex-math> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets.
Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an [Formula Omitted] of 0.620, an [Formula Omitted] of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an [Formula Omitted] of 0.161, an [Formula Omitted] of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets.
Author Katterbaeur, Klemens
Al-Zaidy, Rabeah A.
Yamani, Asma Z.
Alshehri, Abdallah A.
Author_xml – sequence: 1
  givenname: Asma Z.
  orcidid: 0000-0002-6277-8972
  surname: Yamani
  fullname: Yamani, Asma Z.
  organization: Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
– sequence: 2
  givenname: Klemens
  orcidid: 0000-0001-5513-4418
  surname: Katterbaeur
  fullname: Katterbaeur, Klemens
  organization: EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
– sequence: 3
  givenname: Abdallah A.
  surname: Alshehri
  fullname: Alshehri, Abdallah A.
  organization: EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
– sequence: 4
  givenname: Rabeah A.
  orcidid: 0000-0001-5613-4524
  surname: Al-Zaidy
  fullname: Al-Zaidy, Rabeah A.
  email: rabeah.alzaidy@kfupm.edu.sa
  organization: Center for Integrative Petroleum Research (CIPR), ICS, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
BookMark eNplkUFP3DAQha2KSlDgF9BDpJ6zjO3ETnqLtkCRdsVh6dmaOJMl2xCndlar_feYBiHU-jLWeN6n5zdf2MngBmLsisOCcyivq-XyZrNZCBByIYVUBYhP7ExwVaYyl-rkw_2UXYawg3iK2Mr1GXvcVOvqe7IZceqw749pdUBPydo11KfVdnBh6myyRvvUDZSsCP3QDdvk1uMzHZz_nbTOJ3fkxqdj6Cz2yQ-c8IJ9brEPdPlWz9mv25vH5c909XB3v6xWqZV5OaXWEqgSuC0lgNRCZnVZtFhwG_1pAU0e3xWUShQNNi1pQaQ56KyQYKlV8pzdz9zG4c6MvntGfzQOO_O34fzWoI_-ezIlINSt5nkrVUa1LDXP8gItQqYA6jqyspm1H0Y8HmIW70AO5jVog9FwCOY1aPMWdJR9m2Wjd3_2FCazc3s_xF8boTXogksOcUrOU9a7EDy1_7HnJf7L_jqrOiL6oACutJTyBflTlhA
CODEN IAECCG
Cites_doi 10.1111/geb.12161
10.1016/j.petrol.2013.03.009
10.1007/s00521-016-2729-2
10.1016/j.petrol.2019.106741
10.1111/ecog.02881
10.1007/s40808-020-01012-4
10.2118/178278-ms
10.1007/s13369-020-05023-2
10.1007/s12517-014-1526-4
10.3390/ijgi10090600
10.2118/6859-pa
10.1111/2041-210x.13107
10.3997/2214-4609.201701751
10.2118/174559-pa
10.1016/j.petrol.2015.12.015
10.1007/978-3-642-24477-3_25
10.1080/10916461003752561
10.1007/978-1-4419-9326-7
10.1109/imtc.2009.5168625
10.1080/10916460903452033
10.1007/11564126_16
10.4043/28221-ms
10.1016/j.petrol.2009.06.017
10.1016/j.cageo.2020.104555
10.1144/petgeo.8.2.109
10.2118/203847-pa
10.1111/gwat.13081
10.2118/942054-g
10.7717/peerj.5518
10.1080/13658816.2017.1346255
10.1016/j.jappgeo.2014.05.011
10.1016/j.ecolmodel.2019.108815
10.1023/A:1010933404324
10.1080/10106049.2019.1595177
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3236802
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 7449
ExternalDocumentID oai_doaj_org_article_90a0bf715f364eb3971458aca04600bb
10.1109/access.2023.3236802
10_1109_ACCESS_2023_3236802
10016733
Genre orig-research
GrantInformation_xml – fundername: Saudi Aramco
  grantid: CIPR2349
  funderid: 10.13039/501100007809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-cce06901c930037234b98fa81c008720d5e06609628dadfe72ee71074830cef63
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:22 EDT 2025
Wed Oct 01 16:03:44 EDT 2025
Sun Jun 29 16:54:59 EDT 2025
Wed Oct 01 03:26:30 EDT 2025
Wed Aug 27 02:54:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-cce06901c930037234b98fa81c008720d5e06609628dadfe72ee71074830cef63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5613-4524
0000-0001-5513-4418
0000-0002-6277-8972
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/10005208/10016733.pdf
PQID 2770781310
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_90a0bf715f364eb3971458aca04600bb
proquest_journals_2770781310
unpaywall_primary_10_1109_access_2023_3236802
crossref_primary_10_1109_ACCESS_2023_3236802
ieee_primary_10016733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Al-Ali (ref32) 2009; 21
ref34
ref37
ref14
ref31
ref30
Anderson (ref1) 2003
ref11
ref33
ref10
ref2
ref17
ref16
ref38
ref19
ref18
(ref12) 2022
ref24
ref23
ref26
Kohavi (ref39) 2001
ref25
ref20
ref22
Breiman (ref36) 2001; 45
ref21
Alsaif (ref8) 2017
ref28
Nikparvar (ref3) 2021; 10
Alimoradi (ref15) 2011; 2
ref27
ref29
ref7
Kohavi (ref40); 14
ref9
ref4
ref6
ref5
References_xml – ident: ref34
  doi: 10.1111/geb.12161
– ident: ref28
  doi: 10.1016/j.petrol.2013.03.009
– ident: ref19
  doi: 10.1007/s00521-016-2729-2
– ident: ref20
  doi: 10.1016/j.petrol.2019.106741
– ident: ref5
  doi: 10.1111/ecog.02881
– ident: ref29
  doi: 10.1007/s40808-020-01012-4
– ident: ref22
  doi: 10.2118/178278-ms
– ident: ref11
  doi: 10.1007/s13369-020-05023-2
– volume: 2
  start-page: 45
  issue: 3
  year: 2011
  ident: ref15
  article-title: Methods of water saturation estimation: Historical perspective
  publication-title: J. Petroleum Gas Eng.
– ident: ref27
  doi: 10.1007/s12517-014-1526-4
– volume: 10
  start-page: 600
  issue: 9
  year: 2021
  ident: ref3
  article-title: Machine learning of spatial data
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi10090600
– ident: ref30
  doi: 10.2118/6859-pa
– start-page: 28
  volume-title: Geophysical Technologies for Detecting Underground Coal Mine Voids Forum
  year: 2003
  ident: ref1
  article-title: A generalized protocol for selecting appropriate geophysical techniques
– ident: ref38
  doi: 10.1111/2041-210x.13107
– volume-title: Advanced Uncertainty Quantification Methods Deployed on Electromagnetic Dataset for Reservoir Saturation Mapping
  year: 2017
  ident: ref8
  doi: 10.3997/2214-4609.201701751
– ident: ref33
  doi: 10.2118/174559-pa
– ident: ref10
  doi: 10.1016/j.petrol.2015.12.015
– ident: ref25
  doi: 10.1007/978-3-642-24477-3_25
– volume: 14
  start-page: 1137
  issue: 2
  volume-title: Proc. IJCAI
  ident: ref40
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– ident: ref31
  doi: 10.1080/10916461003752561
– ident: ref37
  doi: 10.1007/978-1-4419-9326-7
– volume-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  year: 2001
  ident: ref39
– ident: ref13
  doi: 10.1109/imtc.2009.5168625
– ident: ref17
  doi: 10.1080/10916460903452033
– ident: ref24
  doi: 10.1007/11564126_16
– volume: 21
  start-page: 38
  issue: 2
  year: 2009
  ident: ref32
  article-title: Looking deep into the reservoir
  publication-title: Oilfield Rev.
– ident: ref18
  doi: 10.4043/28221-ms
– ident: ref16
  doi: 10.1016/j.petrol.2009.06.017
– ident: ref2
  doi: 10.1016/j.cageo.2020.104555
– ident: ref9
  doi: 10.1144/petgeo.8.2.109
– ident: ref23
  doi: 10.2118/203847-pa
– volume-title: Explore the New Oilfield Glossary
  year: 2022
  ident: ref12
– ident: ref4
  doi: 10.1111/gwat.13081
– ident: ref14
  doi: 10.2118/942054-g
– ident: ref35
  doi: 10.7717/peerj.5518
– ident: ref6
  doi: 10.1080/13658816.2017.1346255
– ident: ref21
  doi: 10.1016/j.jappgeo.2014.05.011
– ident: ref7
  doi: 10.1016/j.ecolmodel.2019.108815
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref36
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref26
  doi: 10.1080/10106049.2019.1595177
SSID ssj0000816957
Score 2.2741494
Snippet Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7436
SubjectTerms Algorithms
Bias-variance trade-off
Conductivity
cross-fold validation
Data models
Datasets
feature engineering
Feature selection
geophysical data
Geophysical measurements
Geophysics
Machine learning
model validation
Prediction models
Predictive models
random forest
regression
reservoir characterization
Reservoirs
Saturation
Solid modeling
spatial autocorrelation
Spatial data
Spatial databases
Support vector machines
water saturation mapping
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8QgECXGi3owfsb6FQ4eRWlpKXhbV1djohc18UamFLxs1o2uMf57GcqaGg9evLalnb5HYQambwg50rl2XPqWKVviNiNIpjl4BtK2UJY4J8UE2Tt5_VjePFVPvVJfmBPWyQN3wJ2GlrzxdV55IcsQ-ek6LysFFnBHjzcNjr5c6V4wFcdglUtd1UlmKOf6dDAchjc6wWrhJ6IQUqWFlPlUFBX7U4mVH97m0vtkCp8fMB73Jp7RGllNHiMddJaukwU32SArPR3BTfJwH4bOM4rlhUN3Gn-ywQe8Oop1zsZsgKl0oS29jXmTjiZJ1Wc6midm0eC50iv3Mk2k0QuYwRZ5HF0-DK9ZKpfArKj0jFnrUHY4t1qgqkwhykYrDyq3qDtX8LYK52UIWQrVQutdXThXYz6mEtw6L8U2WZy8TNwOoUUN4UNvKu9bUUoJjahcQN47gLZpRZ2R4zlyZtqpYpgYTXBtOqANAm0S0Bk5R3S_L0VJ63ggEG0S0eYvojOyhdz0nod_UAiRkf05WSZ9f2-mqKOKUfBdM8K-CfxlK8SilD9s3f0PW_fIMt6zW6rZJ4uz13d3EJyXWXMY--kXw87mXQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RXoADn0UNFOQDR5ImceLE3JaFpUKiF1qpN8sfYw6sdlclq6r8ejyOs9qCkLhFiSPbeeN4PH5-A_BWVhJL4V3e24a2GbXIZal9roV1umloTooE2XNxdtl8uWqv0mH1eBYGESP5DAu6jHv5bm23FCo7rSJpnvMDOOh6MR7W2gVUKIOEbLukLFSV8nQ2n4dOFJQgvOA1F32KnUyzTxTpT1lV7jiY97erjb690cvl3lyzeAznUytHismPYjuYwv76Q8Dxv7vxBB4lr5PNRjN5Cvdw9Qwe7mkRPoeLb-H3-55RiuJgksvbfHajr5FRrrRlPiM6XniXfY3cS2RJlvU7W0zkLha8X_YZ15sEPPuoB30El4tPF_OzPKVcyC1v5ZBbiyRdXFnJSZmm5o2Rvdd9ZUm7ri5dG56LsOype6edx65G7IjT2fPSohf8BRyu1is8BlZ3OvwsTOu9440Q2vAWg_PjUWtnHO8yeDdBoTajsoaKK5JSqhE5RciphFwGHwiuXVGSxY43wqdVaZSpYGal8V3Vei4aNKG6qml7bTVt_5bGZHBEcOzVNyKRwcmEvkpj-Kequ6iEFPzfDPKdRfzVVh0TW95p68t_VPMKHlCxMYJzAofD9RZfB59mMG-iLf8GPoXwrw
  priority: 102
  providerName: IEEE
Title SAMA: Spatially-Aware Model-Agnostic Machine Learning Framework for Geophysical Data
URI https://ieeexplore.ieee.org/document/10016733
https://www.proquest.com/docview/2770781310
https://ieeexplore.ieee.org/ielx7/6287639/10005208/10016733.pdf
https://doaj.org/article/90a0bf715f364eb3971458aca04600bb
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0AcKB9FpJSVDxxxNokTJ-YWli4VEhUSXamcjJ2MK0S0XbVZlfLr63GcaltOiJuVOLLjebbH9vg9Qt7KVEIibMuqJsdjRi2YTLRlWjStznOck3yA7LE4WuafT4vToHPq78IAgA8-gxiT_iz_J3S_y5nIkDxNztIhdqPCRCpK7taCrX1IdkThnPEJ2Vkef62_o6RcKiTj_nDydWDWnGkvQhijZHjMMy6qsJsyzkeetj_orNxxOR9tVmt9faW7bmv2WeySH2O9h6CTX_GmN3Hz5x6l43_82FPyJHimtB6g9Iw8gNVz8niLr_AFOfnmhuj3FGWMHWy7a1Zf6QugqKfWsRpD9ty39IuPzwQaqFvP6GIMAKPOQ6af4HwdwEE_6l7vkeXi8GR-xIIsA2t4IXvm2hDpjdNGcmSvyXhuZGV1lTbIb5clbeHeC7c0yqpWtxbKDKDEuM-KJw1YwV-Syep8Ba8IzUrtBhRTWNvyXAhteAHOQbKgdWtaXkbk3WgctR7YN5RftSRS1fO5g6hCW6pgy4h8QAPeZkXqbP_ANbYKPVE5KCbGlmlhucjBuOLSvKh0o_GIODEmIntooK3yBmtE5GDEgwr9_FJlpWdLcj5yRNgtRv6q64C7O3Xd_8f8B2TSX2zgjXOBejP1WwdTf1txGiB_AzxLAJE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHAaH8WuIwAY-cCRZEv9Iwq10lAJbL3TSbpbtPHOgaquRahp__fwcp-pASNyiJJbtfM_x8_Pn7xHyrikayKVr09py3GbUMm1y7VItbas5xzkpEGRncnrBv16Ky3hYPZyFAYBAPoMML8NefruyGwyVnRSBNM_YffJAcM5Ff1xrG1LBHBKNqKK2UJE3J6Px2HcjwxThGSuZrGP0ZJh_gkx_zKtyx8Xc3yzX-uZaLxY7s83kMZkN7exJJj-zTWcy-_sPCcf_7sgTchD9TjrqDeUpuQfLZ-TRjhrhczL_7n_AHygmKfZGubhJR9f6CihmS1ukIyTk-bL0PLAvgUZh1h90MtC7qPd_6WdYrSP09FR3-pBcTD7Nx9M0Jl1ILRNNl1oLKF5c2IahNk3JuGlqp-vConpdmbfCP5d-4VPWrW4dVCVAhazOmuUWnGQvyN5ytYSXhJaV9r8LI5xrGZdSGybAuz8OtG5Ny6qEvB-gUOteW0OFNUneqB45hcipiFxCPiJc21dRGDvc8J9WxXGmvKHlxlWFcExyML66gotaW40bwLkxCTlEOHbq65FIyNGAvoqj-Jcqq6CF5D3ghKRbi_irrTqktrzT1lf_qOYt2Z_Oz8_U2ZfZt9fkIRbp4zlHZK-72sCx93A68ybY9S3-OPP8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-CwiUJAPHHE2iRMn5pYuLBUSFRJdqZyMHY8RItquSlal_Pp6HKfawglxsxJHdjzP9jgzeY-QVzKXkAlnWdOVGGbUgslMO6ZFZ3VZ4p4UEmSPxdGq_HBanUad0_AvDACE5DNIsRhi-d-h_1XPRYHkaXKej7kbDRZyUXN_FrTuNtkTlXfGZ2Rvdfyp_YKScrmQjIfg5PPIrDnXQYQwRcnwlBdcNPFryrQfBdr-qLNyw-W8s11v9OWF7vud3Wd5n3yd-j0mnfxIt4NJu99_UDr-x4s9IPeiZ0rbEUoPyS1YPyJ3d_gKH5OTz36JfkNRxtjDtr9k7YU-B4p6aj1rMWXPP0s_hvxMoJG69RtdTglg1HvI9D2cbSI46Fs96H2yWr47WRyxKMvAOl7JgfkxRHrjvJMc2WsKXhrZON3kHfLbFZmt_H3hj0ZFY7V1UBcANeZ9NjzrwAn-hMzWZ2t4SmhRa7-gmMo5y0shtOEVeAfJgdbWWF4n5PVkHLUZ2TdUOLVkUrWLhYeoQluqaMuEHKIBr6sidXa44AdbxZmoPBQz4-q8clyUYHxzeVk1utMYIs6MScg-GminvdEaCTmY8KDiPP-pijqwJXkfOSHsGiN_9XXE3Y2-PvvH-gdkNpxv4YV3gQbzMsL8Ckbh_ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAMA+%3A+Spatially-Aware+Model-Agnostic+Machine+Learning+Framework+for+Geophysical+Data&rft.jtitle=IEEE+access&rft.au=Yamani%2C+Asma+Z.&rft.au=Katterbaeur%2C+Klemens&rft.au=Alshehri%2C+Abdallah+A.&rft.au=Al-Zaidy%2C+Rabeah+A.&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=7436&rft.epage=7449&rft_id=info:doi/10.1109%2FACCESS.2023.3236802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3236802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon