GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection
Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have show...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 22; no. 2; pp. 951 - 963 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2019.2961679 |
Cover
Abstract | Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have shown compelling visual results. However, they are prone to fail at preserving image-objects and maintaining translation consistency when faced with large and complex domain shifts, such as day-to-night. In this paper, we propose AugGAN, a GAN-based data augmenter which could transform on-road driving images to a desired domain while image-objects would be well-preserved. The contribution of this work is three-fold: (1) we design a structure-aware unpaired image-to-image translation network which learns the latent data transformation across different domains while artifacts in the transformed images are greatly reduced; (2) we quantitatively prove that the domain adaptation capability of a vehicle detector is not limited by its training data; (3) our object-preserving network provides significant performance gain in the difficult day-to-night case in terms of vehicle detection. AugGAN could generate more visually plausible images compared to competing methods on different on-road image translation tasks across domains. In addition, we quantitatively evaluate different methods by training Faster R-CNN and YOLO with datasets generated from the transformed results and demonstrate significant improvement on the object detection accuracies by using the proposed AugGAN model. |
---|---|
AbstractList | Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have shown compelling visual results. However, they are prone to fail at preserving image-objects and maintaining translation consistency when faced with large and complex domain shifts, such as day-to-night. In this paper, we propose AugGAN, a GAN-based data augmenter which could transform on-road driving images to a desired domain while image-objects would be well-preserved. The contribution of this work is three-fold: (1) we design a structure-aware unpaired image-to-image translation network which learns the latent data transformation across different domains while artifacts in the transformed images are greatly reduced; (2) we quantitatively prove that the domain adaptation capability of a vehicle detector is not limited by its training data; (3) our object-preserving network provides significant performance gain in the difficult day-to-night case in terms of vehicle detection. AugGAN could generate more visually plausible images compared to competing methods on different on-road image translation tasks across domains. In addition, we quantitatively evaluate different methods by training Faster R-CNN and YOLO with datasets generated from the transformed results and demonstrate significant improvement on the object detection accuracies by using the proposed AugGAN model. |
Author | Lin, Che-Tsung Wu, Yen-Yi Lai, Shang-Hong Huang, Sheng-Wei |
Author_xml | – sequence: 1 givenname: Che-Tsung orcidid: 0000-0002-5843-7294 surname: Lin fullname: Lin, Che-Tsung email: alexofntu@gmail.com organization: Safety Sensing and Control Department, Mechanical and Mechatronics System Research Laboratory, Intelligent Vehicle Division, Industrial Technology Research Institute, Hsinchu, Taiwan – sequence: 2 givenname: Sheng-Wei surname: Huang fullname: Huang, Sheng-Wei email: mlm4590027@gmail.com organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 3 givenname: Yen-Yi orcidid: 0000-0002-3574-2552 surname: Wu fullname: Wu, Yen-Yi email: jessicayywu@yahoo.com.tw organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Shang-Hong orcidid: 0000-0002-5092-993X surname: Lai fullname: Lai, Shang-Hong email: lai@cs.nthu.edu.tw organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan |
BookMark | eNp9kDFPwzAQhS1UJErhByCWSMwuPieO7bG0UCqqMjSwRpZzaVO1SbHdof-ehFYMDEx3uve-u9O7Jr26qZGQO2BDAKYfs1m2HHIGesh1CqnUF6QPQijKGKS9rucJ1UywK3Lt_aadJgKgT96mowV9Mh6LaGKONDR0Ua3WIZrtzAqjZThuMcqcqX2JLiobF_3Iodph9InryrbyBAPaUDX1Dbkszdbj7bkOyMfLczZ-pfP36Ww8mlMbCx2oUZZLnaAElcTIhY4LmbLSxIWVBeeKxQApKCV5YSQ31pQlaGGTQkoLxqp4QB5Oe_eu-TqgD_mmObi6PZnzRKXtQpaI1iVPLusa7x2Wua2C6f4MzlTbHFjeJZd3yeVdcvk5uZaEP-TeVTvjjv8y9yemQsRfv9KCMSnjb5S8ecE |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1016_j_infrared_2024_105314 crossref_primary_10_1007_s00530_024_01337_5 crossref_primary_10_3390_s24010249 crossref_primary_10_1016_j_eswa_2023_119990 crossref_primary_10_1016_j_cviu_2024_104063 crossref_primary_10_1587_transfun_2022IMP0004 crossref_primary_10_1109_ACCESS_2023_3296854 crossref_primary_10_1007_s44163_023_00066_4 crossref_primary_10_3390_agronomy14123002 crossref_primary_10_1371_journal_pone_0313113 crossref_primary_10_1007_s00530_024_01411_y crossref_primary_10_1007_s10845_022_02068_y crossref_primary_10_3390_math12010124 crossref_primary_10_1061_JTEPBS_TEENG_8341 crossref_primary_10_3390_s24041345 crossref_primary_10_1016_j_neunet_2024_106576 crossref_primary_10_1109_TITS_2023_3258063 crossref_primary_10_1007_s11370_023_00473_7 crossref_primary_10_1109_ACCESS_2024_3477260 crossref_primary_10_1109_LRA_2022_3146939 crossref_primary_10_1007_s42421_023_00086_7 crossref_primary_10_32604_cmes_2024_054735 crossref_primary_10_1016_j_engappai_2022_105705 crossref_primary_10_1016_j_iatssr_2023_04_001 crossref_primary_10_1109_MITS_2022_3203662 crossref_primary_10_1109_TMM_2022_3233306 crossref_primary_10_1177_14727978251318804 crossref_primary_10_1109_ACCESS_2022_3204040 crossref_primary_10_1007_s10489_021_02835_z crossref_primary_10_3390_bdcc8110164 crossref_primary_10_3390_mi13101678 crossref_primary_10_1109_TITS_2022_3145476 crossref_primary_10_1007_s11042_024_20361_1 crossref_primary_10_1177_03611981231166686 crossref_primary_10_1109_ACCESS_2021_3084597 crossref_primary_10_3390_math11224588 crossref_primary_10_1109_TITS_2023_3328195 crossref_primary_10_1142_S0218001423500350 crossref_primary_10_1016_j_asoc_2021_107846 crossref_primary_10_1109_TSMC_2022_3228314 crossref_primary_10_3390_electronics12081881 crossref_primary_10_1007_s42421_022_00057_4 crossref_primary_10_1109_TITS_2023_3268281 crossref_primary_10_3390_s24185912 crossref_primary_10_3390_s23073385 crossref_primary_10_1007_s11042_024_19409_z crossref_primary_10_1109_ACCESS_2020_3046498 crossref_primary_10_1109_TAP_2022_3209229 crossref_primary_10_3390_e23111490 crossref_primary_10_1155_2022_6217399 crossref_primary_10_1109_TPAMI_2024_3388004 crossref_primary_10_1007_s11042_024_18361_2 crossref_primary_10_3390_rs14215513 crossref_primary_10_3390_s24041339 crossref_primary_10_1177_09544070211036366 crossref_primary_10_1109_TII_2024_3452178 crossref_primary_10_1016_j_robot_2025_104922 crossref_primary_10_1109_TITS_2023_3297318 crossref_primary_10_3390_architecture3020015 crossref_primary_10_1109_TITS_2020_3048151 crossref_primary_10_1016_j_asoc_2025_112725 crossref_primary_10_1109_TIM_2022_3222517 crossref_primary_10_1109_TNNLS_2021_3128968 crossref_primary_10_1109_TCE_2024_3387557 crossref_primary_10_3390_e24050582 crossref_primary_10_1007_s10462_022_10295_1 crossref_primary_10_7717_peerj_cs_2570 crossref_primary_10_1109_TIV_2021_3122898 crossref_primary_10_1155_2021_4708758 |
Cites_doi | 10.1162/neco.1992.4.4.473 10.1109/CVPR.2012.6248074 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.244 10.1109/TITS.2010.2040177 10.1109/TCSVT.2014.2358031 10.1109/IVS.2012.6232284 10.1007/978-3-319-46475-6_18 10.1109/IVS.2014.6856518 10.1109/CVPR.2016.91 10.1007/s11263-009-0275-4 10.1109/ICCV.2017.310 10.1109/CVPR.2014.81 10.1109/CVPR.2016.352 10.1109/CVPR.2015.7299023 10.1016/B978-1-55860-307-3.50012-5 10.1007/978-3-319-46475-6_7 10.1109/ITSC.2011.6082826 10.1007/978-3-319-46493-0_22 10.1109/ICCV.2015.169 10.1109/TITS.2013.2264314 10.1109/IVS.2013.6629557 10.1109/TPAMI.2006.104 10.1109/CVPR.2017.690 10.1109/TPAMI.2009.167 10.1109/CVPR.2017.632 10.1109/IVS.2010.5548067 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2019.2961679 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 963 |
ExternalDocumentID | 10_1109_TITS_2019_2961679 8950077 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology (MOST), Taiwan, R.O.C. grantid: MOST 108-2634-F-007-002 funderid: 10.13039/501100004663 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-a8c2794e71843e2593d760fa3dc7d2280311618872da72acaff195c4d77c1ac83 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 05:15:14 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Tue Jul 01 04:29:03 EDT 2025 Wed Aug 27 05:48:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-a8c2794e71843e2593d760fa3dc7d2280311618872da72acaff195c4d77c1ac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5092-993X 0000-0002-5843-7294 0000-0002-3574-2552 |
PQID | 2486593045 |
PQPubID | 75735 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2019_2961679 ieee_primary_8950077 crossref_primary_10_1109_TITS_2019_2961679 proquest_journals_2486593045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 ref36 ref14 ref30 ref33 ref11 ren (ref20) 2015 ref10 ref1 ref39 ref38 ref16 ref19 liu (ref32) 2017 braun (ref12) 2018 liu (ref31) 2016 dai (ref21) 2016 ullrich (ref37) 2017 goodfellow (ref13) 2014 ref24 ref25 ref22 huang (ref17) 2018 liu (ref23) 2016 cordts (ref18) 2015; 1 ref28 ref27 wen (ref2) 2015; 25 ref8 ref7 kim (ref29) 2017 ref9 ref4 ref3 ref6 ref5 lin (ref26) 2014 |
References_xml | – volume: 1 start-page: 3 year: 2015 ident: ref18 article-title: The cityscapes dataset publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit Workshops – ident: ref36 doi: 10.1162/neco.1992.4.4.473 – start-page: 740 year: 2014 ident: ref26 article-title: Microsoft COCO: Common objects in context publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref16 doi: 10.1109/CVPR.2012.6248074 – ident: ref39 doi: 10.1109/CVPR.2015.7298965 – ident: ref28 doi: 10.1109/ICCV.2017.244 – start-page: 91 year: 2015 ident: ref20 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref33 doi: 10.1109/TITS.2010.2040177 – volume: 25 start-page: 508 year: 2015 ident: ref2 article-title: Efficient feature selection and classification for vehicle detection publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2014.2358031 – start-page: 379 year: 2016 ident: ref21 article-title: R-FCN: Object detection via region-based fully convolutional networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1109/IVS.2012.6232284 – start-page: 2672 year: 2014 ident: ref13 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref34 doi: 10.1007/978-3-319-46475-6_18 – ident: ref9 doi: 10.1109/IVS.2014.6856518 – year: 2018 ident: ref12 article-title: The EuroCity persons dataset: A novel benchmark for object detection publication-title: arXiv 1805 07193 – ident: ref11 doi: 10.1109/CVPR.2016.91 – ident: ref25 doi: 10.1007/s11263-009-0275-4 – start-page: 469 year: 2016 ident: ref31 article-title: Coupled generative adversarial networks publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref37 article-title: Soft weight-sharing for neural network compression publication-title: arXiv 1702 04008 – ident: ref30 doi: 10.1109/ICCV.2017.310 – ident: ref10 doi: 10.1109/CVPR.2014.81 – ident: ref14 doi: 10.1109/CVPR.2016.352 – year: 2017 ident: ref29 article-title: Learning to discover cross-domain relations with generative adversarial networks publication-title: arXiv 1703 05192 – ident: ref35 doi: 10.1109/CVPR.2015.7299023 – ident: ref38 doi: 10.1016/B978-1-55860-307-3.50012-5 – ident: ref15 doi: 10.1007/978-3-319-46475-6_7 – ident: ref8 doi: 10.1109/ITSC.2011.6082826 – ident: ref22 doi: 10.1007/978-3-319-46493-0_22 – ident: ref19 doi: 10.1109/ICCV.2015.169 – start-page: 21 year: 2016 ident: ref23 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis (ECCV) – start-page: 718 year: 2018 ident: ref17 article-title: Auggan: Cross domain adaptation with gan-based data augmentation publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref7 doi: 10.1109/TITS.2013.2264314 – ident: ref6 doi: 10.1109/IVS.2013.6629557 – ident: ref1 doi: 10.1109/TPAMI.2006.104 – ident: ref24 doi: 10.1109/CVPR.2017.690 – ident: ref3 doi: 10.1109/TPAMI.2009.167 – ident: ref27 doi: 10.1109/CVPR.2017.632 – ident: ref4 doi: 10.1109/IVS.2010.5548067 – start-page: 700 year: 2017 ident: ref32 article-title: Unsupervised image-to-image translation networks publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0014511 |
Score | 2.62968 |
Snippet | Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 951 |
SubjectTerms | Detectors domain adaptation Domains Feature extraction Gallium nitride generative adversarial network Image processing Image segmentation image-to-image translation Model accuracy Night Object detection Object recognition semantic segmentation Training Vehicle detection Vehicle detectors |
Title | GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection |
URI | https://ieeexplore.ieee.org/document/8950077 https://www.proquest.com/docview/2486593045 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwKojykgcmhEvixHE8Fspb7dIWsUWu7QiJ0qKSDvDr8blpxUuILVLsyLk738N3_g7gyBlRxk2gaMp1RGOdcyoHKqTOFiuNZ26hh2tqd5Lrfnz7wB-W4GRxF8Za64vPbAMffS7fjPUUj8pOU8kRfqYCFSdms7tai4wB4mx5bFQWUxnweQYzDORp76bXxSIu2WAywbTDFxvkm6r80MTevFyuQXu-sFlVyVNjWgwa-v0bZuN_V74Oq6WfSZozwdiAJTvahJVP6IM1uLtqduiZs2KGtNQbLca0g5E6uXl2OoZ0i7ehJd6U5XZCnG9L_GtsRk_u7SN-lrRs4Uu5RlvQv7zonV_TsrcC1RGXBVWpZm4rWoH9XqyLgSIjkiBXkdHCIEROFCKUfiqYUYIprfI8lFzHRggdKp1G21AdjUd2B4gS0inJ2CSp0rFzYGQ8sFY5TcEjJlIt6xDMqZ3pEngc-18MMx-ABDJDBmXIoKxkUB2OF1NeZqgbfw2uIcEXA0ta12F_ztKs3JevGYvTxP2r82N3f5-1B8sMq1Z8XfY-VIvJ1B44t6MYHHp5-wBWB9FC |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9i5bBxAEaHKHTMh53QXBInju0j0EG7flxoJ26RazuaNGhRSQ_w1-PnptXGJsQtUuzI8bPfh9_Pvwfw1RtRxm2kqeQmoakpOFUTHVNvi7XBM7c40DUNhllnnP644Tcb8G19F8Y5F8BnroWPIZdvZ2aBR2WnUnGkn3kHm9xHFXJ5W2udM0CmrcCOylKqIr7KYcaROh11R9cI41ItpjJMPPxlhUJZlX90cTAwlzswWA1tiSv53VqUk5Z5esHa-Nax78J25WmSs-XS-AgbbroHW3_wD9ahd3U2pOfejlnS1o-0nNEhxuqke-e1DLkuH28dCcascHPivVsSXmM5evLT_cLPkrYrA5hr-gnGl99HFx1aVVegJuGqpFoa5jejE1jxxfkoKLEiiwqdWCMskuQkMZLpS8GsFkwbXRSx4ia1QphYG5nsQ206m7oDIFooryZTm0ltUu_CqHTinPa6gidMSKMaEK1mOzcV9ThWwLjNQwgSqRwFlKOA8kpADThZd7lf8m681riOE75uWM11A5orkebVznzIWSoz_6_ekz38f68v8L4zGvTzfnfYO4IPDDEsAaXdhFo5X7jP3gkpJ8dh7T0Dh0fUlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-Based+Day-to-Night+Image+Style+Transfer+for+Nighttime+Vehicle+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Che-Tsung%2C+Lin&rft.au=Sheng-Wei%2C+Huang&rft.au=Yen-Yi%2C+Wu&rft.au=Shang-Hong%2C+Lai&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=2&rft.spage=951&rft_id=info:doi/10.1109%2FTITS.2019.2961679&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |