GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection

Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have show...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 22; no. 2; pp. 951 - 963
Main Authors Lin, Che-Tsung, Huang, Sheng-Wei, Wu, Yen-Yi, Lai, Shang-Hong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2019.2961679

Cover

Abstract Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have shown compelling visual results. However, they are prone to fail at preserving image-objects and maintaining translation consistency when faced with large and complex domain shifts, such as day-to-night. In this paper, we propose AugGAN, a GAN-based data augmenter which could transform on-road driving images to a desired domain while image-objects would be well-preserved. The contribution of this work is three-fold: (1) we design a structure-aware unpaired image-to-image translation network which learns the latent data transformation across different domains while artifacts in the transformed images are greatly reduced; (2) we quantitatively prove that the domain adaptation capability of a vehicle detector is not limited by its training data; (3) our object-preserving network provides significant performance gain in the difficult day-to-night case in terms of vehicle detection. AugGAN could generate more visually plausible images compared to competing methods on different on-road image translation tasks across domains. In addition, we quantitatively evaluate different methods by training Faster R-CNN and YOLO with datasets generated from the transformed results and demonstrate significant improvement on the object detection accuracies by using the proposed AugGAN model.
AbstractList Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing operations and could only produce limited plausible image variations. Recently, GAN (Generative Adversarial Network) based methods have shown compelling visual results. However, they are prone to fail at preserving image-objects and maintaining translation consistency when faced with large and complex domain shifts, such as day-to-night. In this paper, we propose AugGAN, a GAN-based data augmenter which could transform on-road driving images to a desired domain while image-objects would be well-preserved. The contribution of this work is three-fold: (1) we design a structure-aware unpaired image-to-image translation network which learns the latent data transformation across different domains while artifacts in the transformed images are greatly reduced; (2) we quantitatively prove that the domain adaptation capability of a vehicle detector is not limited by its training data; (3) our object-preserving network provides significant performance gain in the difficult day-to-night case in terms of vehicle detection. AugGAN could generate more visually plausible images compared to competing methods on different on-road image translation tasks across domains. In addition, we quantitatively evaluate different methods by training Faster R-CNN and YOLO with datasets generated from the transformed results and demonstrate significant improvement on the object detection accuracies by using the proposed AugGAN model.
Author Lin, Che-Tsung
Wu, Yen-Yi
Lai, Shang-Hong
Huang, Sheng-Wei
Author_xml – sequence: 1
  givenname: Che-Tsung
  orcidid: 0000-0002-5843-7294
  surname: Lin
  fullname: Lin, Che-Tsung
  email: alexofntu@gmail.com
  organization: Safety Sensing and Control Department, Mechanical and Mechatronics System Research Laboratory, Intelligent Vehicle Division, Industrial Technology Research Institute, Hsinchu, Taiwan
– sequence: 2
  givenname: Sheng-Wei
  surname: Huang
  fullname: Huang, Sheng-Wei
  email: mlm4590027@gmail.com
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 3
  givenname: Yen-Yi
  orcidid: 0000-0002-3574-2552
  surname: Wu
  fullname: Wu, Yen-Yi
  email: jessicayywu@yahoo.com.tw
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Shang-Hong
  orcidid: 0000-0002-5092-993X
  surname: Lai
  fullname: Lai, Shang-Hong
  email: lai@cs.nthu.edu.tw
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
BookMark eNp9kDFPwzAQhS1UJErhByCWSMwuPieO7bG0UCqqMjSwRpZzaVO1SbHdof-ehFYMDEx3uve-u9O7Jr26qZGQO2BDAKYfs1m2HHIGesh1CqnUF6QPQijKGKS9rucJ1UywK3Lt_aadJgKgT96mowV9Mh6LaGKONDR0Ua3WIZrtzAqjZThuMcqcqX2JLiobF_3Iodph9InryrbyBAPaUDX1Dbkszdbj7bkOyMfLczZ-pfP36Ww8mlMbCx2oUZZLnaAElcTIhY4LmbLSxIWVBeeKxQApKCV5YSQ31pQlaGGTQkoLxqp4QB5Oe_eu-TqgD_mmObi6PZnzRKXtQpaI1iVPLusa7x2Wua2C6f4MzlTbHFjeJZd3yeVdcvk5uZaEP-TeVTvjjv8y9yemQsRfv9KCMSnjb5S8ecE
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_infrared_2024_105314
crossref_primary_10_1007_s00530_024_01337_5
crossref_primary_10_3390_s24010249
crossref_primary_10_1016_j_eswa_2023_119990
crossref_primary_10_1016_j_cviu_2024_104063
crossref_primary_10_1587_transfun_2022IMP0004
crossref_primary_10_1109_ACCESS_2023_3296854
crossref_primary_10_1007_s44163_023_00066_4
crossref_primary_10_3390_agronomy14123002
crossref_primary_10_1371_journal_pone_0313113
crossref_primary_10_1007_s00530_024_01411_y
crossref_primary_10_1007_s10845_022_02068_y
crossref_primary_10_3390_math12010124
crossref_primary_10_1061_JTEPBS_TEENG_8341
crossref_primary_10_3390_s24041345
crossref_primary_10_1016_j_neunet_2024_106576
crossref_primary_10_1109_TITS_2023_3258063
crossref_primary_10_1007_s11370_023_00473_7
crossref_primary_10_1109_ACCESS_2024_3477260
crossref_primary_10_1109_LRA_2022_3146939
crossref_primary_10_1007_s42421_023_00086_7
crossref_primary_10_32604_cmes_2024_054735
crossref_primary_10_1016_j_engappai_2022_105705
crossref_primary_10_1016_j_iatssr_2023_04_001
crossref_primary_10_1109_MITS_2022_3203662
crossref_primary_10_1109_TMM_2022_3233306
crossref_primary_10_1177_14727978251318804
crossref_primary_10_1109_ACCESS_2022_3204040
crossref_primary_10_1007_s10489_021_02835_z
crossref_primary_10_3390_bdcc8110164
crossref_primary_10_3390_mi13101678
crossref_primary_10_1109_TITS_2022_3145476
crossref_primary_10_1007_s11042_024_20361_1
crossref_primary_10_1177_03611981231166686
crossref_primary_10_1109_ACCESS_2021_3084597
crossref_primary_10_3390_math11224588
crossref_primary_10_1109_TITS_2023_3328195
crossref_primary_10_1142_S0218001423500350
crossref_primary_10_1016_j_asoc_2021_107846
crossref_primary_10_1109_TSMC_2022_3228314
crossref_primary_10_3390_electronics12081881
crossref_primary_10_1007_s42421_022_00057_4
crossref_primary_10_1109_TITS_2023_3268281
crossref_primary_10_3390_s24185912
crossref_primary_10_3390_s23073385
crossref_primary_10_1007_s11042_024_19409_z
crossref_primary_10_1109_ACCESS_2020_3046498
crossref_primary_10_1109_TAP_2022_3209229
crossref_primary_10_3390_e23111490
crossref_primary_10_1155_2022_6217399
crossref_primary_10_1109_TPAMI_2024_3388004
crossref_primary_10_1007_s11042_024_18361_2
crossref_primary_10_3390_rs14215513
crossref_primary_10_3390_s24041339
crossref_primary_10_1177_09544070211036366
crossref_primary_10_1109_TII_2024_3452178
crossref_primary_10_1016_j_robot_2025_104922
crossref_primary_10_1109_TITS_2023_3297318
crossref_primary_10_3390_architecture3020015
crossref_primary_10_1109_TITS_2020_3048151
crossref_primary_10_1016_j_asoc_2025_112725
crossref_primary_10_1109_TIM_2022_3222517
crossref_primary_10_1109_TNNLS_2021_3128968
crossref_primary_10_1109_TCE_2024_3387557
crossref_primary_10_3390_e24050582
crossref_primary_10_1007_s10462_022_10295_1
crossref_primary_10_7717_peerj_cs_2570
crossref_primary_10_1109_TIV_2021_3122898
crossref_primary_10_1155_2021_4708758
Cites_doi 10.1162/neco.1992.4.4.473
10.1109/CVPR.2012.6248074
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.244
10.1109/TITS.2010.2040177
10.1109/TCSVT.2014.2358031
10.1109/IVS.2012.6232284
10.1007/978-3-319-46475-6_18
10.1109/IVS.2014.6856518
10.1109/CVPR.2016.91
10.1007/s11263-009-0275-4
10.1109/ICCV.2017.310
10.1109/CVPR.2014.81
10.1109/CVPR.2016.352
10.1109/CVPR.2015.7299023
10.1016/B978-1-55860-307-3.50012-5
10.1007/978-3-319-46475-6_7
10.1109/ITSC.2011.6082826
10.1007/978-3-319-46493-0_22
10.1109/ICCV.2015.169
10.1109/TITS.2013.2264314
10.1109/IVS.2013.6629557
10.1109/TPAMI.2006.104
10.1109/CVPR.2017.690
10.1109/TPAMI.2009.167
10.1109/CVPR.2017.632
10.1109/IVS.2010.5548067
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2019.2961679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 963
ExternalDocumentID 10_1109_TITS_2019_2961679
8950077
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology (MOST), Taiwan, R.O.C.
  grantid: MOST 108-2634-F-007-002
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a8c2794e71843e2593d760fa3dc7d2280311618872da72acaff195c4d77c1ac83
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 05:15:14 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Tue Jul 01 04:29:03 EDT 2025
Wed Aug 27 05:48:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a8c2794e71843e2593d760fa3dc7d2280311618872da72acaff195c4d77c1ac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5092-993X
0000-0002-5843-7294
0000-0002-3574-2552
PQID 2486593045
PQPubID 75735
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TITS_2019_2961679
ieee_primary_8950077
crossref_primary_10_1109_TITS_2019_2961679
proquest_journals_2486593045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref36
ref14
ref30
ref33
ref11
ren (ref20) 2015
ref10
ref1
ref39
ref38
ref16
ref19
liu (ref32) 2017
braun (ref12) 2018
liu (ref31) 2016
dai (ref21) 2016
ullrich (ref37) 2017
goodfellow (ref13) 2014
ref24
ref25
ref22
huang (ref17) 2018
liu (ref23) 2016
cordts (ref18) 2015; 1
ref28
ref27
wen (ref2) 2015; 25
ref8
ref7
kim (ref29) 2017
ref9
ref4
ref3
ref6
ref5
lin (ref26) 2014
References_xml – volume: 1
  start-page: 3
  year: 2015
  ident: ref18
  article-title: The cityscapes dataset
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit Workshops
– ident: ref36
  doi: 10.1162/neco.1992.4.4.473
– start-page: 740
  year: 2014
  ident: ref26
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref16
  doi: 10.1109/CVPR.2012.6248074
– ident: ref39
  doi: 10.1109/CVPR.2015.7298965
– ident: ref28
  doi: 10.1109/ICCV.2017.244
– start-page: 91
  year: 2015
  ident: ref20
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref33
  doi: 10.1109/TITS.2010.2040177
– volume: 25
  start-page: 508
  year: 2015
  ident: ref2
  article-title: Efficient feature selection and classification for vehicle detection
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2014.2358031
– start-page: 379
  year: 2016
  ident: ref21
  article-title: R-FCN: Object detection via region-based fully convolutional networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/IVS.2012.6232284
– start-page: 2672
  year: 2014
  ident: ref13
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1007/978-3-319-46475-6_18
– ident: ref9
  doi: 10.1109/IVS.2014.6856518
– year: 2018
  ident: ref12
  article-title: The EuroCity persons dataset: A novel benchmark for object detection
  publication-title: arXiv 1805 07193
– ident: ref11
  doi: 10.1109/CVPR.2016.91
– ident: ref25
  doi: 10.1007/s11263-009-0275-4
– start-page: 469
  year: 2016
  ident: ref31
  article-title: Coupled generative adversarial networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref37
  article-title: Soft weight-sharing for neural network compression
  publication-title: arXiv 1702 04008
– ident: ref30
  doi: 10.1109/ICCV.2017.310
– ident: ref10
  doi: 10.1109/CVPR.2014.81
– ident: ref14
  doi: 10.1109/CVPR.2016.352
– year: 2017
  ident: ref29
  article-title: Learning to discover cross-domain relations with generative adversarial networks
  publication-title: arXiv 1703 05192
– ident: ref35
  doi: 10.1109/CVPR.2015.7299023
– ident: ref38
  doi: 10.1016/B978-1-55860-307-3.50012-5
– ident: ref15
  doi: 10.1007/978-3-319-46475-6_7
– ident: ref8
  doi: 10.1109/ITSC.2011.6082826
– ident: ref22
  doi: 10.1007/978-3-319-46493-0_22
– ident: ref19
  doi: 10.1109/ICCV.2015.169
– start-page: 21
  year: 2016
  ident: ref23
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– start-page: 718
  year: 2018
  ident: ref17
  article-title: Auggan: Cross domain adaptation with gan-based data augmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref7
  doi: 10.1109/TITS.2013.2264314
– ident: ref6
  doi: 10.1109/IVS.2013.6629557
– ident: ref1
  doi: 10.1109/TPAMI.2006.104
– ident: ref24
  doi: 10.1109/CVPR.2017.690
– ident: ref3
  doi: 10.1109/TPAMI.2009.167
– ident: ref27
  doi: 10.1109/CVPR.2017.632
– ident: ref4
  doi: 10.1109/IVS.2010.5548067
– start-page: 700
  year: 2017
  ident: ref32
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014511
Score 2.62968
Snippet Data augmentation plays a crucial role in training a CNN-based detector. Most previous approaches were based on using a combination of general image-processing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 951
SubjectTerms Detectors
domain adaptation
Domains
Feature extraction
Gallium nitride
generative adversarial network
Image processing
Image segmentation
image-to-image translation
Model accuracy
Night
Object detection
Object recognition
semantic segmentation
Training
Vehicle detection
Vehicle detectors
Title GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection
URI https://ieeexplore.ieee.org/document/8950077
https://www.proquest.com/docview/2486593045
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwKojykgcmhEvixHE8Fspb7dIWsUWu7QiJ0qKSDvDr8blpxUuILVLsyLk738N3_g7gyBlRxk2gaMp1RGOdcyoHKqTOFiuNZ26hh2tqd5Lrfnz7wB-W4GRxF8Za64vPbAMffS7fjPUUj8pOU8kRfqYCFSdms7tai4wB4mx5bFQWUxnweQYzDORp76bXxSIu2WAywbTDFxvkm6r80MTevFyuQXu-sFlVyVNjWgwa-v0bZuN_V74Oq6WfSZozwdiAJTvahJVP6IM1uLtqduiZs2KGtNQbLca0g5E6uXl2OoZ0i7ehJd6U5XZCnG9L_GtsRk_u7SN-lrRs4Uu5RlvQv7zonV_TsrcC1RGXBVWpZm4rWoH9XqyLgSIjkiBXkdHCIEROFCKUfiqYUYIprfI8lFzHRggdKp1G21AdjUd2B4gS0inJ2CSp0rFzYGQ8sFY5TcEjJlIt6xDMqZ3pEngc-18MMx-ABDJDBmXIoKxkUB2OF1NeZqgbfw2uIcEXA0ta12F_ztKs3JevGYvTxP2r82N3f5-1B8sMq1Z8XfY-VIvJ1B44t6MYHHp5-wBWB9FC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9i5bBxAEaHKHTMh53QXBInju0j0EG7flxoJ26RazuaNGhRSQ_w1-PnptXGJsQtUuzI8bPfh9_Pvwfw1RtRxm2kqeQmoakpOFUTHVNvi7XBM7c40DUNhllnnP644Tcb8G19F8Y5F8BnroWPIZdvZ2aBR2WnUnGkn3kHm9xHFXJ5W2udM0CmrcCOylKqIr7KYcaROh11R9cI41ItpjJMPPxlhUJZlX90cTAwlzswWA1tiSv53VqUk5Z5esHa-Nax78J25WmSs-XS-AgbbroHW3_wD9ahd3U2pOfejlnS1o-0nNEhxuqke-e1DLkuH28dCcascHPivVsSXmM5evLT_cLPkrYrA5hr-gnGl99HFx1aVVegJuGqpFoa5jejE1jxxfkoKLEiiwqdWCMskuQkMZLpS8GsFkwbXRSx4ia1QphYG5nsQ206m7oDIFooryZTm0ltUu_CqHTinPa6gidMSKMaEK1mOzcV9ThWwLjNQwgSqRwFlKOA8kpADThZd7lf8m681riOE75uWM11A5orkebVznzIWSoz_6_ekz38f68v8L4zGvTzfnfYO4IPDDEsAaXdhFo5X7jP3gkpJ8dh7T0Dh0fUlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-Based+Day-to-Night+Image+Style+Transfer+for+Nighttime+Vehicle+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Che-Tsung%2C+Lin&rft.au=Sheng-Wei%2C+Huang&rft.au=Yen-Yi%2C+Wu&rft.au=Shang-Hong%2C+Lai&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=2&rft.spage=951&rft_id=info:doi/10.1109%2FTITS.2019.2961679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon