Stochastically Perturbed Parameterizations for the Process-Level Representation of Model Uncertainties in the CMA Global Ensemble Prediction System
To represent model uncertainties at the physical process level in the China Meteorological Administration global ensemble prediction system (CMA-GEPS), a stochastically perturbed parameterization (SPP) scheme is developed by perturbing 16 parameters or variables selected from three physical paramete...
Saved in:
| Published in | Journal of Meteorological Research Vol. 36; no. 5; pp. 733 - 749 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2022
National Meteorological Centre,China Meteorological Administration,Beijing 100081 CMA Earth System Modeling and Prediction Centre,China Meteorological Administration(CMA),Beijing 100081 State Key Laboratory of Severe Weather,China Meteorological Administration,Beijing 100081 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2095-6037 2198-0934 |
| DOI | 10.1007/s13351-022-2011-8 |
Cover
| Abstract | To represent model uncertainties at the physical process level in the China Meteorological Administration global ensemble prediction system (CMA-GEPS), a stochastically perturbed parameterization (SPP) scheme is developed by perturbing 16 parameters or variables selected from three physical parameterization schemes for the planetary boundary layer, cumulus convection, and cloud microphysics. Each chosen quantity is perturbed independently with temporally and spatially correlated perturbations sampled from log-normal distributions. Impacts of the SPP scheme on CMA-GEPS are investigated comprehensively by using the stochastically perturbed parametrization tendencies (SPPT) scheme as a benchmark. In the absence of initial-condition perturbations, perturbation structures introduced by the two schemes are investigated by analyzing the ensemble spread of three forecast variables’ physical tendencies and perturbation energy in ensembles generated by the separate use of SPP and SPPT. It is revealed that both schemes yield different perturbation structures and can simulate different sources of model uncertainty. When initial-condition perturbations are activated, the influences of the two schemes on the performance of CMA-GEPS are assessed by calculating verification scores for both upper-air and surface variables. The improvements in ensemble reliability and probabilistic skill introduced by SPP and SPPT are mainly located in the tropics. Besides, the vast majority of the reliability improvements (including increases in ensemble spread and reductions in outliers) are statistically significant, and a smaller proportion of the improvements in probabilistic skill (i.e., decreases in continuously ranked probability score) reach statistical significance. Compared with SPPT, SPP generally has more beneficial impacts on 200-hPa and 2-m temperature, along with 925-hPa and 2-m specific humidity, during the whole 15-day forecast range. For other examined variables, such as 850-hPa zonal wind, 850-hPa temperature, and 700-hPa humidity, SPP tends to yield more reliable ensembles at lead times beyond day 7, and to display comparable probabilistic skills with SPPT. Both SPP and SPPT have small impacts in the extratropics, primarily due to the dominant role of the singular vectors-based initial perturbations. |
|---|---|
| AbstractList | To represent model uncertainties at the physical process level in the China Meteorological Administration global ensemble prediction system (CMA-GEPS), a stochastically perturbed parameterization (SPP) scheme is developed by perturbing 16 parameters or variables selected from three physical parameterization schemes for the planetary bound- ary layer, cumulus convection, and cloud microphysics. Each chosen quantity is perturbed independently with tem- porally and spatially correlated perturbations sampled from log-normal distributions. Impacts of the SPP scheme on CMA-GEPS are investigated comprehensively by using the stochastically perturbed parametrization tendencies (SPPT) scheme as a benchmark. In the absence of initial-condition perturbations, perturbation structures introduced by the two schemes are investigated by analyzing the ensemble spread of three forecast variables' physical tenden- cies and perturbation energy in ensembles generated by the separate use of SPP and SPPT. It is revealed that both schemes yield different perturbation structures and can simulate different sources of model uncertainty. When initial- condition perturbations are activated, the influences of the two schemes on the performance of CMA-GEPS are as- sessed by calculating verification scores for both upper-air and surface variables. The improvements in ensemble reli- ability and probabilistic skill introduced by SPP and SPPT are mainly located in the tropics. Besides, the vast major- ity of the reliability improvements (including increases in ensemble spread and reductions in outliers) are statistically significant, and a smaller proportion of the improvements in probabilistic skill (i.e., decreases in continuously ranked probability score) reach statistical significance. Compared with SPPT, SPP generally has more beneficial impacts on 200-hPa and 2-m temperature, along with 925-hPa and 2-m specific humidity, during the whole 15-day forecast range. For other examined variables, such as 850-hPa zonal wind, 850-hPa temperature, and 700-hPa humidity, SPP tends to yield more reliable ensembles at lead times beyond day 7, and to display comparable probabilistic skills with SPPT. Both SPP and SPPT have small impacts in the extratropics, primarily due to the dominant role of the singular vectors-based initial perturbations. To represent model uncertainties at the physical process level in the China Meteorological Administration global ensemble prediction system (CMA-GEPS), a stochastically perturbed parameterization (SPP) scheme is developed by perturbing 16 parameters or variables selected from three physical parameterization schemes for the planetary boundary layer, cumulus convection, and cloud microphysics. Each chosen quantity is perturbed independently with temporally and spatially correlated perturbations sampled from log-normal distributions. Impacts of the SPP scheme on CMA-GEPS are investigated comprehensively by using the stochastically perturbed parametrization tendencies (SPPT) scheme as a benchmark. In the absence of initial-condition perturbations, perturbation structures introduced by the two schemes are investigated by analyzing the ensemble spread of three forecast variables’ physical tendencies and perturbation energy in ensembles generated by the separate use of SPP and SPPT. It is revealed that both schemes yield different perturbation structures and can simulate different sources of model uncertainty. When initial-condition perturbations are activated, the influences of the two schemes on the performance of CMA-GEPS are assessed by calculating verification scores for both upper-air and surface variables. The improvements in ensemble reliability and probabilistic skill introduced by SPP and SPPT are mainly located in the tropics. Besides, the vast majority of the reliability improvements (including increases in ensemble spread and reductions in outliers) are statistically significant, and a smaller proportion of the improvements in probabilistic skill (i.e., decreases in continuously ranked probability score) reach statistical significance. Compared with SPPT, SPP generally has more beneficial impacts on 200-hPa and 2-m temperature, along with 925-hPa and 2-m specific humidity, during the whole 15-day forecast range. For other examined variables, such as 850-hPa zonal wind, 850-hPa temperature, and 700-hPa humidity, SPP tends to yield more reliable ensembles at lead times beyond day 7, and to display comparable probabilistic skills with SPPT. Both SPP and SPPT have small impacts in the extratropics, primarily due to the dominant role of the singular vectors-based initial perturbations. |
| Author | Peng, Fei Li, Xiaoli Chen, Jing |
| AuthorAffiliation | CMA Earth System Modeling and Prediction Centre,China Meteorological Administration(CMA),Beijing 100081;State Key Laboratory of Severe Weather,China Meteorological Administration,Beijing 100081;National Meteorological Centre,China Meteorological Administration,Beijing 100081 |
| AuthorAffiliation_xml | – name: CMA Earth System Modeling and Prediction Centre,China Meteorological Administration(CMA),Beijing 100081;State Key Laboratory of Severe Weather,China Meteorological Administration,Beijing 100081;National Meteorological Centre,China Meteorological Administration,Beijing 100081 |
| Author_xml | – sequence: 1 givenname: Fei surname: Peng fullname: Peng, Fei organization: CMA Earth System Modeling and Prediction Centre, China Meteorological Administration (CMA), State Key Laboratory of Severe Weather, China Meteorological Administration, National Meteorological Centre, China Meteorological Administration – sequence: 2 givenname: Xiaoli surname: Li fullname: Li, Xiaoli email: lixl@cma.gov.cn organization: CMA Earth System Modeling and Prediction Centre, China Meteorological Administration (CMA), State Key Laboratory of Severe Weather, China Meteorological Administration, National Meteorological Centre, China Meteorological Administration – sequence: 3 givenname: Jing surname: Chen fullname: Chen, Jing organization: CMA Earth System Modeling and Prediction Centre, China Meteorological Administration (CMA), State Key Laboratory of Severe Weather, China Meteorological Administration, National Meteorological Centre, China Meteorological Administration |
| BookMark | eNp9kc9qGzEQxkVIIW6aB8hNt57UjLS71u4xmDQNONTkz1nMyrO2wlpyJaWN8xp54a69hUKhOc0wfL9vhvk-smMfPDF2LuGLBNAXSRZFJQUoJRRIKeojNlGyqQU0RXk89NBUYgqFPmFnKT0BgGpUpZWasLf7HOwaU3YW-37HFxTzc2xpyRcYcUOZonvF7IJPvAuR5zXxRQyWUhJz-kk9v6NtpEQ-H1Q8dPw2LIf5o7eDFzqfHSXu_AGd3V7y6z602PMrn2jT9ns7Wjp7gO93KdPmE_vQYZ_o7E89ZY9frx5m38T8-_XN7HIubFE1WWA7VcsGLXQ1UakIEW1Td7rFFmShtSXSVJOVZanJVkVdTkskSY3VCNBVxSn7PPr-Qt-hX5mn8Bz9sNH8eHlpDanhoVAB7JVyVNoYUorUmW10G4w7I8HsIzBjBGYgzD4CUw-M_oexbvxRjuj6d0k1kmnY4lcU_x72f-g3Pe-gcg |
| CitedBy_id | crossref_primary_10_1016_j_atmosres_2023_107036 crossref_primary_10_1016_j_atmosres_2024_107596 crossref_primary_10_1007_s00376_023_3035_4 crossref_primary_10_1016_j_marpolbul_2025_117717 |
| Cites_doi | 10.1111/j.1600-0870.2010.00497.x 10.1175/2010MWR3430.1 10.1175/MWR-D-16-0160.1 10.1029/2002JD003322 10.1002/qj.49711448106 10.1175/MWR-D-18-0052.1 10.1002/qj.4242 10.1256/qj.04.03 10.11898/1001-7313.20170105 10.1002/qj.2931 10.1175/MWR2905.1 10.1007/s13351-015-5043-5 10.1175/WAF-D-17-0023.1 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1002/qj.3978 10.11676/qxxb2020.074 10.1175/BAMS-D-15-00268.1 10.1175/MWR-D-12-00031.1 10.1002/qj.2876 10.1175/MWR-D-14-00100.1 10.1175/2007MWR2109.1 10.3969/j.issn.2095-1973.2020.02.003 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 10.1007/s00376-020-9171-1 10.11676/qxxb2020.006 10.1002/qj.3787 10.1002/qj.3570 10.11676/qxxb2019.020 10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2 10.13878/j.cnki.dqkxxb.20190318001 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 10.1002/qj.234 10.7519/j.issn.1000-0526.2016.10.001 10.1002/qj.3094 10.1002/qj.3717 10.1002/qj.49712556006 10.1002/qj.3738 10.1002/qj.2640 10.1175/MWR-D-18-0092.1 10.11676/qxxb2019.009 10.3969/j.issn.1000-0526.2007.07.004 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 10.1175/MWR-D-18-0182.1 10.1175/MWR-D-15-0092.1 10.1007/s13351-020-9847-6 10.1175/MWR-D-18-0415.1 10.1175/MWR-D-12-00354.1 10.1175/2008JAS2677.1 10.1002/2017MS001234 10.1256/qj.04.106 |
| ContentType | Journal Article |
| Copyright | The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2022 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2022 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s13351-022-2011-8 |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2198-0934 |
| EndPage | 749 |
| ExternalDocumentID | qxxb_e202205005 10_1007_s13351_022_2011_8 |
| GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 2KG 2KM 4.4 406 5VR 5XA 5XB 92M 96X 9D9 9DA AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD BGNMA CAJEA CCEZO CCVFK CHBEP DDRTE DNIVK DPUIP EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 IAO IEP IGS IKXTQ ITC IWAJR J-C JUIAU JZLTJ KOV L8X LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 Q-- Q-0 R-A RLLFE ROL RSV RT1 SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T8Q TSG U1F U1G U5A U5K UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ~LG AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c359t-ab62d9ac0f8ee42eaaac98f7bab01377cee7e8ec1447ec538464ae1e9c7a00f53 |
| IEDL.DBID | AGYKE |
| ISSN | 2095-6037 |
| IngestDate | Thu May 29 04:06:29 EDT 2025 Wed Oct 01 01:45:14 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 21 02:44:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | model uncertainty stochastic physics global ensemble forecast perturbation structure parameter perturbation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-ab62d9ac0f8ee42eaaac98f7bab01377cee7e8ec1447ec538464ae1e9c7a00f53 |
| PageCount | 17 |
| ParticipantIDs | wanfang_journals_qxxb_e202205005 crossref_primary_10_1007_s13351_022_2011_8 crossref_citationtrail_10_1007_s13351_022_2011_8 springer_journals_10_1007_s13351_022_2011_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Journal of Meteorological Research |
| PublicationTitleAbbrev | J Meteorol Res |
| PublicationTitle_FL | Journal of Meteorological Research(JMR) |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg National Meteorological Centre,China Meteorological Administration,Beijing 100081 CMA Earth System Modeling and Prediction Centre,China Meteorological Administration(CMA),Beijing 100081 State Key Laboratory of Severe Weather,China Meteorological Administration,Beijing 100081 |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: CMA Earth System Modeling and Prediction Centre,China Meteorological Administration(CMA),Beijing 100081 – name: State Key Laboratory of Severe Weather,China Meteorological Administration,Beijing 100081 – name: National Meteorological Centre,China Meteorological Administration,Beijing 100081 |
| References | Chen, Ma, Li (CR11) 2020; 146 Pincus, Barker, Morcrette (CR37) 2003; 108 McCabe, Swinbank, Tennant (CR31) 2016; 142 Sanchez, Williams, Collins (CR39) 2016; 142 Duda, Wang, Kong (CR14) 2016; 144 Peng, Li, Chen (CR35) 2019; 77 Chen, Liu, Zhang (CR12) 2007; 33 Hong, Pan (CR19) 1996; 124 Romine, Schwartz, Berner (CR38) 2014; 142 Jankov, Beck, Wolff (CR22) 2019; 147 Liu, Chen, Sun (CR28) 2015; 29 Palmer, Buizza, Doblas-Reyes (CR33) 2009 Huo, Liu, Chen (CR20) 2020; 78 Wastl, Wang, Atencia (CR46) 2019; 147 Wang, Qiao, Min (CR44) 2019; 147 Berner, Shutts, Leutbecher (CR2) 2009; 66 Tennant, Shutts, Arribas (CR42) 2011; 139 Pan, Wu (CR34) 1995 Zhang, Snyder, Rotunno (CR51) 2003; 60 Brier (CR6) 1950; 78 Zheng, Chang, Colle (CR52) 2019; 147 Buizza, Milleer, Palmer (CR7) 1999; 125 Wang, Bellus, Geleyn (CR45) 2014; 142 Ollinaho, Lock, Leutbecher (CR32) 2017; 143 Zhou, Zhu, Hou (CR53) 2017; 32 Bouttier, Vié, Nuissier (CR4) 2012; 140 Hersbach (CR18) 2000; 15 Li, Chen, Liu (CR27) 2019; 42 Arakawa, Schubert (CR1) 1974; 31 Wilks (CR47) 2005; 131 Xu, Chen, Jin (CR48) 2020; 37 Ma, Liu, Zhao (CR30) 2018; 10 Lock, Lang, Leutbecher (CR29) 2019; 145 Christensen (CR13) 2020; 146 Chen, Li (CR9) 2020; 10 Leutbecher, Lock, Ollinaho (CR24) 2017; 143 Peng, Li, Chen (CR36) 2020; 78 Feng, Toth, Peña (CR15) 2020; 146 Hacker, Ha, Snyder (CR17) 2011; 63 Chen, Ma, Su (CR10) 2017; 28 Berner, Achatz, Batté (CR3) 2017; 98 Li, Charron, Spacek (CR26) 2008; 136 Tiedtke, Heckley, Slingo (CR43) 1988; 114 Fleury, Bouttier, Couvreux (CR16) 2022; 148 Jankov, Berner, Beck (CR21) 2017; 145 Shen, Wang, Li (CR40) 2020; 34 Shutts (CR41) 2005; 131 Li, Liu (CR25) 2019; 77 Bowler, Arribas, Mylne (CR5) 2008; 134 Yuan, Li, Chen (CR50) 2016; 42 Xue, Chen (CR49) 2008 Buizza, Houtekamer, Pellerin (CR8) 2005; 133 Lang, Lock, Leutbecher (CR23) 2021; 147 I Jankov (2011_CR22) 2019; 147 F Bouttier (2011_CR4) 2012; 140 G W Brier (2011_CR6) 1950; 78 X M Chen (2011_CR12) 2007; 33 J Chen (2011_CR11) 2020; 146 C Sanchez (2011_CR39) 2016; 142 A McCabe (2011_CR31) 2016; 142 J Berner (2011_CR2) 2009; 66 F Peng (2011_CR35) 2019; 77 Y Yuan (2011_CR50) 2016; 42 F Zhang (2011_CR51) 2003; 60 X S Shen (2011_CR40) 2020; 34 S Z Wang (2011_CR44) 2019; 147 G S Romine (2011_CR38) 2014; 142 I Jankov (2011_CR21) 2017; 145 J Chen (2011_CR9) 2020; 10 Y Wang (2011_CR45) 2014; 142 Z H Huo (2011_CR20) 2020; 78 P Ollinaho (2011_CR32) 2017; 143 X Q Zhou (2011_CR53) 2017; 32 D S Wilks (2011_CR47) 2005; 131 S T K Lang (2011_CR23) 2021; 147 M H Zheng (2011_CR52) 2019; 147 J D Duda (2011_CR14) 2016; 144 J P Hacker (2011_CR17) 2011; 63 Z Z Xu (2011_CR48) 2020; 37 Z S Ma (2011_CR30) 2018; 10 M Tiedtke (2011_CR43) 1988; 114 H M Christensen (2011_CR13) 2020; 146 S Y Hong (2011_CR19) 1996; 124 S J Lock (2011_CR29) 2019; 145 X L Li (2011_CR25) 2019; 77 X L Li (2011_CR27) 2019; 42 R Pincus (2011_CR37) 2003; 108 N E Bowler (2011_CR5) 2008; 134 J Chen (2011_CR10) 2017; 28 F Peng (2011_CR36) 2020; 78 A Fleury (2011_CR16) 2022; 148 R Buizza (2011_CR7) 1999; 125 M Leutbecher (2011_CR24) 2017; 143 J Berner (2011_CR3) 2017; 98 R Buizza (2011_CR8) 2005; 133 J S Xue (2011_CR49) 2008 H Hersbach (2011_CR18) 2000; 15 K Liu (2011_CR28) 2015; 29 J Feng (2011_CR15) 2020; 146 X L Li (2011_CR26) 2008; 136 H L Pan (2011_CR34) 1995 T N Palmer (2011_CR33) 2009 W J Tennant (2011_CR42) 2011; 139 C Wastl (2011_CR46) 2019; 147 A Arakawa (2011_CR1) 1974; 31 G Shutts (2011_CR41) 2005; 131 |
| References_xml | – volume: 143 start-page: 408 year: 2017 end-page: 422 ident: CR32 article-title: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble publication-title: Quart. J. Roy. Meteor. Soc. – volume: 146 start-page: 938 year: 2020 end-page: 962 ident: CR13 article-title: Constraining stochastic parametrisation schemes using high-resolution simulations publication-title: Quart. J. Roy. Meteor. Soc. – volume: 37 start-page: 328 year: 2020 end-page: 346 ident: CR48 article-title: Representing model uncertainty by multi-stochastic physics approaches in the GRAPES ensemble publication-title: Adv. Atmos. Sci. – volume: 142 start-page: 4519 year: 2014 end-page: 4541 ident: CR38 article-title: Representing forecast error in a convection-permitting ensemble system publication-title: Mon. Wea. Rev. – volume: 147 start-page: 199 year: 2019 end-page: 220 ident: CR44 article-title: The impact of stochastically perturbed parameterizations on tornadic super-cell cases in East China publication-title: Mon. Wea. Rev. – volume: 42 start-page: 348 year: 2019 end-page: 359 ident: CR27 article-title: Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting publication-title: Trans. Atmos. Sci. – volume: 140 start-page: 3706 year: 2012 end-page: 3721 ident: CR4 article-title: Impact of stochastic physics in a convection-permitting ensemble publication-title: Mon. Wea. Rev. – volume: 28 start-page: 52 year: 2017 end-page: 61 ident: CR10 article-title: Boundary layer coupling to Charney-Phillips vertical grid in GRAPES model publication-title: J. Appl. Meteor. Sci. – volume: 147 start-page: 2217 year: 2019 end-page: 2230 ident: CR46 article-title: A hybrid stochastically perturbed parametrization scheme in a convection-permitting ensemble publication-title: Mon. Wea. Rev. – volume: 147 start-page: 153 year: 2019 end-page: 173 ident: CR22 article-title: Stochastically perturbed parameterizations in an HRRR-based ensemble publication-title: Mon. Wea. Rev. – volume: 78 start-page: 972 year: 2020 end-page: 987 ident: CR36 article-title: Impacts of different stochastic physics perturbation schemes on the GRAPES global ensemble prediction system publication-title: Acta Meteor. Sinica – volume: 146 start-page: 1302 year: 2020 end-page: 1321 ident: CR15 article-title: Partition of analysis and forecast error variance into growing and decaying components publication-title: Quart. J. Roy. Meteor. Soc. – volume: 147 start-page: 1967 year: 2019 end-page: 1987 ident: CR52 article-title: Evaluating U.S. east coast winter storms in a multimodel ensemble using EOF and clustering approaches publication-title: Mon. Wea. Rev. – volume: 114 start-page: 639 year: 1988 end-page: 664 ident: CR43 article-title: Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses publication-title: Quart. J. Roy. Meteor. Soc. – volume: 10 start-page: 9 year: 2020 end-page: 18 ident: CR9 article-title: The review of 10 years development of the GRAPES global/regional ensemble prediction publication-title: Adv. Meteor. Sci. Technol. – year: 1995 ident: CR34 publication-title: Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model – volume: 148 start-page: 981 year: 2022 end-page: 1000 ident: CR16 article-title: Process-oriented stochastic perturbations applied to the parametrization of turbulence and shallow convection for ensemble prediction publication-title: Quart. J. Roy. Meteor. Soc. – volume: 143 start-page: 2315 year: 2017 end-page: 2339 ident: CR24 article-title: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision publication-title: Quart. J. Roy. Meteor. Soc. – volume: 77 start-page: 552 year: 2019 end-page: 562 ident: CR25 article-title: The improvement of GRAPES global extratropical singular vectors and experimental study publication-title: Acta Meteor. Sinica – volume: 33 start-page: 33 year: 2007 end-page: 43 ident: CR12 article-title: A numerical simulation study on microphysical structure and cloud seeding in cloud system of QiLian Mountain region publication-title: Meteor. Mon. – volume: 125 start-page: 2887 year: 1999 end-page: 2908 ident: CR7 article-title: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system publication-title: Quart. J. Roy. Meteor. Soc. – volume: 146 start-page: 2191 year: 2020 end-page: 2204 ident: CR11 article-title: Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system publication-title: Quart. J. Roy. Meteor. Soc. – volume: 78 start-page: 48 year: 2020 end-page: 59 ident: CR20 article-title: The preliminary appliation of tropical cyclone targeted singular vectors in the GRAPES global ensemble forecasts publication-title: Acta Meteor. Sinica – volume: 147 start-page: 1364 year: 2021 end-page: 1381 ident: CR23 article-title: Revision of the stochastically perturbed parametrisations model uncertainty scheme in the integrated forecasting system publication-title: Quart. J. Roy. Meteor. Soc. – volume: 145 start-page: 75 year: 2019 end-page: 89 ident: CR29 article-title: Treatment of model uncertainty from radiation by the stochastically perturbed parametrization tendencies (SPPT) scheme and associated revisions in the ECMWF ensembles publication-title: Quart. J. Roy. Meteor. Soc. – volume: 77 start-page: 180 year: 2019 end-page: 195 ident: CR35 article-title: A stochastic kinetic energy backscatter scheme for model perturbations in the GRAPES global ensemble prediction system publication-title: Acta Meteor. Sinica – volume: 42 start-page: 1161 year: 2016 end-page: 1175 ident: CR50 article-title: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system publication-title: Meteor. Mon. – volume: 66 start-page: 603 year: 2009 end-page: 626 ident: CR2 article-title: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system publication-title: J. Atmos. Sci. – volume: 78 start-page: 1 year: 1950 end-page: 3 ident: CR6 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon. Wea. Rev. – volume: 131 start-page: 389 year: 2005 end-page: 407 ident: CR47 article-title: Effects of stochastic parametrizations in the Lorenz’ 96 system publication-title: Quart. J. Roy. Meteor. Soc. – volume: 142 start-page: 2897 year: 2016 end-page: 2910 ident: CR31 article-title: Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting publication-title: Quart. J. Roy. Meteor. Soc. – volume: 124 start-page: 2322 year: 1996 end-page: 2339 ident: CR19 article-title: Nonlocal boundary layer vertical diffusion in a medium-range forecast model publication-title: Mon. Wea. Rev. – volume: 108 start-page: 4376 year: 2003 ident: CR37 article-title: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields publication-title: J. Geophys. Res. Atmos. – volume: 32 start-page: 1989 year: 2017 end-page: 2004 ident: CR53 article-title: Performance of the new NCEP global ensemble forecast system in a parallel experiment publication-title: Wea. Forecasting – volume: 63 start-page: 625 year: 2011 end-page: 641 ident: CR17 article-title: The U.S. air force weather agency’s mesoscale ensemble: Scientific description and performance results publication-title: Tellus A – volume: 145 start-page: 1161 year: 2017 end-page: 1179 ident: CR21 article-title: A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble publication-title: Mon. Wea. Rev. – volume: 142 start-page: 2043 year: 2014 end-page: 2059 ident: CR45 article-title: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending publication-title: Mon. Wea. Rev. – volume: 133 start-page: 1076 year: 2005 end-page: 1097 ident: CR8 article-title: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems publication-title: Mon. Wea. Rev. – volume: 29 start-page: 806 year: 2015 end-page: 822 ident: CR28 article-title: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model publication-title: J. Meteor. Res. – volume: 15 start-page: 559 year: 2000 end-page: 570 ident: CR18 article-title: Decomposition of the continuous ranked probability score for ensemble prediction systems publication-title: Wea. Forecasting – volume: 142 start-page: 147 year: 2016 end-page: 159 ident: CR39 article-title: Improved stochastic physics schemes for global weather and climate models publication-title: Quart. J. Roy. Meteor. Soc. – volume: 34 start-page: 675 year: 2020 end-page: 698 ident: CR40 article-title: Research and operational development of numerical weather prediction in China publication-title: J. Meteor. Res. – volume: 139 start-page: 1190 year: 2011 end-page: 1206 ident: CR42 article-title: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill publication-title: Mon. Wea. Rev. – volume: 144 start-page: 1887 year: 2016 end-page: 1908 ident: CR14 article-title: Impact of a stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts publication-title: Mon. Wea. Rev. – volume: 31 start-page: 674 year: 1974 end-page: 701 ident: CR1 article-title: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I publication-title: J. Atmos. Sci. – volume: 136 start-page: 443 year: 2008 end-page: 462 ident: CR26 article-title: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations publication-title: Mon. Wea. Rev. – volume: 134 start-page: 703 year: 2008 end-page: 722 ident: CR5 article-title: The MOGREPS short-range ensemble prediction system publication-title: Quart. J. Roy. Meteor. Soc. – volume: 98 start-page: 565 year: 2017 end-page: 588 ident: CR3 article-title: Stochastic parameterization: Toward a new view of weather and climate models publication-title: Bull. Amer. Meteor. Soc. – year: 2009 ident: CR33 publication-title: Stochastic Parametrization and Model Uncertainty – volume: 60 start-page: 1173 year: 2003 end-page: 1185 ident: CR51 article-title: Effects of moist convection on mesoscale predictability publication-title: J. Atmos. Sci. – year: 2008 ident: CR49 publication-title: Scientific Design and Application of GRAPES Numerical Prediction System. – volume: 10 start-page: 652 year: 2018 end-page: 667 ident: CR30 article-title: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system publication-title: J. Adv. Model. Earth Syst. – volume: 131 start-page: 3079 year: 2005 end-page: 3102 ident: CR41 article-title: A kinetic energy backscatter algorithm for use in ensemble prediction systems publication-title: Quart. J. Roy. Meteor. Soc. – volume: 63 start-page: 625 year: 2011 ident: 2011_CR17 publication-title: Tellus A doi: 10.1111/j.1600-0870.2010.00497.x – volume: 139 start-page: 1190 year: 2011 ident: 2011_CR42 publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3430.1 – volume: 145 start-page: 1161 year: 2017 ident: 2011_CR21 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-16-0160.1 – volume: 108 start-page: 4376 year: 2003 ident: 2011_CR37 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD003322 – volume: 114 start-page: 639 year: 1988 ident: 2011_CR43 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49711448106 – volume: 147 start-page: 1967 year: 2019 ident: 2011_CR52 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-18-0052.1 – volume: 148 start-page: 981 year: 2022 ident: 2011_CR16 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.4242 – volume: 131 start-page: 389 year: 2005 ident: 2011_CR47 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.04.03 – volume: 28 start-page: 52 year: 2017 ident: 2011_CR10 publication-title: J. Appl. Meteor. Sci. doi: 10.11898/1001-7313.20170105 – volume: 143 start-page: 408 year: 2017 ident: 2011_CR32 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2931 – volume: 133 start-page: 1076 year: 2005 ident: 2011_CR8 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR2905.1 – volume: 29 start-page: 806 year: 2015 ident: 2011_CR28 publication-title: J. Meteor. Res. doi: 10.1007/s13351-015-5043-5 – volume: 32 start-page: 1989 year: 2017 ident: 2011_CR53 publication-title: Wea. Forecasting doi: 10.1175/WAF-D-17-0023.1 – volume: 78 start-page: 1 year: 1950 ident: 2011_CR6 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 147 start-page: 1364 year: 2021 ident: 2011_CR23 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3978 – volume: 78 start-page: 972 year: 2020 ident: 2011_CR36 publication-title: Acta Meteor. Sinica doi: 10.11676/qxxb2020.074 – volume: 98 start-page: 565 year: 2017 ident: 2011_CR3 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-15-00268.1 – volume: 140 start-page: 3706 year: 2012 ident: 2011_CR4 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-12-00031.1 – volume-title: Stochastic Parametrization and Model Uncertainty year: 2009 ident: 2011_CR33 – volume: 142 start-page: 2897 year: 2016 ident: 2011_CR31 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2876 – volume: 142 start-page: 4519 year: 2014 ident: 2011_CR38 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-14-00100.1 – volume-title: Scientific Design and Application of GRAPES Numerical Prediction System. year: 2008 ident: 2011_CR49 – volume: 136 start-page: 443 year: 2008 ident: 2011_CR26 publication-title: Mon. Wea. Rev. doi: 10.1175/2007MWR2109.1 – volume: 10 start-page: 9 year: 2020 ident: 2011_CR9 publication-title: Adv. Meteor. Sci. Technol. doi: 10.3969/j.issn.2095-1973.2020.02.003 – volume: 15 start-page: 559 year: 2000 ident: 2011_CR18 publication-title: Wea. Forecasting doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 – volume: 37 start-page: 328 year: 2020 ident: 2011_CR48 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-020-9171-1 – volume: 78 start-page: 48 year: 2020 ident: 2011_CR20 publication-title: Acta Meteor. Sinica doi: 10.11676/qxxb2020.006 – volume: 146 start-page: 2191 year: 2020 ident: 2011_CR11 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3787 – volume: 145 start-page: 75 year: 2019 ident: 2011_CR29 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3570 – volume: 77 start-page: 552 year: 2019 ident: 2011_CR25 publication-title: Acta Meteor. Sinica doi: 10.11676/qxxb2019.020 – volume: 60 start-page: 1173 year: 2003 ident: 2011_CR51 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2 – volume: 42 start-page: 348 year: 2019 ident: 2011_CR27 publication-title: Trans. Atmos. Sci. doi: 10.13878/j.cnki.dqkxxb.20190318001 – volume: 31 start-page: 674 year: 1974 ident: 2011_CR1 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 – volume: 134 start-page: 703 year: 2008 ident: 2011_CR5 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.234 – volume: 42 start-page: 1161 year: 2016 ident: 2011_CR50 publication-title: Meteor. Mon. doi: 10.7519/j.issn.1000-0526.2016.10.001 – volume: 143 start-page: 2315 year: 2017 ident: 2011_CR24 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3094 – volume: 146 start-page: 938 year: 2020 ident: 2011_CR13 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3717 – volume: 125 start-page: 2887 year: 1999 ident: 2011_CR7 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712556006 – volume: 146 start-page: 1302 year: 2020 ident: 2011_CR15 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3738 – volume: 142 start-page: 147 year: 2016 ident: 2011_CR39 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2640 – volume: 147 start-page: 153 year: 2019 ident: 2011_CR22 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-18-0092.1 – volume: 77 start-page: 180 year: 2019 ident: 2011_CR35 publication-title: Acta Meteor. Sinica doi: 10.11676/qxxb2019.009 – volume: 33 start-page: 33 year: 2007 ident: 2011_CR12 publication-title: Meteor. Mon. doi: 10.3969/j.issn.1000-0526.2007.07.004 – volume: 124 start-page: 2322 year: 1996 ident: 2011_CR19 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 – volume: 147 start-page: 199 year: 2019 ident: 2011_CR44 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-18-0182.1 – volume: 144 start-page: 1887 year: 2016 ident: 2011_CR14 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0092.1 – volume: 34 start-page: 675 year: 2020 ident: 2011_CR40 publication-title: J. Meteor. Res. doi: 10.1007/s13351-020-9847-6 – volume: 147 start-page: 2217 year: 2019 ident: 2011_CR46 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-18-0415.1 – volume-title: Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model year: 1995 ident: 2011_CR34 – volume: 142 start-page: 2043 year: 2014 ident: 2011_CR45 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-12-00354.1 – volume: 66 start-page: 603 year: 2009 ident: 2011_CR2 publication-title: J. Atmos. Sci. doi: 10.1175/2008JAS2677.1 – volume: 10 start-page: 652 year: 2018 ident: 2011_CR30 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001234 – volume: 131 start-page: 3079 year: 2005 ident: 2011_CR41 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.04.106 |
| SSID | ssj0002925722 ssib060478651 |
| Score | 2.2927768 |
| Snippet | To represent model uncertainties at the physical process level in the China Meteorological Administration global ensemble prediction system (CMA-GEPS), a... |
| SourceID | wanfang crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 733 |
| SubjectTerms | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Earth and Environmental Science Earth Sciences Geophysics and Environmental Physics Meteorology Original Paper |
| Title | Stochastically Perturbed Parameterizations for the Process-Level Representation of Model Uncertainties in the CMA Global Ensemble Prediction System |
| URI | https://link.springer.com/article/10.1007/s13351-022-2011-8 https://d.wanfangdata.com.cn/periodical/qxxb-e202205005 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2198-0934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002925722 issn: 2095-6037 databaseCode: AFBBN dateStart: 20110201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2198-0934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002925722 issn: 2095-6037 databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXLjwECDeyoETKCi06SPHCW0gXkLAJDhVSeoCYnTAigT8Df4wTpoyQAiJu-22iRvbsf2ZkI3cGU1jWBSDYELngskwD5nmMuU5mjDuequOT-L9nji4jC59H_ewqXZvUpLupB41u4VhhKEvBk_uXi8dJxMObqtFJtp7V4ejq5VAoh66_EGADgSLeZg0-czf5Hy3SM2zXRNPWajy-ou96U6Ti-ZN6zKTu-3nSm-btx8gjv_8lBky5f1P2q4VZpaMQTlH3s-rgblRQ3ev3X-lp_CElkhDTk-VLd6yeM6-XZOik0vRaaS-w4Ad2aojeuYKan0fU0kHBbVD1vq0hzrlag4sbiu9LR3r7nGb1rMGaKccwr3uW3E2Y-SYaxD1edLrdi5295mf1sBMGMmKKR0HuVSGFymACEApZWRaJFppB2uI1jiBFAxGcAkYPGdFLBTsgDSJ4ryIwgXSKgclLBJqApQkDU-1QGKMyRIZm0JJARAZpdIlwpsdy4yHMrcTNfrZCITZrnCGK5zZFc6QZfOT5aHG8fiLeKvZt8z_0sO_qKnXlBHx48uLziBwbcx4zi3_S-AKmbScdcngKmlVT8-whq5Ppde9qn8AnPn7jQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDI_Y8cBe2BBMG-wjDzxtCsra9COPJwS77e7QCe4k9lQlqcumlR7QIrH9G_zDOGm6sgkh8W67beLGdmz_TMhu7oymMSyKQTChc8FkmIdMc5nyHE0Yd71V06N4tBDfTqNT38ddd9XuXUrSndR9s1sYRhj6YvDk7vXSZ2RVYHwSDMjq8Mv3cX-1EkjUQ5c_CNCBYDEPky6f-ZCcfy1S92zXxFMVqjq7Z28OX5B596ZtmcmvvetG75k__4E4PvFTXpJ173_SYaswG2QFqk1ye9IszQ9Vu3vt8jedwRVaIg05nSlbvGXxnH27JkUnl6LTSH2HAZvYqiN67ApqfR9TRZcFtUPWSrpAnXI1Bxa3lf6sHOv-dEjbWQP0oKrhXJdWnM0YOeYWRH2LLA4P5vsj5qc1MBNGsmFKx0EuleFFCiACUEoZmRaJVtrBGqI1TiAFgxFcAgbPWRELBZ9BmkRxXkThKzKolhW8JtQEKEkanmqBxBiTJTI2hZICIDJKpW8I73YsMx7K3E7UKLMehNmucIYrnNkVzpDl41-WixbH4zHiT92-Zf6Xrh-jpl5TeuLLmxudQeDamPGc236SwA9kbTSfTrLJ16PxDnlupbTlg2_JoLm6hnfoBjX6vVf7O2c0_mw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxwxDI5akKpegKpF5Z1DT60C6UzmkeOKsrzRqmUlOE2TjAcQSxbYQQL-Rv8wTibDUoSQqt5tK5NxYju2PxPypfRG0xiWpCCY0KVgMi5jprnMeYkmjPveqv2DdKsvdo6SozDndNRWu7cpyaanwaE02XrtsqzWxo1vcZxgGIyBlH_jy9-SSYxMMlT0yc7m8e74mSWSqJM-lxChM8FSHmdtbvMlOX9bp3YdvqHHVsqePLE93Wnyu111U3JyvnpT61Vz_wzQ8T8-a4ZMBb-UdhpF-kDegP1I_vyqh-ZUjfx79-CO9uAaLZSGkvaUK-pyOM-hjZOi80vRmaSh84DtuWok-tMX2ob-JkuHFXXD1wa0j7rmaxEcnis9s551fb9DmxkEdMOO4EIPnDiXSfLMDbj6J9Lvbhyub7EwxYGZOJE1UzqNSqkMr3IAEYFSysi8yrTSHu4QrXQGORiM7DIweP-KVCj4DtJkivMqiWfJhB1a-EyoiVCSNDzXAokxVstkaiolBUBilMrnCG__XmECxLmbtDEoxuDMbocL3OHC7XCBLF8fWS4bfI_XiL-1_7AIR330GjUNWjMmvrq91QVEvr0Z77_5fxK4Qt71fnSLve2D3QXy3glpqgoXyUR9fQNL6B3VejmcgAeDHgdf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastically+Perturbed+Parameterizations+for+the+Process-Level+Representation+of+Model+Uncertainties+in+the+CMA+Global+Ensemble+Prediction+System&rft.jtitle=%E6%B0%94%E8%B1%A1%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Fei+PENG&rft.au=Xiaoli+LI&rft.au=Jing+CHEN&rft.date=2022-10-01&rft.pub=National+Meteorological+Centre%2CChina+Meteorological+Administration%2CBeijing+100081&rft.issn=2095-6037&rft.volume=36&rft.issue=5&rft.spage=733&rft.epage=749&rft_id=info:doi/10.1007%2Fs13351-022-2011-8&rft.externalDocID=qxxb_e202205005 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg |