Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks

Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and eas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 21; no. 4; pp. 1624 - 1630
Main Authors Chen, Yuanyuan, Lv, Yisheng, Wang, Fei-Yue
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2019.2910295

Cover

Abstract Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and easy-access. In this paper, we propose a novel approach using parallel data and generative adversarial networks (GANs) to enhance traffic data imputation. Parallel data is a recently proposed method of using synthetic and real data for data mining and data-driven process, in which we apply GANs to generate synthetic traffic data. As it is difficult for the standard GAN algorithm to generate time-dependent traffic flow data, we made twofold modifications: 1) using the real data or the corrupted ones instead of random vectors as latent codes to generator within GANs and 2) introducing a representation loss to measure discrepancy between the synthetic data and the real data. The experimental results on a real traffic dataset demonstrate that our method can significantly improve the performance of traffic data imputation.
AbstractList Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and easy-access. In this paper, we propose a novel approach using parallel data and generative adversarial networks (GANs) to enhance traffic data imputation. Parallel data is a recently proposed method of using synthetic and real data for data mining and data-driven process, in which we apply GANs to generate synthetic traffic data. As it is difficult for the standard GAN algorithm to generate time-dependent traffic flow data, we made twofold modifications: 1) using the real data or the corrupted ones instead of random vectors as latent codes to generator within GANs and 2) introducing a representation loss to measure discrepancy between the synthetic data and the real data. The experimental results on a real traffic dataset demonstrate that our method can significantly improve the performance of traffic data imputation.
Author Chen, Yuanyuan
Wang, Fei-Yue
Lv, Yisheng
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0002-1886-3061
  surname: Chen
  fullname: Chen, Yuanyuan
  email: yychen5133@ia.ac.cn
  organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Yisheng
  orcidid: 0000-0002-0508-1298
  surname: Lv
  fullname: Lv, Yisheng
  email: yisheng.lv@ia.ac.cn
  organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Fei-Yue
  orcidid: 0000-0001-9185-3989
  surname: Wang
  fullname: Wang, Fei-Yue
  email: feiyue@ieee.org
  organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kMFOwkAQhjcGEwF9AONlE8_Fndkt7h4JCpIQMbGcm6WdmsXS4m6B-PaWQDx48DIzmfn-mczfY52qroixWxADAGEeklnyPkABZoAGBJr4gnUhjnUkBAw7xxpVZEQsrlgvhHXbVTFAly0Sb4vCZXxS1gc-22x3jW1cXfFlcNUHf7PeliWV_Mk2ltsq51OqyLfInvgo35MP1jtb8ldqDrX_DNfssrBloJtz7rPl5DkZv0TzxXQ2Hs2jTMamaaNSCCAl5qBzBKMVKQKNCleaVpjBaihXEnIkjJVBK6Q2OUFcFJDpvJB9dn_au_X1145Ck67rna_akylKrSQKxGFLPZ6ozNcheCrSzJ3-a7x1ZQoiPbqXHt1Lj-6lZ_daJfxRbr3bWP_9r-bupHFE9MvroWnnWv4A-G575Q
CODEN ITISFG
CitedBy_id crossref_primary_10_1111_mice_12595
crossref_primary_10_3390_s22072744
crossref_primary_10_1109_JSEN_2024_3354330
crossref_primary_10_1109_TCSS_2024_3443174
crossref_primary_10_1016_j_iot_2022_100648
crossref_primary_10_1016_j_inffus_2025_102952
crossref_primary_10_1109_TITS_2021_3095945
crossref_primary_10_1109_TITS_2023_3243087
crossref_primary_10_3390_app11209680
crossref_primary_10_1080_19427867_2024_2372944
crossref_primary_10_1049_itr2_12186
crossref_primary_10_1109_TITS_2021_3074564
crossref_primary_10_1109_TITS_2021_3110268
crossref_primary_10_1016_j_neunet_2024_106538
crossref_primary_10_1016_j_asoc_2023_111128
crossref_primary_10_1109_JAS_2022_106097
crossref_primary_10_1109_TITS_2023_3311585
crossref_primary_10_1109_TITS_2024_3478816
crossref_primary_10_35377_saucis_03_03_724645
crossref_primary_10_3390_ijgi12010013
crossref_primary_10_1007_s13177_024_00454_9
crossref_primary_10_1016_j_knosys_2023_110965
crossref_primary_10_1109_TBDATA_2022_3154097
crossref_primary_10_1109_TITS_2021_3124409
crossref_primary_10_1109_TITS_2023_3240185
crossref_primary_10_1016_j_trc_2022_103820
crossref_primary_10_1007_s42486_020_00039_x
crossref_primary_10_1109_OJITS_2022_3215621
crossref_primary_10_1007_s00500_023_07864_z
crossref_primary_10_1109_JETCAS_2023_3276641
crossref_primary_10_1109_TCSS_2024_3362393
crossref_primary_10_1109_TITS_2020_3029946
crossref_primary_10_1109_TITS_2021_3119638
crossref_primary_10_1109_TITS_2023_3305380
crossref_primary_10_1109_JRFID_2022_3217084
crossref_primary_10_1155_2022_1702170
crossref_primary_10_1109_TSMC_2022_3228817
crossref_primary_10_1016_j_knosys_2023_111184
crossref_primary_10_1049_itr2_12099
crossref_primary_10_1109_TITS_2020_3032758
crossref_primary_10_1049_itr2_12372
crossref_primary_10_1016_j_trc_2024_104513
crossref_primary_10_1109_JAS_2024_124659
crossref_primary_10_3233_IDA_230091
crossref_primary_10_1109_JAS_2024_124611
crossref_primary_10_1016_j_xinn_2023_100521
crossref_primary_10_1109_JAS_2023_123561
crossref_primary_10_1016_j_chaos_2023_113830
crossref_primary_10_1016_j_physa_2023_128769
crossref_primary_10_1109_TNSE_2020_2984658
crossref_primary_10_1080_15472450_2022_2119385
crossref_primary_10_1109_ACCESS_2023_3275134
crossref_primary_10_3390_ijgi12090378
crossref_primary_10_1016_j_trc_2022_103719
crossref_primary_10_1016_j_trc_2022_103917
crossref_primary_10_1115_1_4065344
crossref_primary_10_1049_itr2_12036
crossref_primary_10_1016_j_displa_2023_102513
crossref_primary_10_1109_TVT_2022_3141880
crossref_primary_10_1109_JIOT_2021_3115239
crossref_primary_10_1109_TIV_2023_3270336
crossref_primary_10_1109_ACCESS_2020_2978530
crossref_primary_10_1109_TITS_2020_3008266
crossref_primary_10_1109_TIV_2024_3417938
crossref_primary_10_1109_ACCESS_2020_3040864
crossref_primary_10_1109_JAS_2023_123375
crossref_primary_10_1109_TITS_2022_3203871
crossref_primary_10_1016_j_ijtst_2023_02_005
crossref_primary_10_1109_JRFID_2024_3392943
crossref_primary_10_1145_3559540
crossref_primary_10_1109_TIV_2022_3197818
crossref_primary_10_47164_ijngc_v13i2_386
crossref_primary_10_1016_j_eswa_2021_115992
crossref_primary_10_1016_j_ijtst_2022_06_006
crossref_primary_10_1109_JIOT_2022_3171780
crossref_primary_10_1007_s11042_022_12292_6
crossref_primary_10_1109_TITS_2020_3026025
crossref_primary_10_1109_TITS_2020_3048151
crossref_primary_10_1109_TSMC_2022_3228914
crossref_primary_10_1016_j_neucom_2023_01_022
crossref_primary_10_3934_mbe_2024220
crossref_primary_10_1109_TCYB_2020_3035518
crossref_primary_10_3390_fi14050143
crossref_primary_10_1080_21642583_2024_2328550
crossref_primary_10_1016_j_ymssp_2024_111141
crossref_primary_10_1061_JTEPBS_0000387
crossref_primary_10_1109_JSEN_2021_3105442
Cites_doi 10.1109/TITS.2010.2060218
10.1049/iet-its.2013.0052
10.1016/j.trc.2017.09.011
10.1109/MITS.2017.2746407
10.1109/TITS.2009.2026312
10.1109/ITSC.2006.1706789
10.1109/TITS.2011.2158001
10.18653/v1/D17-1230
10.1016/j.eswa.2008.07.069
10.1109/CVPR.2017.19
10.1016/j.trc.2016.09.015
10.1016/j.trc.2018.01.015
10.1016/j.trc.2015.03.014
10.1109/CVPR.2017.241
10.3141/2336-06
10.1109/JAS.2017.7510583
10.1093/bioinformatics/17.6.520
10.1109/CVPR.2017.632
10.3141/1879-09
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2019.2910295
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 1630
ExternalDocumentID 10_1109_TITS_2019_2910295
8699108
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61533019; 61876011; U1811463
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-c344211332d18d21984e4e18242b8eb2c1b63b31d2e25492a0389de15ff1c8df3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 05:33:29 EDT 2025
Wed Oct 01 05:03:07 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Wed Aug 27 06:02:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c344211332d18d21984e4e18242b8eb2c1b63b31d2e25492a0389de15ff1c8df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0508-1298
0000-0001-9185-3989
0000-0002-1886-3061
PQID 2384320226
PQPubID 75735
PageCount 7
ParticipantIDs proquest_journals_2384320226
crossref_citationtrail_10_1109_TITS_2019_2910295
crossref_primary_10_1109_TITS_2019_2910295
ieee_primary_8699108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
arjovsky (ref21) 2017
ref14
zeiler (ref31) 2012
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
arjovsky (ref23) 2017
qu (ref6) 2009; 10
liu (ref8) 2017; 30
chen (ref26) 2016
jin (ref15) 2007
ref20
qi (ref24) 2017
(ref30) 2019
ref28
ref27
goodfellow (ref22) 2014; 27
ref29
mirza (ref25) 2014
ref7
ref9
ref4
chen (ref3) 2016
lv (ref5) 2015; 16
References_xml – start-page: 1022
  year: 2007
  ident: ref15
  article-title: Simultaneously prediction of network traffic flow based on PCA-SVR
  publication-title: Advances in Neural Networks
– ident: ref1
  doi: 10.1109/TITS.2010.2060218
– start-page: 2172
  year: 2016
  ident: ref26
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref30
  publication-title: Caltrans Performance Measurement System (Pems)
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref22
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref23
  publication-title: Wasserstein GAN
– ident: ref12
  doi: 10.1049/iet-its.2013.0052
– ident: ref19
  doi: 10.1016/j.trc.2017.09.011
– start-page: 132
  year: 2016
  ident: ref3
  article-title: Long short-term memory model for traffic congestion prediction with online open data
  publication-title: Proc IEEE 19th Int Conf Intell Transp Syst (ITSC)
– year: 2012
  ident: ref31
  publication-title: ADADELTA An Adaptive Learning Rate Method
– volume: 16
  start-page: 865
  year: 2015
  ident: ref5
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref10
  doi: 10.1109/MITS.2017.2746407
– volume: 10
  start-page: 512
  year: 2009
  ident: ref6
  article-title: PPCA-based missing data imputation for traffic flow volume: A systematical approach
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2009.2026312
– ident: ref13
  doi: 10.1109/ITSC.2006.1706789
– ident: ref2
  doi: 10.1109/TITS.2011.2158001
– ident: ref29
  doi: 10.18653/v1/D17-1230
– ident: ref14
  doi: 10.1016/j.eswa.2008.07.069
– ident: ref28
  doi: 10.1109/CVPR.2017.19
– volume: 30
  start-page: 673
  year: 2017
  ident: ref8
  article-title: Parallel data: From big data to data intelligence
  publication-title: Pattern Recognit Artif Intell
– ident: ref7
  doi: 10.1016/j.trc.2016.09.015
– ident: ref20
  doi: 10.1016/j.trc.2018.01.015
– ident: ref4
  doi: 10.1016/j.trc.2015.03.014
– year: 2014
  ident: ref25
  publication-title: Conditional generative adversarial nets
– ident: ref11
  doi: 10.1109/CVPR.2017.241
– ident: ref17
  doi: 10.3141/2336-06
– ident: ref9
  doi: 10.1109/JAS.2017.7510583
– year: 2017
  ident: ref24
  publication-title: Loss-sensitive generative adversarial networks on lipschitz densities
– ident: ref16
  doi: 10.1093/bioinformatics/17.6.520
– ident: ref27
  doi: 10.1109/CVPR.2017.632
– ident: ref18
  doi: 10.3141/1879-09
– year: 2017
  ident: ref21
  publication-title: Towards Principled Methods for Training Generative Adversarial Networks
SSID ssj0014511
Score 2.5860484
Snippet Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1624
SubjectTerms Algorithms
Biological system modeling
data augmentation
Data mining
Data models
deep learning
Gallium nitride
Generative adversarial networks
Generators
Intelligent transportation systems
Loss measurement
Model accuracy
Parallel data
Performance enhancement
Standardization
Time dependence
Traffic flow
traffic flow imputation
Traffic information
Traffic models
Training
Transportation networks
Title Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/8699108
https://www.proquest.com/docview/2384320226
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJz34NcXplBw8ia1tknbNUdSxCU7BDXYraT4ujk62DsFfb970g6EiXkoPTQl53ybv0zx5HoQuLegJRWRCj2vJPEYD6QmLGrw-pTpT2qZN5li-43g4ZY-zaNZC181ZGK21I59pH27dXr5ayDX8KrtJYlvNwMnerX4Sl2e1mh0D0Nly2qiEeTyI6h3MMOA3k9HkFUhc3Ce2OQEriY01yJmq_JiJ3fIy2ENPdcdKVsmbvy4yX35-02z8b8_30W5VZ-LbMjEOUEvnh2hnQ32wg57tOgUCEngwX3zgEbg7uDBhRyPAL2IJPitzfC8KgUWucClRDfMjdj7OKwHZi8clk3x1hKaDh8nd0Kv8FTxJI17YK2MW_1FKVJgoO3UlTDNtAQcjWWIRtwyzmGY0VEQDjCQCxPiUDiNjQpkoQ49RO1_k-gRhRYgUMQsEvDPjhovAGGkM5czWHzzooqAe8VRW4uPggTFPHQgJeApBSiFIaRWkLrpqmryXyht_PdyBQW8erMa7i3p1WNPq21yltkhh4BpP4tPfW52hbQKo2vFzeqhdLNf63JYeRXbhcu4L8wTTug
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBV0GUpwcmREpiOyEeEVC1PAoSrdQtcvxYqFrUpkLi1-Nz0qoChFiiDLZl-S72fbnz9wGcOdATydhGgTCKB5yFKpAONQRXjJlcG-c2ua_y7SStHr_vx_0luJjfhTHG-OIz08BXn8vXIzXFX2WXaeKiGbzZuxJzzuPyttY8Z4BMW54dlfJAhPEshxmF4rLb7r5iGZdoUDcARTGJhVPIy6r82Iv9AdPchKfZ1Mq6krfGtMgb6vMba-N_574FG1WkSa5L19iGJTPcgfUF_sEaPLuTCikkSHMw-iBt1HfwhiK-kIC8yDEqrQzIrSwkkUNNSpJq3CGJV3KeSPRf0ilrySe70GvedW9aQaWwECgWi8I9OXcIkDGqo1S7zSvlhhsHOTjNU4e5VZQnLGeRpgaBJJVIx6dNFFsbqVRbtgfLw9HQ7APRlCqZ8FDimLmwQobWKmuZ4C4CEWEdwtmKZ6qiH0cVjEHmYUgoMjRShkbKKiPV4Xze5b3k3vircQ0Xfd6wWu86HM3MmlVf5yRzYQpH3XiaHPze6xRWW92nx-yx3Xk4hDWKGNtX6xzBcjGemmMXiBT5ife_LzTB1wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Flow+Imputation+Using+Parallel+Data+and+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Chen%2C+Yuanyuan&rft.au=Lv%2C+Yisheng&rft.au=Wang%2C+Fei-Yue&rft.date=2020-04-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=21&rft.issue=4&rft.spage=1624&rft.epage=1630&rft_id=info:doi/10.1109%2FTITS.2019.2910295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2019_2910295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon