ADI spectral collocation methods for parabolic problems
We discuss the Crank–Nicolson and Laplace modified alternating direction implicit Legendre and Chebyshev spectral collocation methods for a linear, variable coefficient, parabolic initial-boundary value problem on a rectangular domain with the solution subject to non-zero Dirichlet boundary conditio...
Saved in:
| Published in | Journal of computational physics Vol. 229; no. 13; pp. 5182 - 5193 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Inc
01.07.2010
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2010.03.033 |
Cover
| Summary: | We discuss the Crank–Nicolson and Laplace modified alternating direction implicit Legendre and Chebyshev spectral collocation methods for a linear, variable coefficient, parabolic initial-boundary value problem on a rectangular domain with the solution subject to non-zero Dirichlet boundary conditions. The discretization of the problems by the above methods yields matrices which possess banded structures. This along with the use of fast Fourier transforms makes the cost of one step of each of the Chebyshev spectral collocation methods proportional, except for a logarithmic term, to the number of the unknowns. We present the convergence analysis for the Legendre spectral collocation methods in the special case of the heat equation. Using numerical tests, we demonstrate the second order accuracy in time of the Chebyshev spectral collocation methods for general linear variable coefficient parabolic problems. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2010.03.033 |