SAMA: Spatially-Aware Model-Agnostic Machine Learning Framework for Geophysical Data
Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen...
        Saved in:
      
    
          | Published in | IEEE access Vol. 11; pp. 7436 - 7449 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2023.3236802 | 
Cover
| Abstract | Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.620, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.161, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets. | 
    
|---|---|
| AbstractList | Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.620, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> of 0.161, an <inline-formula> <tex-math notation="LaTeX">RMSE </tex-math></inline-formula> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets. Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an <tex-math notation="LaTeX">$R^{2}$ </tex-math> of 0.620, an <tex-math notation="LaTeX">$RMSE$ </tex-math> of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an <tex-math notation="LaTeX">$R^{2}$ </tex-math> of 0.161, an <tex-math notation="LaTeX">$RMSE$ </tex-math> of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets. Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained on geophysical data is their inability to generalize well when deployed to predict from new unseen data. We address the problem of inaccurate performance assessments of machine learning models, that stems from violating independence assumptions during the feature selection and evaluation phases of the learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an [Formula Omitted] of 0.620, an [Formula Omitted] of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an [Formula Omitted] of 0.161, an [Formula Omitted] of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen datasets show that the model maintains stable performance across different datasets, which demonstrates the ability of the SAMA framework to produce robust models that are transferable to new datasets.  | 
    
| Author | Katterbaeur, Klemens Al-Zaidy, Rabeah A. Yamani, Asma Z. Alshehri, Abdallah A.  | 
    
| Author_xml | – sequence: 1 givenname: Asma Z. orcidid: 0000-0002-6277-8972 surname: Yamani fullname: Yamani, Asma Z. organization: Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia – sequence: 2 givenname: Klemens orcidid: 0000-0001-5513-4418 surname: Katterbaeur fullname: Katterbaeur, Klemens organization: EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia – sequence: 3 givenname: Abdallah A. surname: Alshehri fullname: Alshehri, Abdallah A. organization: EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia – sequence: 4 givenname: Rabeah A. orcidid: 0000-0001-5613-4524 surname: Al-Zaidy fullname: Al-Zaidy, Rabeah A. email: rabeah.alzaidy@kfupm.edu.sa organization: Center for Integrative Petroleum Research (CIPR), ICS, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia  | 
    
| BookMark | eNplkUFP3DAQha2KSlDgF9BDpJ6zjO3ETnqLtkCRdsVh6dmaOJMl2xCndlar_feYBiHU-jLWeN6n5zdf2MngBmLsisOCcyivq-XyZrNZCBByIYVUBYhP7ExwVaYyl-rkw_2UXYawg3iK2Mr1GXvcVOvqe7IZceqw749pdUBPydo11KfVdnBh6myyRvvUDZSsCP3QDdvk1uMzHZz_nbTOJ3fkxqdj6Cz2yQ-c8IJ9brEPdPlWz9mv25vH5c909XB3v6xWqZV5OaXWEqgSuC0lgNRCZnVZtFhwG_1pAU0e3xWUShQNNi1pQaQ56KyQYKlV8pzdz9zG4c6MvntGfzQOO_O34fzWoI_-ezIlINSt5nkrVUa1LDXP8gItQqYA6jqyspm1H0Y8HmIW70AO5jVog9FwCOY1aPMWdJR9m2Wjd3_2FCazc3s_xF8boTXogksOcUrOU9a7EDy1_7HnJf7L_jqrOiL6oACutJTyBflTlhA | 
    
| CODEN | IAECCG | 
    
| Cites_doi | 10.1111/geb.12161 10.1016/j.petrol.2013.03.009 10.1007/s00521-016-2729-2 10.1016/j.petrol.2019.106741 10.1111/ecog.02881 10.1007/s40808-020-01012-4 10.2118/178278-ms 10.1007/s13369-020-05023-2 10.1007/s12517-014-1526-4 10.3390/ijgi10090600 10.2118/6859-pa 10.1111/2041-210x.13107 10.3997/2214-4609.201701751 10.2118/174559-pa 10.1016/j.petrol.2015.12.015 10.1007/978-3-642-24477-3_25 10.1080/10916461003752561 10.1007/978-1-4419-9326-7 10.1109/imtc.2009.5168625 10.1080/10916460903452033 10.1007/11564126_16 10.4043/28221-ms 10.1016/j.petrol.2009.06.017 10.1016/j.cageo.2020.104555 10.1144/petgeo.8.2.109 10.2118/203847-pa 10.1111/gwat.13081 10.2118/942054-g 10.7717/peerj.5518 10.1080/13658816.2017.1346255 10.1016/j.jappgeo.2014.05.011 10.1016/j.ecolmodel.2019.108815 10.1023/A:1010933404324 10.1080/10106049.2019.1595177  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2023.3236802 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 7449 | 
    
| ExternalDocumentID | oai_doaj_org_article_90a0bf715f364eb3971458aca04600bb 10.1109/access.2023.3236802 10_1109_ACCESS_2023_3236802 10016733  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Saudi Aramco grantid: CIPR2349 funderid: 10.13039/501100007809  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-cce06901c930037234b98fa81c008720d5e06609628dadfe72ee71074830cef63 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:45:22 EDT 2025 Wed Oct 01 16:03:44 EDT 2025 Sun Jun 29 16:54:59 EDT 2025 Wed Oct 01 03:26:30 EDT 2025 Wed Aug 27 02:54:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-cce06901c930037234b98fa81c008720d5e06609628dadfe72ee71074830cef63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5613-4524 0000-0001-5513-4418 0000-0002-6277-8972  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/10005208/10016733.pdf | 
    
| PQID | 2770781310 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_90a0bf715f364eb3971458aca04600bb proquest_journals_2770781310 unpaywall_primary_10_1109_access_2023_3236802 crossref_primary_10_1109_ACCESS_2023_3236802 ieee_primary_10016733  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 20230000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 Al-Ali (ref32) 2009; 21 ref34 ref37 ref14 ref31 ref30 Anderson (ref1) 2003 ref11 ref33 ref10 ref2 ref17 ref16 ref38 ref19 ref18 (ref12) 2022 ref24 ref23 ref26 Kohavi (ref39) 2001 ref25 ref20 ref22 Breiman (ref36) 2001; 45 ref21 Alsaif (ref8) 2017 ref28 Nikparvar (ref3) 2021; 10 Alimoradi (ref15) 2011; 2 ref27 ref29 ref7 Kohavi (ref40); 14 ref9 ref4 ref6 ref5  | 
    
| References_xml | – ident: ref34 doi: 10.1111/geb.12161 – ident: ref28 doi: 10.1016/j.petrol.2013.03.009 – ident: ref19 doi: 10.1007/s00521-016-2729-2 – ident: ref20 doi: 10.1016/j.petrol.2019.106741 – ident: ref5 doi: 10.1111/ecog.02881 – ident: ref29 doi: 10.1007/s40808-020-01012-4 – ident: ref22 doi: 10.2118/178278-ms – ident: ref11 doi: 10.1007/s13369-020-05023-2 – volume: 2 start-page: 45 issue: 3 year: 2011 ident: ref15 article-title: Methods of water saturation estimation: Historical perspective publication-title: J. Petroleum Gas Eng. – ident: ref27 doi: 10.1007/s12517-014-1526-4 – volume: 10 start-page: 600 issue: 9 year: 2021 ident: ref3 article-title: Machine learning of spatial data publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi10090600 – ident: ref30 doi: 10.2118/6859-pa – start-page: 28 volume-title: Geophysical Technologies for Detecting Underground Coal Mine Voids Forum year: 2003 ident: ref1 article-title: A generalized protocol for selecting appropriate geophysical techniques – ident: ref38 doi: 10.1111/2041-210x.13107 – volume-title: Advanced Uncertainty Quantification Methods Deployed on Electromagnetic Dataset for Reservoir Saturation Mapping year: 2017 ident: ref8 doi: 10.3997/2214-4609.201701751 – ident: ref33 doi: 10.2118/174559-pa – ident: ref10 doi: 10.1016/j.petrol.2015.12.015 – ident: ref25 doi: 10.1007/978-3-642-24477-3_25 – volume: 14 start-page: 1137 issue: 2 volume-title: Proc. IJCAI ident: ref40 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – ident: ref31 doi: 10.1080/10916461003752561 – ident: ref37 doi: 10.1007/978-1-4419-9326-7 – volume-title: A study of cross-validation and bootstrap for accuracy estimation and model selection year: 2001 ident: ref39 – ident: ref13 doi: 10.1109/imtc.2009.5168625 – ident: ref17 doi: 10.1080/10916460903452033 – ident: ref24 doi: 10.1007/11564126_16 – volume: 21 start-page: 38 issue: 2 year: 2009 ident: ref32 article-title: Looking deep into the reservoir publication-title: Oilfield Rev. – ident: ref18 doi: 10.4043/28221-ms – ident: ref16 doi: 10.1016/j.petrol.2009.06.017 – ident: ref2 doi: 10.1016/j.cageo.2020.104555 – ident: ref9 doi: 10.1144/petgeo.8.2.109 – ident: ref23 doi: 10.2118/203847-pa – volume-title: Explore the New Oilfield Glossary year: 2022 ident: ref12 – ident: ref4 doi: 10.1111/gwat.13081 – ident: ref14 doi: 10.2118/942054-g – ident: ref35 doi: 10.7717/peerj.5518 – ident: ref6 doi: 10.1080/13658816.2017.1346255 – ident: ref21 doi: 10.1016/j.jappgeo.2014.05.011 – ident: ref7 doi: 10.1016/j.ecolmodel.2019.108815 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref36 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref26 doi: 10.1080/10106049.2019.1595177  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.2741494 | 
    
| Snippet | Geophysical data is a form of spatial data that suffers from various limitations when applying conventional machine learning algorithms and evaluation... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 7436 | 
    
| SubjectTerms | Algorithms Bias-variance trade-off Conductivity cross-fold validation Data models Datasets feature engineering Feature selection geophysical data Geophysical measurements Geophysics Machine learning model validation Prediction models Predictive models random forest regression reservoir characterization Reservoirs Saturation Solid modeling spatial autocorrelation Spatial data Spatial databases Support vector machines water saturation mapping  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8QgECXGi3owfsb6FQ4eRWlpKXhbV1djohc18UamFLxs1o2uMf57GcqaGg9evLalnb5HYQambwg50rl2XPqWKVviNiNIpjl4BtK2UJY4J8UE2Tt5_VjePFVPvVJfmBPWyQN3wJ2GlrzxdV55IcsQ-ek6LysFFnBHjzcNjr5c6V4wFcdglUtd1UlmKOf6dDAchjc6wWrhJ6IQUqWFlPlUFBX7U4mVH97m0vtkCp8fMB73Jp7RGllNHiMddJaukwU32SArPR3BTfJwH4bOM4rlhUN3Gn-ywQe8Oop1zsZsgKl0oS29jXmTjiZJ1Wc6midm0eC50iv3Mk2k0QuYwRZ5HF0-DK9ZKpfArKj0jFnrUHY4t1qgqkwhykYrDyq3qDtX8LYK52UIWQrVQutdXThXYz6mEtw6L8U2WZy8TNwOoUUN4UNvKu9bUUoJjahcQN47gLZpRZ2R4zlyZtqpYpgYTXBtOqANAm0S0Bk5R3S_L0VJ63ggEG0S0eYvojOyhdz0nod_UAiRkf05WSZ9f2-mqKOKUfBdM8K-CfxlK8SilD9s3f0PW_fIMt6zW6rZJ4uz13d3EJyXWXMY--kXw87mXQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RXoADn0UNFOQDR5ImceLE3JaFpUKiF1qpN8sfYw6sdlclq6r8ejyOs9qCkLhFiSPbeeN4PH5-A_BWVhJL4V3e24a2GbXIZal9roV1umloTooE2XNxdtl8uWqv0mH1eBYGESP5DAu6jHv5bm23FCo7rSJpnvMDOOh6MR7W2gVUKIOEbLukLFSV8nQ2n4dOFJQgvOA1F32KnUyzTxTpT1lV7jiY97erjb690cvl3lyzeAznUytHismPYjuYwv76Q8Dxv7vxBB4lr5PNRjN5Cvdw9Qwe7mkRPoeLb-H3-55RiuJgksvbfHajr5FRrrRlPiM6XniXfY3cS2RJlvU7W0zkLha8X_YZ15sEPPuoB30El4tPF_OzPKVcyC1v5ZBbiyRdXFnJSZmm5o2Rvdd9ZUm7ri5dG56LsOype6edx65G7IjT2fPSohf8BRyu1is8BlZ3OvwsTOu9440Q2vAWg_PjUWtnHO8yeDdBoTajsoaKK5JSqhE5RciphFwGHwiuXVGSxY43wqdVaZSpYGal8V3Vei4aNKG6qml7bTVt_5bGZHBEcOzVNyKRwcmEvkpj-Kequ6iEFPzfDPKdRfzVVh0TW95p68t_VPMKHlCxMYJzAofD9RZfB59mMG-iLf8GPoXwrw priority: 102 providerName: IEEE  | 
    
| Title | SAMA: Spatially-Aware Model-Agnostic Machine Learning Framework for Geophysical Data | 
    
| URI | https://ieeexplore.ieee.org/document/10016733 https://www.proquest.com/docview/2770781310 https://ieeexplore.ieee.org/ielx7/6287639/10005208/10016733.pdf https://doaj.org/article/90a0bf715f364eb3971458aca04600bb  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0AcKB9FpJSVDxxxNokTJ-YWli4VEhUSXamcjJ2MK0S0XbVZlfLr63GcaltOiJuVOLLjebbH9vg9Qt7KVEIibMuqJsdjRi2YTLRlWjStznOck3yA7LE4WuafT4vToHPq78IAgA8-gxiT_iz_J3S_y5nIkDxNztIhdqPCRCpK7taCrX1IdkThnPEJ2Vkef62_o6RcKiTj_nDydWDWnGkvQhijZHjMMy6qsJsyzkeetj_orNxxOR9tVmt9faW7bmv2WeySH2O9h6CTX_GmN3Hz5x6l43_82FPyJHimtB6g9Iw8gNVz8niLr_AFOfnmhuj3FGWMHWy7a1Zf6QugqKfWsRpD9ty39IuPzwQaqFvP6GIMAKPOQ6af4HwdwEE_6l7vkeXi8GR-xIIsA2t4IXvm2hDpjdNGcmSvyXhuZGV1lTbIb5clbeHeC7c0yqpWtxbKDKDEuM-KJw1YwV-Syep8Ba8IzUrtBhRTWNvyXAhteAHOQbKgdWtaXkbk3WgctR7YN5RftSRS1fO5g6hCW6pgy4h8QAPeZkXqbP_ANbYKPVE5KCbGlmlhucjBuOLSvKh0o_GIODEmIntooK3yBmtE5GDEgwr9_FJlpWdLcj5yRNgtRv6q64C7O3Xd_8f8B2TSX2zgjXOBejP1WwdTf1txGiB_AzxLAJE | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHAaH8WuIwAY-cCRZEv9Iwq10lAJbL3TSbpbtPHOgaquRahp__fwcp-pASNyiJJbtfM_x8_Pn7xHyrikayKVr09py3GbUMm1y7VItbas5xzkpEGRncnrBv16Ky3hYPZyFAYBAPoMML8NefruyGwyVnRSBNM_YffJAcM5Ff1xrG1LBHBKNqKK2UJE3J6Px2HcjwxThGSuZrGP0ZJh_gkx_zKtyx8Xc3yzX-uZaLxY7s83kMZkN7exJJj-zTWcy-_sPCcf_7sgTchD9TjrqDeUpuQfLZ-TRjhrhczL_7n_AHygmKfZGubhJR9f6CihmS1ukIyTk-bL0PLAvgUZh1h90MtC7qPd_6WdYrSP09FR3-pBcTD7Nx9M0Jl1ILRNNl1oLKF5c2IahNk3JuGlqp-vConpdmbfCP5d-4VPWrW4dVCVAhazOmuUWnGQvyN5ytYSXhJaV9r8LI5xrGZdSGybAuz8OtG5Ny6qEvB-gUOteW0OFNUneqB45hcipiFxCPiJc21dRGDvc8J9WxXGmvKHlxlWFcExyML66gotaW40bwLkxCTlEOHbq65FIyNGAvoqj-Jcqq6CF5D3ghKRbi_irrTqktrzT1lf_qOYt2Z_Oz8_U2ZfZt9fkIRbp4zlHZK-72sCx93A68ybY9S3-OPP8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-CwiUJAPHHE2iRMn5pYuLBUSFRJdqZyMHY8RItquSlal_Pp6HKfawglxsxJHdjzP9jgzeY-QVzKXkAlnWdOVGGbUgslMO6ZFZ3VZ4p4UEmSPxdGq_HBanUad0_AvDACE5DNIsRhi-d-h_1XPRYHkaXKej7kbDRZyUXN_FrTuNtkTlXfGZ2Rvdfyp_YKScrmQjIfg5PPIrDnXQYQwRcnwlBdcNPFryrQfBdr-qLNyw-W8s11v9OWF7vud3Wd5n3yd-j0mnfxIt4NJu99_UDr-x4s9IPeiZ0rbEUoPyS1YPyJ3d_gKH5OTz36JfkNRxtjDtr9k7YU-B4p6aj1rMWXPP0s_hvxMoJG69RtdTglg1HvI9D2cbSI46Fs96H2yWr47WRyxKMvAOl7JgfkxRHrjvJMc2WsKXhrZON3kHfLbFZmt_H3hj0ZFY7V1UBcANeZ9NjzrwAn-hMzWZ2t4SmhRa7-gmMo5y0shtOEVeAfJgdbWWF4n5PVkHLUZ2TdUOLVkUrWLhYeoQluqaMuEHKIBr6sidXa44AdbxZmoPBQz4-q8clyUYHxzeVk1utMYIs6MScg-GminvdEaCTmY8KDiPP-pijqwJXkfOSHsGiN_9XXE3Y2-PvvH-gdkNpxv4YV3gQbzMsL8Ckbh_ow | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAMA+%3A+Spatially-Aware+Model-Agnostic+Machine+Learning+Framework+for+Geophysical+Data&rft.jtitle=IEEE+access&rft.au=Yamani%2C+Asma+Z.&rft.au=Katterbaeur%2C+Klemens&rft.au=Alshehri%2C+Abdallah+A.&rft.au=Al-Zaidy%2C+Rabeah+A.&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=7436&rft.epage=7449&rft_id=info:doi/10.1109%2FACCESS.2023.3236802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3236802 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |