Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks
Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and eas...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 21; no. 4; pp. 1624 - 1630 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 |
| DOI | 10.1109/TITS.2019.2910295 |
Cover
| Abstract | Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and easy-access. In this paper, we propose a novel approach using parallel data and generative adversarial networks (GANs) to enhance traffic data imputation. Parallel data is a recently proposed method of using synthetic and real data for data mining and data-driven process, in which we apply GANs to generate synthetic traffic data. As it is difficult for the standard GAN algorithm to generate time-dependent traffic flow data, we made twofold modifications: 1) using the real data or the corrupted ones instead of random vectors as latent codes to generator within GANs and 2) introducing a representation loss to measure discrepancy between the synthetic data and the real data. The experimental results on a real traffic dataset demonstrate that our method can significantly improve the performance of traffic data imputation. |
|---|---|
| AbstractList | Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and easy-access. In this paper, we propose a novel approach using parallel data and generative adversarial networks (GANs) to enhance traffic data imputation. Parallel data is a recently proposed method of using synthetic and real data for data mining and data-driven process, in which we apply GANs to generate synthetic traffic data. As it is difficult for the standard GAN algorithm to generate time-dependent traffic flow data, we made twofold modifications: 1) using the real data or the corrupted ones instead of random vectors as latent codes to generator within GANs and 2) introducing a representation loss to measure discrepancy between the synthetic data and the real data. The experimental results on a real traffic dataset demonstrate that our method can significantly improve the performance of traffic data imputation. |
| Author | Chen, Yuanyuan Wang, Fei-Yue Lv, Yisheng |
| Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0002-1886-3061 surname: Chen fullname: Chen, Yuanyuan email: yychen5133@ia.ac.cn organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Yisheng orcidid: 0000-0002-0508-1298 surname: Lv fullname: Lv, Yisheng email: yisheng.lv@ia.ac.cn organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Fei-Yue orcidid: 0000-0001-9185-3989 surname: Wang fullname: Wang, Fei-Yue email: feiyue@ieee.org organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kMFOwkAQhjcGEwF9AONlE8_Fndkt7h4JCpIQMbGcm6WdmsXS4m6B-PaWQDx48DIzmfn-mczfY52qroixWxADAGEeklnyPkABZoAGBJr4gnUhjnUkBAw7xxpVZEQsrlgvhHXbVTFAly0Sb4vCZXxS1gc-22x3jW1cXfFlcNUHf7PeliWV_Mk2ltsq51OqyLfInvgo35MP1jtb8ldqDrX_DNfssrBloJtz7rPl5DkZv0TzxXQ2Hs2jTMamaaNSCCAl5qBzBKMVKQKNCleaVpjBaihXEnIkjJVBK6Q2OUFcFJDpvJB9dn_au_X1145Ck67rna_akylKrSQKxGFLPZ6ozNcheCrSzJ3-a7x1ZQoiPbqXHt1Lj-6lZ_daJfxRbr3bWP_9r-bupHFE9MvroWnnWv4A-G575Q |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1111_mice_12595 crossref_primary_10_3390_s22072744 crossref_primary_10_1109_JSEN_2024_3354330 crossref_primary_10_1109_TCSS_2024_3443174 crossref_primary_10_1016_j_iot_2022_100648 crossref_primary_10_1016_j_inffus_2025_102952 crossref_primary_10_1109_TITS_2021_3095945 crossref_primary_10_1109_TITS_2023_3243087 crossref_primary_10_3390_app11209680 crossref_primary_10_1080_19427867_2024_2372944 crossref_primary_10_1049_itr2_12186 crossref_primary_10_1109_TITS_2021_3074564 crossref_primary_10_1109_TITS_2021_3110268 crossref_primary_10_1016_j_neunet_2024_106538 crossref_primary_10_1016_j_asoc_2023_111128 crossref_primary_10_1109_JAS_2022_106097 crossref_primary_10_1109_TITS_2023_3311585 crossref_primary_10_1109_TITS_2024_3478816 crossref_primary_10_35377_saucis_03_03_724645 crossref_primary_10_3390_ijgi12010013 crossref_primary_10_1007_s13177_024_00454_9 crossref_primary_10_1016_j_knosys_2023_110965 crossref_primary_10_1109_TBDATA_2022_3154097 crossref_primary_10_1109_TITS_2021_3124409 crossref_primary_10_1109_TITS_2023_3240185 crossref_primary_10_1016_j_trc_2022_103820 crossref_primary_10_1007_s42486_020_00039_x crossref_primary_10_1109_OJITS_2022_3215621 crossref_primary_10_1007_s00500_023_07864_z crossref_primary_10_1109_JETCAS_2023_3276641 crossref_primary_10_1109_TCSS_2024_3362393 crossref_primary_10_1109_TITS_2020_3029946 crossref_primary_10_1109_TITS_2021_3119638 crossref_primary_10_1109_TITS_2023_3305380 crossref_primary_10_1109_JRFID_2022_3217084 crossref_primary_10_1155_2022_1702170 crossref_primary_10_1109_TSMC_2022_3228817 crossref_primary_10_1016_j_knosys_2023_111184 crossref_primary_10_1049_itr2_12099 crossref_primary_10_1109_TITS_2020_3032758 crossref_primary_10_1049_itr2_12372 crossref_primary_10_1016_j_trc_2024_104513 crossref_primary_10_1109_JAS_2024_124659 crossref_primary_10_3233_IDA_230091 crossref_primary_10_1109_JAS_2024_124611 crossref_primary_10_1016_j_xinn_2023_100521 crossref_primary_10_1109_JAS_2023_123561 crossref_primary_10_1016_j_chaos_2023_113830 crossref_primary_10_1016_j_physa_2023_128769 crossref_primary_10_1109_TNSE_2020_2984658 crossref_primary_10_1080_15472450_2022_2119385 crossref_primary_10_1109_ACCESS_2023_3275134 crossref_primary_10_3390_ijgi12090378 crossref_primary_10_1016_j_trc_2022_103719 crossref_primary_10_1016_j_trc_2022_103917 crossref_primary_10_1115_1_4065344 crossref_primary_10_1049_itr2_12036 crossref_primary_10_1016_j_displa_2023_102513 crossref_primary_10_1109_TVT_2022_3141880 crossref_primary_10_1109_JIOT_2021_3115239 crossref_primary_10_1109_TIV_2023_3270336 crossref_primary_10_1109_ACCESS_2020_2978530 crossref_primary_10_1109_TITS_2020_3008266 crossref_primary_10_1109_TIV_2024_3417938 crossref_primary_10_1109_ACCESS_2020_3040864 crossref_primary_10_1109_JAS_2023_123375 crossref_primary_10_1109_TITS_2022_3203871 crossref_primary_10_1016_j_ijtst_2023_02_005 crossref_primary_10_1109_JRFID_2024_3392943 crossref_primary_10_1145_3559540 crossref_primary_10_1109_TIV_2022_3197818 crossref_primary_10_47164_ijngc_v13i2_386 crossref_primary_10_1016_j_eswa_2021_115992 crossref_primary_10_1016_j_ijtst_2022_06_006 crossref_primary_10_1109_JIOT_2022_3171780 crossref_primary_10_1007_s11042_022_12292_6 crossref_primary_10_1109_TITS_2020_3026025 crossref_primary_10_1109_TITS_2020_3048151 crossref_primary_10_1109_TSMC_2022_3228914 crossref_primary_10_1016_j_neucom_2023_01_022 crossref_primary_10_3934_mbe_2024220 crossref_primary_10_1109_TCYB_2020_3035518 crossref_primary_10_3390_fi14050143 crossref_primary_10_1080_21642583_2024_2328550 crossref_primary_10_1016_j_ymssp_2024_111141 crossref_primary_10_1061_JTEPBS_0000387 crossref_primary_10_1109_JSEN_2021_3105442 |
| Cites_doi | 10.1109/TITS.2010.2060218 10.1049/iet-its.2013.0052 10.1016/j.trc.2017.09.011 10.1109/MITS.2017.2746407 10.1109/TITS.2009.2026312 10.1109/ITSC.2006.1706789 10.1109/TITS.2011.2158001 10.18653/v1/D17-1230 10.1016/j.eswa.2008.07.069 10.1109/CVPR.2017.19 10.1016/j.trc.2016.09.015 10.1016/j.trc.2018.01.015 10.1016/j.trc.2015.03.014 10.1109/CVPR.2017.241 10.3141/2336-06 10.1109/JAS.2017.7510583 10.1093/bioinformatics/17.6.520 10.1109/CVPR.2017.632 10.3141/1879-09 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2019.2910295 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 1630 |
| ExternalDocumentID | 10_1109_TITS_2019_2910295 8699108 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61533019; 61876011; U1811463 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-c344211332d18d21984e4e18242b8eb2c1b63b31d2e25492a0389de15ff1c8df3 |
| IEDL.DBID | RIE |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 05:33:29 EDT 2025 Wed Oct 01 05:03:07 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Wed Aug 27 06:02:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-c344211332d18d21984e4e18242b8eb2c1b63b31d2e25492a0389de15ff1c8df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0508-1298 0000-0001-9185-3989 0000-0002-1886-3061 |
| PQID | 2384320226 |
| PQPubID | 75735 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2384320226 crossref_citationtrail_10_1109_TITS_2019_2910295 crossref_primary_10_1109_TITS_2019_2910295 ieee_primary_8699108 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 arjovsky (ref21) 2017 ref14 zeiler (ref31) 2012 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 arjovsky (ref23) 2017 qu (ref6) 2009; 10 liu (ref8) 2017; 30 chen (ref26) 2016 jin (ref15) 2007 ref20 qi (ref24) 2017 (ref30) 2019 ref28 ref27 goodfellow (ref22) 2014; 27 ref29 mirza (ref25) 2014 ref7 ref9 ref4 chen (ref3) 2016 lv (ref5) 2015; 16 |
| References_xml | – start-page: 1022 year: 2007 ident: ref15 article-title: Simultaneously prediction of network traffic flow based on PCA-SVR publication-title: Advances in Neural Networks – ident: ref1 doi: 10.1109/TITS.2010.2060218 – start-page: 2172 year: 2016 ident: ref26 article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref30 publication-title: Caltrans Performance Measurement System (Pems) – volume: 27 start-page: 2672 year: 2014 ident: ref22 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref23 publication-title: Wasserstein GAN – ident: ref12 doi: 10.1049/iet-its.2013.0052 – ident: ref19 doi: 10.1016/j.trc.2017.09.011 – start-page: 132 year: 2016 ident: ref3 article-title: Long short-term memory model for traffic congestion prediction with online open data publication-title: Proc IEEE 19th Int Conf Intell Transp Syst (ITSC) – year: 2012 ident: ref31 publication-title: ADADELTA An Adaptive Learning Rate Method – volume: 16 start-page: 865 year: 2015 ident: ref5 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans Intell Transp Syst – ident: ref10 doi: 10.1109/MITS.2017.2746407 – volume: 10 start-page: 512 year: 2009 ident: ref6 article-title: PPCA-based missing data imputation for traffic flow volume: A systematical approach publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2009.2026312 – ident: ref13 doi: 10.1109/ITSC.2006.1706789 – ident: ref2 doi: 10.1109/TITS.2011.2158001 – ident: ref29 doi: 10.18653/v1/D17-1230 – ident: ref14 doi: 10.1016/j.eswa.2008.07.069 – ident: ref28 doi: 10.1109/CVPR.2017.19 – volume: 30 start-page: 673 year: 2017 ident: ref8 article-title: Parallel data: From big data to data intelligence publication-title: Pattern Recognit Artif Intell – ident: ref7 doi: 10.1016/j.trc.2016.09.015 – ident: ref20 doi: 10.1016/j.trc.2018.01.015 – ident: ref4 doi: 10.1016/j.trc.2015.03.014 – year: 2014 ident: ref25 publication-title: Conditional generative adversarial nets – ident: ref11 doi: 10.1109/CVPR.2017.241 – ident: ref17 doi: 10.3141/2336-06 – ident: ref9 doi: 10.1109/JAS.2017.7510583 – year: 2017 ident: ref24 publication-title: Loss-sensitive generative adversarial networks on lipschitz densities – ident: ref16 doi: 10.1093/bioinformatics/17.6.520 – ident: ref27 doi: 10.1109/CVPR.2017.632 – ident: ref18 doi: 10.3141/1879-09 – year: 2017 ident: ref21 publication-title: Towards Principled Methods for Training Generative Adversarial Networks |
| SSID | ssj0014511 |
| Score | 2.5860484 |
| Snippet | Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1624 |
| SubjectTerms | Algorithms Biological system modeling data augmentation Data mining Data models deep learning Gallium nitride Generative adversarial networks Generators Intelligent transportation systems Loss measurement Model accuracy Parallel data Performance enhancement Standardization Time dependence Traffic flow traffic flow imputation Traffic information Traffic models Training Transportation networks |
| Title | Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks |
| URI | https://ieeexplore.ieee.org/document/8699108 https://www.proquest.com/docview/2384320226 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJz34NcXplBw8ia1tknbNUdSxCU7BDXYraT4ujk62DsFfb970g6EiXkoPTQl53ybv0zx5HoQuLegJRWRCj2vJPEYD6QmLGrw-pTpT2qZN5li-43g4ZY-zaNZC181ZGK21I59pH27dXr5ayDX8KrtJYlvNwMnerX4Sl2e1mh0D0Nly2qiEeTyI6h3MMOA3k9HkFUhc3Ce2OQEriY01yJmq_JiJ3fIy2ENPdcdKVsmbvy4yX35-02z8b8_30W5VZ-LbMjEOUEvnh2hnQ32wg57tOgUCEngwX3zgEbg7uDBhRyPAL2IJPitzfC8KgUWucClRDfMjdj7OKwHZi8clk3x1hKaDh8nd0Kv8FTxJI17YK2MW_1FKVJgoO3UlTDNtAQcjWWIRtwyzmGY0VEQDjCQCxPiUDiNjQpkoQ49RO1_k-gRhRYgUMQsEvDPjhovAGGkM5czWHzzooqAe8VRW4uPggTFPHQgJeApBSiFIaRWkLrpqmryXyht_PdyBQW8erMa7i3p1WNPq21yltkhh4BpP4tPfW52hbQKo2vFzeqhdLNf63JYeRXbhcu4L8wTTug |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBV0GUpwcmREpiOyEeEVC1PAoSrdQtcvxYqFrUpkLi1-Nz0qoChFiiDLZl-S72fbnz9wGcOdATydhGgTCKB5yFKpAONQRXjJlcG-c2ua_y7SStHr_vx_0luJjfhTHG-OIz08BXn8vXIzXFX2WXaeKiGbzZuxJzzuPyttY8Z4BMW54dlfJAhPEshxmF4rLb7r5iGZdoUDcARTGJhVPIy6r82Iv9AdPchKfZ1Mq6krfGtMgb6vMba-N_574FG1WkSa5L19iGJTPcgfUF_sEaPLuTCikkSHMw-iBt1HfwhiK-kIC8yDEqrQzIrSwkkUNNSpJq3CGJV3KeSPRf0ilrySe70GvedW9aQaWwECgWi8I9OXcIkDGqo1S7zSvlhhsHOTjNU4e5VZQnLGeRpgaBJJVIx6dNFFsbqVRbtgfLw9HQ7APRlCqZ8FDimLmwQobWKmuZ4C4CEWEdwtmKZ6qiH0cVjEHmYUgoMjRShkbKKiPV4Xze5b3k3vircQ0Xfd6wWu86HM3MmlVf5yRzYQpH3XiaHPze6xRWW92nx-yx3Xk4hDWKGNtX6xzBcjGemmMXiBT5ife_LzTB1wc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Flow+Imputation+Using+Parallel+Data+and+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Chen%2C+Yuanyuan&rft.au=Lv%2C+Yisheng&rft.au=Wang%2C+Fei-Yue&rft.date=2020-04-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=21&rft.issue=4&rft.spage=1624&rft.epage=1630&rft_id=info:doi/10.1109%2FTITS.2019.2910295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2019_2910295 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |