ϵ-Confidence Approximately Correct (ϵ-CoAC) Learnability and Hyperparameter Selection in Linear Regression Modeling

In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set. The hypothesis is chosen from classes with potentially different complexities. Linear regression modeling is an important category of learning...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 14273 - 14289
Main Authors Beheshti, Soosan, Shamsi, Mahdi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3529622

Cover

Abstract In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set. The hypothesis is chosen from classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the label samples in the training data set has a major effect in the generalization ability of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed mostly by alternating modeling cost functions or by utilizing cross-validation methods. Drawbacks of these methods include introducing new hyperparameters with their own new challenges and uncertainties, potential increase of the computational complexity or requiring large set of training data sets. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC bounds can't be utilized in practical regression learning applications with only available training data sets. This work is motivated by practical issues in regression learning generalization and is inspired by the foundations of the theory of statistical learning. The proposed approach, denoted by <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-Confidence Approximately Correct (<inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC), utilizes the conventional Kullback-Leibler divergence (relative entropy) and defines new related typical sets to develop a unique method of probabilistic statistical learning for practical regression learning and generalization. <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC learnability is able to validate the learning process as a function of training data sample size, as well as a function of the hypothesis class complexity order. Consequently, it enables the learner to automatically compare hypothesis classes of different complexity orders and to choose among them the optimum class with the minimum <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC framework. The <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC learnability overcomes the issues of overfitting and underfitting. In addition, it shows advantages over the well-known cross-validation method in the sense of accuracy and data length requirements for convergence. Simulation results, for both synthetic and real data, confirm not only strength and capability of <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC in providing learning measurements as a function of data length and/or hypothesis complexity, but also superiority of the method over the existing approaches in hypothesis complexity and model selection.
AbstractList In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set. The hypothesis is chosen from classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the label samples in the training data set has a major effect in the generalization ability of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed mostly by alternating modeling cost functions or by utilizing cross-validation methods. Drawbacks of these methods include introducing new hyperparameters with their own new challenges and uncertainties, potential increase of the computational complexity or requiring large set of training data sets. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC bounds can't be utilized in practical regression learning applications with only available training data sets. This work is motivated by practical issues in regression learning generalization and is inspired by the foundations of the theory of statistical learning. The proposed approach, denoted by <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-Confidence Approximately Correct (<inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC), utilizes the conventional Kullback-Leibler divergence (relative entropy) and defines new related typical sets to develop a unique method of probabilistic statistical learning for practical regression learning and generalization. <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC learnability is able to validate the learning process as a function of training data sample size, as well as a function of the hypothesis class complexity order. Consequently, it enables the learner to automatically compare hypothesis classes of different complexity orders and to choose among them the optimum class with the minimum <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC framework. The <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC learnability overcomes the issues of overfitting and underfitting. In addition, it shows advantages over the well-known cross-validation method in the sense of accuracy and data length requirements for convergence. Simulation results, for both synthetic and real data, confirm not only strength and capability of <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-CoAC in providing learning measurements as a function of data length and/or hypothesis complexity, but also superiority of the method over the existing approaches in hypothesis complexity and model selection.
In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set. The hypothesis is chosen from classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the label samples in the training data set has a major effect in the generalization ability of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed mostly by alternating modeling cost functions or by utilizing cross-validation methods. Drawbacks of these methods include introducing new hyperparameters with their own new challenges and uncertainties, potential increase of the computational complexity or requiring large set of training data sets. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC bounds can’t be utilized in practical regression learning applications with only available training data sets. This work is motivated by practical issues in regression learning generalization and is inspired by the foundations of the theory of statistical learning. The proposed approach, denoted by <tex-math notation="LaTeX">$\epsilon $ </tex-math>-Confidence Approximately Correct ( <tex-math notation="LaTeX">$\epsilon $ </tex-math>-CoAC), utilizes the conventional Kullback-Leibler divergence (relative entropy) and defines new related typical sets to develop a unique method of probabilistic statistical learning for practical regression learning and generalization. <tex-math notation="LaTeX">$\epsilon $ </tex-math>-CoAC learnability is able to validate the learning process as a function of training data sample size, as well as a function of the hypothesis class complexity order. Consequently, it enables the learner to automatically compare hypothesis classes of different complexity orders and to choose among them the optimum class with the minimum <tex-math notation="LaTeX">$\epsilon $ </tex-math> in the <tex-math notation="LaTeX">$\epsilon $ </tex-math>-CoAC framework. The <tex-math notation="LaTeX">$\epsilon $ </tex-math>-CoAC learnability overcomes the issues of overfitting and underfitting. In addition, it shows advantages over the well-known cross-validation method in the sense of accuracy and data length requirements for convergence. Simulation results, for both synthetic and real data, confirm not only strength and capability of <tex-math notation="LaTeX">$\epsilon $ </tex-math>-CoAC in providing learning measurements as a function of data length and/or hypothesis complexity, but also superiority of the method over the existing approaches in hypothesis complexity and model selection.
In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set. The hypothesis is chosen from classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the label samples in the training data set has a major effect in the generalization ability of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed mostly by alternating modeling cost functions or by utilizing cross-validation methods. Drawbacks of these methods include introducing new hyperparameters with their own new challenges and uncertainties, potential increase of the computational complexity or requiring large set of training data sets. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC bounds can’t be utilized in practical regression learning applications with only available training data sets. This work is motivated by practical issues in regression learning generalization and is inspired by the foundations of the theory of statistical learning. The proposed approach, denoted by [Formula Omitted]-Confidence Approximately Correct ([Formula Omitted]-CoAC), utilizes the conventional Kullback-Leibler divergence (relative entropy) and defines new related typical sets to develop a unique method of probabilistic statistical learning for practical regression learning and generalization. [Formula Omitted]-CoAC learnability is able to validate the learning process as a function of training data sample size, as well as a function of the hypothesis class complexity order. Consequently, it enables the learner to automatically compare hypothesis classes of different complexity orders and to choose among them the optimum class with the minimum [Formula Omitted] in the [Formula Omitted]-CoAC framework. The [Formula Omitted]-CoAC learnability overcomes the issues of overfitting and underfitting. In addition, it shows advantages over the well-known cross-validation method in the sense of accuracy and data length requirements for convergence. Simulation results, for both synthetic and real data, confirm not only strength and capability of [Formula Omitted]-CoAC in providing learning measurements as a function of data length and/or hypothesis complexity, but also superiority of the method over the existing approaches in hypothesis complexity and model selection.
Author Shamsi, Mahdi
Beheshti, Soosan
Author_xml – sequence: 1
  givenname: Soosan
  orcidid: 0000-0001-7161-5887
  surname: Beheshti
  fullname: Beheshti, Soosan
  email: soosan@torontomu.ca
  organization: Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0002-0795-6238
  surname: Shamsi
  fullname: Shamsi, Mahdi
  organization: Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
BookMark eNplkc1u1DAUhSNUJErpE8DCEhtYZPBPnImXo6jQSoOQGFhb1871yKPUDk5GJQ_Gc_SV6mkqVIE31zo655PuPa-LsxADFsVbRleMUfVp07ZXu92KUy5XQnJVc_6iOOesVqWQoj579n9VXI7jgebXZEmuz4vj_Z-yjcH5DoNFshmGFH_7W5iwn0kbU0I7kQ-Ppk37kWwRUgDjez_NBEJHrucB0wAJbnHCRHbY54CPgfhAtj5kO_mO-4TjeBK_xg57H_ZvipcO-hEvn-ZF8fPz1Y_2utx--3LTbralFVJNpQUO3CBnQIVQjBtqlROdcmtaSdcozjrTqIaLtYNKAIPONsqsO2eFhZobcVHcLNwuwkEPKS-WZh3B60chpr2GNHnbo5Z1xRpupHBmXQlHM7dzoq6NapTl5sSqFtYxDDDfQd__BTKqT01osDYvqk9N6Kcmcuz9EsuH_XXEcdKHeMw37EctmFSSiqZS2SUWl01xHBO6_9hLy_-y3y0pj4jPEk1FOVfiAekhpb8
CODEN IAECCG
Cites_doi 10.1007/978-3-7091-2568-7_1
10.2307/2683673
10.1109/ICCV.2019.00041
10.1214/09-ss054
10.1007/978-1-4757-2440-0
10.1609/aaai.v34i04.6020
10.2307/2684253
10.1109/72.788640
10.1111/jtsa.12587
10.1115/1.859551.ch27
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.jmp.2005.06.008
10.1007/s00521-019-04625-8
10.1016/j.neucom.2020.07.061
10.1016/j.csda.2009.04.009
10.1093/cid/cix731
10.1002/biot.201800613
10.1007/978-3-030-12767-1_5
10.1002/wics.14
10.1007/978-3-030-41068-1
10.1016/S0167-9473(01)00069-X
10.3182/20060329-3-AU-2901.00130
10.1016/S1473-3099(20)30120-1
10.1109/ACCESS.2018.2836950
10.1162/089976603321891864
10.1109/RBME.2020.3013489
10.7551/mitpress/9780262170055.003.0008
10.18637/jss.v033.i01
10.1002/0471200611
10.1561/2200000100
10.1109/ICECA.2018.8474918
10.1016/j.asej.2021.08.016
10.1109/TPAMI.2022.3195549
10.1109/TIT.2011.2111010
10.1109/TSP.2009.2032031
10.1109/ACCESS.2023.3287571
10.1109/ACCESS.2023.3321794
10.1038/nature14541
10.1371/journal.pcbi.0030116
10.1002/bjs.10895
10.1007/978-3-030-71704-9_65
10.1002/widm.1306
10.1111/j.1467-9868.2005.00503.x
10.1109/TPAMI.2016.2599532
10.1109/4235.585893
10.1007/978-0-387-84858-7
10.1145/1968.1972
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3529622
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 14289
ExternalDocumentID oai_doaj_org_article_564182b53fb743f0898df366b989c2bb
10.1109/access.2025.3529622
10_1109_ACCESS_2025_3529622
10840229
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-ca2a2be21a033912b0c9f3d9f7045f8921db898237fa43a1adc89b7dfc3ca62b3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Tue Oct 14 19:09:23 EDT 2025
Sun Sep 07 11:07:32 EDT 2025
Mon Jun 30 13:06:44 EDT 2025
Wed Oct 01 03:43:35 EDT 2025
Wed Aug 27 01:55:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ca2a2be21a033912b0c9f3d9f7045f8921db898237fa43a1adc89b7dfc3ca62b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0795-6238
0000-0001-7161-5887
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3529622
PQID 3159503849
PQPubID 4845423
PageCount 17
ParticipantIDs unpaywall_primary_10_1109_access_2025_3529622
proquest_journals_3159503849
crossref_primary_10_1109_ACCESS_2025_3529622
doaj_primary_oai_doaj_org_article_564182b53fb743f0898df366b989c2bb
ieee_primary_10840229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
Domingos (ref47); 747
ref41
ref44
Shamsi (ref33) 2025
ref49
Mahajan (ref42)
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Zhang (ref17)
ref31
ref30
Wen (ref38)
ref32
ref2
ref1
Maronna (ref43) 2019
ref39
Patel (ref54) 1996; 150
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Montgomery (ref56) 2021
Culkin (ref7) 2017; 15
References_xml – ident: ref16
  doi: 10.1007/978-3-7091-2568-7_1
– ident: ref45
  doi: 10.2307/2683673
– volume: 747
  start-page: 223
  volume-title: Proc. ICML
  ident: ref47
  article-title: Bayesian averaging of classifiers and the overfitting problem
– ident: ref18
  doi: 10.1109/ICCV.2019.00041
– ident: ref25
  doi: 10.1214/09-ss054
– ident: ref2
  doi: 10.1007/978-1-4757-2440-0
– ident: ref20
  doi: 10.1609/aaai.v34i04.6020
– ident: ref49
  doi: 10.2307/2684253
– volume: 15
  start-page: 92
  issue: 4
  year: 2017
  ident: ref7
  article-title: Machine learning in finance: The case of deep learning for option pricing
  publication-title: J. Investment Manage.
– ident: ref1
  doi: 10.1109/72.788640
– ident: ref28
  doi: 10.1111/jtsa.12587
– ident: ref52
  doi: 10.1115/1.859551.ch27
– ident: ref23
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref48
  doi: 10.1016/j.jmp.2005.06.008
– ident: ref41
  doi: 10.1007/s00521-019-04625-8
– ident: ref22
  doi: 10.1016/j.neucom.2020.07.061
– ident: ref26
  doi: 10.1016/j.csda.2009.04.009
– ident: ref6
  doi: 10.1093/cid/cix731
– ident: ref10
  doi: 10.1002/biot.201800613
– ident: ref15
  doi: 10.1007/978-3-030-12767-1_5
– ident: ref24
  doi: 10.1002/wics.14
– ident: ref8
  doi: 10.1007/978-3-030-41068-1
– start-page: 7313
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Domain generalization using causal matching
– ident: ref3
  doi: 10.1016/S0167-9473(01)00069-X
– ident: ref29
  doi: 10.3182/20060329-3-AU-2901.00130
– ident: ref50
  doi: 10.1016/S1473-3099(20)30120-1
– ident: ref11
  doi: 10.1109/ACCESS.2018.2836950
– ident: ref27
  doi: 10.1162/089976603321891864
– volume-title: Introduction To Linear Regression Analysis
  year: 2021
  ident: ref56
– ident: ref5
  doi: 10.1109/RBME.2020.3013489
– ident: ref37
  doi: 10.7551/mitpress/9780262170055.003.0008
– ident: ref46
  doi: 10.18637/jss.v033.i01
– ident: ref30
  doi: 10.1002/0471200611
– ident: ref19
  doi: 10.1561/2200000100
– ident: ref4
  doi: 10.1109/ICECA.2018.8474918
– ident: ref51
  doi: 10.1016/j.asej.2021.08.016
– ident: ref39
  doi: 10.1109/TPAMI.2022.3195549
– volume-title: Robust Statistics: Theory and Methods (With R)
  year: 2019
  ident: ref43
– volume: 150
  volume-title: Handbook of the Normal Distribution
  year: 1996
  ident: ref54
– ident: ref55
  doi: 10.1109/TIT.2011.2111010
– ident: ref31
  doi: 10.1109/TSP.2009.2032031
– ident: ref35
  doi: 10.1109/ACCESS.2023.3287571
– start-page: 12468
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Learning from noisy labels with no change to the training process
– ident: ref32
  doi: 10.1109/ACCESS.2023.3321794
– start-page: 631
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Robust learning under uncertain test distributions: Relating covariate shift to model misspecification
– ident: ref13
  doi: 10.1038/nature14541
– ident: ref9
  doi: 10.1371/journal.pcbi.0030116
– ident: ref44
  doi: 10.1002/bjs.10895
– year: 2025
  ident: ref33
  article-title: Separability and scatteredness (S&S) ratio-based efficient SVM regularization parameter, kernel, and kernel parameter selection
  publication-title: Pattern Anal. Appl.
– ident: ref36
  doi: 10.1007/978-3-030-71704-9_65
– ident: ref12
  doi: 10.1002/widm.1306
– ident: ref53
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref40
  doi: 10.1109/TPAMI.2016.2599532
– ident: ref14
  doi: 10.1109/4235.585893
– ident: ref21
  doi: 10.1007/978-0-387-84858-7
– ident: ref34
  doi: 10.1145/1968.1972
SSID ssj0000816957
Score 2.349507
Snippet In a data based learning process, training data set is utilized to provide a hypothesis that can be generalized to explain all data points from a domain set....
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14273
SubjectTerms Accuracy
Algorithms
Complexity
Complexity theory
Confidence
Cost function
Data models
Data points
Datasets
Divergence
Hands
Hypotheses
hypothesis class complexity
Kullback-Leibler divergence
Learning
Machine learning
Overfitting
Picture archiving and communication systems
Regression analysis
Regression models
sample complexity
Statistical analysis
Statistical learning
Statistical learning theory
Training data
Uncertainty
Vectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqLi0HVFpQlwLygUMrEUjs_M1xG4FWSO2hLRI3y78V0hIQ3VW7D9bn6Ct1xg4oKw5cerUtZzIz8cw49vcxdiTauimxK_POmwzjtc_AWixcqxasl0bUnvY7Pn-pZ5flxVV1NaL6ojNhCR44Ke60qktMgU0lg8FgF_IWWhdkXRvAyYQxtPpi46iYimtwW9RQNQPMUJHD6bTr8I2wIBTViaSfjUKshaKI2D9QrKxlmy-X_Z1e_dLz-SjwnL9mW0PGyKdJ0m32wvdv2OYIR_AtW_79k9HVvUQQyqeEE_77GnNRP1_xjvg37IJ_iIOm3UceMVUTPveK697xGRaj9wQCfkOHY_i3yI2DBuPXPcdiFYfzr_5HOjHbc6JPo0vsO-zy_Ox7N8sGPoXMygoWmdVCC-NFoXMpoRAmtxCkg9BgXhdaEIUzqF4hm6BLqQvtbAumccFKq2th5C7b6G97_45xaYnKzzTeGsAKzYIsgoDGYpvDBNJN2PGDatVdgs1QsdzIQSVLKLKEGiwxYZ9I_Y9DCfM6NqAnqMET1HOeMGE7ZLzR87B4FQImbP_Bmmr4QH8qiWkcIeGU2J09WviJrDqyVq7Juvc_ZH3PXtGcaS9nn20s7pf-ALObhTmMjvwP8Qr1yg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbaXgoHSksR2xbkAweQyJLY-fNxiahWldoDtFJvln9RxZJWJRFd3ovn6Ct1xs6udkFIvUW2JY8zY3lm7Pk-Qt6yuqxy6EqcdTqB89olwhgIXItaGMc1Kx3mO07PyulFfnJZXA7F6qEWxjkXHp-5MX6Gu3x7bXpMlcEOh3CEMbFJNqu6jMVay4QKMkiIohqQhbJUfJw0DSwCYkBWjDneLzK2dvoEkP6BVWXNwdzu2xs1_6Vms5Wz5niHnC2kjE9Mvo_7To_N778AHB-9jOfk2eB10kk0k12y4do98nQFi_AF6e__JFj-F0lG6QSxxu-uwJ91szltkMPDdPRdGDRp3tOAyxoxvudUtZZOIaC9RSDxH_jAhn4N_DqgdHrVUgh4YTj94r7FV7ctRQo2LITfJxfHn8-baTJwMiSGF6JLjGKKaccylXIuMqZTIzy3wlfgG_pasMzqWiACjlc5V5mypha6st5wo0qm-Uuy1V637hWh3CAdoK6c0QKiPCN45pmoDLRZcELtiHxY6EreROgNGUKWVMioWomqlYNqR-QT6nM5FHGzQwP8ezlsQ1mUOQRUuuBeg-vkUxDVel6WWoBpMq1HZB_1tTJfVNWIHC3MQw6b_Kfk4Aoimk4O3cnSZP6RVQXmyzVZD_4zzSF5gsNiiueIbHW3vXsNTk-n3wRjfwB4BQBO
  priority: 102
  providerName: IEEE
Title ϵ-Confidence Approximately Correct (ϵ-CoAC) Learnability and Hyperparameter Selection in Linear Regression Modeling
URI https://ieeexplore.ieee.org/document/10840229
https://www.proquest.com/docview/3159503849
https://doi.org/10.1109/access.2025.3529622
https://doaj.org/article/564182b53fb743f0898df366b989c2bb
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9oA48FnEQln5wAEkvCR24sTHEFGtkKgQsFI5Wf5EVZdQtVnB8r_4HfwlZpy02gUJwdV2FMczjt_YnvcIecJrWRVQxYIPlsF6HZhyDgLXslYuCMtlwP2ON0dysSxeH5fHI8825sJsn9_nmXphkmwgxHG8nAs8I-Twv92TJQDvCdlbHr1tPqJ8XC4VE-kg8tFfntxZexJF_6ipsgMvr6-7M7P5alarrZXm8NaQwn2RCArxgsnpfN3bufv-G33jP37EbXJzRJy0GVzkDrkWurvkxhYP4T2y_vmDYerfIDBKG-QZ_3YCWDasNrRF_Q7X06epUdM-o4mTdeD33lDTebqAYPYcScQ_4-Ua-j5p64DB6UlHIdiF5vRd-DTcuO0oyq9hEvw-WR6--tAu2KjHwJwoVc-c4YbbwHOTCaFybjOnovAqVoALY6147m2tkP0mmkKY3HhXK1v56IQzkltxn0y6L114QKhwKAVoq-CsggjPKZFHrioHZR4AqJ-S55eW0mcD7YZO4UqmdNO24JsaR1OPozklL9GaV02RMzsVgBX0OAV1KQsIpmwpogXYFDPoqo9CSqvALbm1U7KPvrD1Pgh-OVdTcnDpHHqc4BdaAAxEJp0CqtmVw_zR18HyO319-J_tD8ikP1-Hx4B9ejtLewazlKY4G_3_FynsApk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHAqH8lfEQgEfOIBElsSOk_i4RFQLtHuAVurN8l9QxZJWJRHdvlefg1dixs6udkFI3CLHke3MWJ4Zz3wfIS9ZVZQ5vEq88yaB89on0lpwXEUlreeGFR7jHYezYnqcfzwRJ0OxeqiF8d6H5DM_xsdwl-_ObI-hMtjh4I4wJm-SWyLPcxHLtVYhFeSQkKIcsIWyVL6d1DUsA7xAJsYcbxgZ2zh_Akz_wKuyYWJu9-25XvzU8_naabN_l8yW84xJJt_GfWfG9uoPCMf_Xsg9sjPYnXQSFeU-ueHbB-TOGhrhQ9L_uk6wADDSjNIJoo1fnoJF6-cLWiOLh-3oq9BpUr-mAZk1onwvqG4dnYJLe4FQ4t8xxYZ-CQw7IHZ62lJweaE7_ey_xrzbliIJG5bC75Lj_fdH9TQZWBkSy4XsEquZZsazTKecy4yZ1MqGO9mUYB02lWSZM5VEDJxG51xn2tlKmtI1lltdMMMfka32rPWPCeUWCQFN6a2R4OdZybOGydJCmwMz1I3Im6Ws1HkE31DBaUmliqJVKFo1iHZE3qE8V10ROTs0wL9Xw0ZUosjBpTKCNwaMpyaFqbqGF4WRoJzMmBHZRXmtjRdFNSJ7S_VQwzb_oTgYg4ink8PrZKUyf81VB-7Ljbk--ccwL8j29OjwQB18mH16Sm7jJzHgs0e2uovePwMTqDPPg-L_BgBtA5s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9oA4QIEiFgrygQNIeEnsxImPaUS1QqJCwErlZPkTVSyharOC5X_xO_qXOuOk1S5ICK7xRHE84_hN7HmPkGe8llUBTSz4YBms14Ep5yBxLWvlgrBcBvzf8fZIzhfFm-PyeOTZxlqYzf37PFOvTJINhDyOlzOBe4Qcvrc7sgTgPSE7i6N3zSeUj8ulYiJtRD7-y51ba0-i6B81Vbbg5c1Vd2rW381yubHSHN4ZSrjPE0EhHjD5Mlv1duZ-_kbf-I8vsUtuj4iTNkOI3CU3QneP3NrgIbxPVhe_GJb-DQKjtEGe8R8ngGXDck1b1O9wPX2ejJr2BU2crAO_95qaztM5JLNnSCL-FQ_X0A9JWwccTk86CskumNP34fNw4rajKL-GRfB7ZHH4-mM7Z6MeA3OiVD1zhhtuA89NJoTKuc2cisKrWAEujLXiube1QvabaAphcuNdrWzloxPOSG7FAzLpvnXhIaHCoRSgrYKzCjI8p0QeuaocXPMAQP2UvLzylD4daDd0SlcypZu2hdjUOJp6HM0pOUBvXpsiZ3a6AF7Q4xTUpSwgmbKliBZgU8ygqz4KKa2CsOTWTskexsLG8yD55VxNyf5VcOhxgp9rATAQmXQKaGbXAfNHXwfPb_X10X_a75NJf7YKTwD79PbpGPOXHCIAow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CF%B5-Confidence+Approximately+Correct+%28%CF%B5-CoAC%29+Learnability+and+Hyperparameter+Selection+in+Linear+Regression+Modeling&rft.jtitle=IEEE+access&rft.au=Beheshti%2C+Soosan&rft.au=Shamsi%2C+Mahdi&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=14273&rft.epage=14289&rft_id=info:doi/10.1109%2FACCESS.2025.3529622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3529622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon