Symbolic regression by uniform random global search

This work describes a novel algorithm for symbolic regression, namely symbolic regression by uniform random global search (SRURGS). SRURGS has only one tuning parameter and is very simple conceptually. The method produces random equations, which is useful for the generation of symbolic regression be...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 2; no. 1; p. 34
Main Author Towfighi, Sohrab
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2523-3963
2523-3971
2523-3971
DOI10.1007/s42452-019-1734-3

Cover

Abstract This work describes a novel algorithm for symbolic regression, namely symbolic regression by uniform random global search (SRURGS). SRURGS has only one tuning parameter and is very simple conceptually. The method produces random equations, which is useful for the generation of symbolic regression benchmark problems. We have released well documented and open-source python code which passed a formal peer-review, so that interested researchers can deploy the tool in practice. We conduct experiments comparing SRURGS with symbolic regression by genetic programming (SRGP) using 100 randomly generated equations. Our results suggest that SRGP is faster than SRURGS in producing equations with good R 2 for simple problems. However, our experiments suggest that SRURGS is more robust than SRGP, able to produce good output in more challenging problems.
AbstractList This work describes a novel algorithm for symbolic regression, namely symbolic regression by uniform random global search (SRURGS). SRURGS has only one tuning parameter and is very simple conceptually. The method produces random equations, which is useful for the generation of symbolic regression benchmark problems. We have released well documented and open-source python code which passed a formal peer-review, so that interested researchers can deploy the tool in practice. We conduct experiments comparing SRURGS with symbolic regression by genetic programming (SRGP) using 100 randomly generated equations. Our results suggest that SRGP is faster than SRURGS in producing equations with good R2 for simple problems. However, our experiments suggest that SRURGS is more robust than SRGP, able to produce good output in more challenging problems.
This work describes a novel algorithm for symbolic regression, namely symbolic regression by uniform random global search (SRURGS). SRURGS has only one tuning parameter and is very simple conceptually. The method produces random equations, which is useful for the generation of symbolic regression benchmark problems. We have released well documented and open-source python code which passed a formal peer-review, so that interested researchers can deploy the tool in practice. We conduct experiments comparing SRURGS with symbolic regression by genetic programming (SRGP) using 100 randomly generated equations. Our results suggest that SRGP is faster than SRURGS in producing equations with good R 2 for simple problems. However, our experiments suggest that SRURGS is more robust than SRGP, able to produce good output in more challenging problems.
ArticleNumber 34
Author Towfighi, Sohrab
Author_xml – sequence: 1
  givenname: Sohrab
  orcidid: 0000-0002-3050-8943
  surname: Towfighi
  fullname: Towfighi, Sohrab
  email: sohrab.towfighi@mail.utoronto.ca
  organization: Faculty of Medicine, University of Toronto
BookMark eNqNj0tLxDAUhYMoOI7zA9wVXFfzTruUwRcMuFDX4SZNxw5tMiYdpP_eDh0UBMXVvYvzHc53ho598A6hC4KvCMbqOnHKBc0xKXOiGM_ZEZpRQVnOSkWOv37JTtEipQ3GmKqS8YLNEHseOhPaxmbRraNLqQk-M0O2800dYpdF8FXosnUbDLRZchDt2zk6qaFNbnG4c_R6d_uyfMhXT_ePy5tVbpko-xykqMGYAsAJLKvKWqoKaaTFIDk1ghaSM2JrZiVQw62xQhElK8O5NFBgNkd06t35LQwf0LZ6G5sO4qAJ1ntzPZnr0VzvzTUbocsJ2sbwvnOp15uwi37cqamipeBs1B9TakrZGFKKrta26aEf5fsITftnP_lB_mfTQSSNWb928XvT79AnpBSKQA
CitedBy_id crossref_primary_10_1021_acs_jctc_2c00281
crossref_primary_10_3390_axioms12090850
Cites_doi 10.1007/978-1-4614-1770-5_8
10.1007/978-1-4419-9182-9_2
10.1002/9780470400531.eorms0704
10.1007/BF00175355
10.7554/eLife.21451
10.7717/peerj-cs.103
10.1007/s10710-010-9121-2
10.1007/s10710-012-9177-2
10.1145/2464576.2482691
10.1007/978-3-030-04735-1_5
10.1007/s10107-018-1289-x
10.1287/moor.6.1.19
10.1007/978-1-4614-1770-5_13
10.1109/CEC.2010.5586095
10.1145/2463372.2463486
10.21105/joss.01675
10.1109/BRACIS.2015.55
10.1007/11729976_29
10.1186/s13040-018-0164-x
10.1007/3-540-45110-2_15
10.1002/stvr.1660
10.4137/CIN.S30747
10.1007/978-3-540-72821-4_11
10.1007/3-540-36599-0_45
10.1016/j.ins.2018.02.040
10.1145/2739480.2754693
10.1109/4235.585893
10.1080/03610918.2012.700364
10.1109/TEVC.2005.856205
10.1145/1086297.1086317
10.1007/978-3-642-53856-8_53
10.1145/2568225.2568254
10.1145/2330163.2330273
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
ADTOC
UNPAY
DOI 10.1007/s42452-019-1734-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10.1007/s42452-019-1734-3
10_1007_s42452_019_1734_3
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-a65fabb8aae506ddcc2786b6c0a642b5286431cf3c6a2b4cbc57176db446ba803
IEDL.DBID UNPAY
ISSN 2523-3963
2523-3971
IngestDate Wed Oct 01 15:53:33 EDT 2025
Wed Oct 08 14:21:25 EDT 2025
Wed Oct 01 05:02:50 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Fri Feb 21 02:29:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Symbolic regression
Tree enumeration
Evolutionary algorithm
Genetic programming
62-07
Uniform random global search
Pure random search
05C05
Language English
License gpl-3
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a65fabb8aae506ddcc2786b6c0a642b5286431cf3c6a2b4cbc57176db446ba803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3050-8943
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42452-019-1734-3.pdf
PQID 2729543000
PQPubID 5758472
ParticipantIDs unpaywall_primary_10_1007_s42452_019_1734_3
proquest_journals_2729543000
crossref_citationtrail_10_1007_s42452_019_1734_3
crossref_primary_10_1007_s42452_019_1734_3
springer_journals_10_1007_s42452_019_1734_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Ghodrat MA, Givargis T, Nicolau A (2005) Equivalence checking of arithmetic expressions using fast evaluation. In: Proceedings of the 2005 international conference on compilers, architectures and synthesis for embedded systems, ACM, New York, NY, USA, CASES’05, pp 147–156. https://doi.org/10.1145/1086297.1086317
McDermott J, White DR, Luke S, Manzoni L, Castelli M, Vanneschi L, Jaskowski W, Krawiec K, Harper R, De Jong K, O’Reilly UM (2012) Genetic programming needs better benchmarks. In: Proceedings of the 14th annual conference on genetic and evolutionary computation, ACM, New York, GECCO ’12, pp 791–798. https://doi.org/10.1145/2330163.2330273
Amaral JN, Neto ATC, Dias AV (1997) Genetic algorithms in optimization: Better than random search? In: International conference on engineering and informatics, pp 320–326
ZabinskyZBRandom search algorithmsWiley Encyclopedia of Operations Research and Management Science201110.1002/9780470400531.eorms0704
WoodwardJRNeilJRRyanCSouleTKeijzerMTsangEPoliRCostaENo free lunch, program induction and combinatorial problemsGenetic programming2003BerlinSpringer47548410.1007/3-540-36599-0_45
TowfighiSpySRURGS - a python package for symbolic regression by uniform random global searchJ Op Source Softw2019441167510.21105/joss.01675
de FrançaFOA greedy search tree heuristic for symbolic regressionInform Sci2018442–4431832377180310.1016/j.ins.2018.02.040
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
ZabinskyZBPure random search and pure adaptive searchStochastic adaptive search for global optimization2003Boston, MASpringer255410.1007/978-1-4419-9182-9_21044.90001
McConaghyTRioloRVladislavlevaEMooreJFFX: fast, scalable, deterministic symbolic regression technologyGenetic programming theory and practice IX2011New YorkSpringer23526010.1007/978-1-4614-1770-5_13
Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175. http://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf
UyNQHoaiNXO’NeillMMckayRIGalván-LópezESemantically-based crossover in genetic programming: application to real-valued symbolic regressionGenetic Program Evol Mach20111229111910.1007/s10710-010-9121-2
CozadASahinidisNVA global MINLP approach to symbolic regressionMath Program2018170197119381655910.1007/s10107-018-1289-x1402.90092
Tychonievich L (2013) Enumerating trees. https://www.cs.virginia.edu/~lat7h/blog/posts/434.html
RothlaufFOetzelMColletPTomassiniMEbnerMGustafsonSEkártAOn the locality of grammatical evolutionGenetic programming2006BerlinSpringer32033010.1007/11729976_29
SolisFJWetsRJBMinimization by random search techniquesMath Oper Res198161193061896110.1287/moor.6.1.190502.90070
ShamshiriSRojasJMGazzolaLFraserGMcMinnPMarianiLArcuriARandom or evolutionary search for object-oriented test suite generation?Softw Test Verif Reliab2018284e166010.1002/stvr.1660
Galván-López E, McDermott J, O’Neill M, Brabazon A (2010) Defining locality in genetic programming to predict performance. In: IEEE congress on evolutionary computation, Barcelona, Spain, pp 1–8. https://doi.org/10.1109/CEC.2010.5586095
SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min2018111210.1186/s13040-018-0164-x
StreeterMJTwo broad classes of functions for which a no free lunch result does not holdProceedings of the 2003 international conference on genetic and evolutionary computation2003BerlinSpringer1418143010.1007/3-540-45110-2_151038.68880
WormTChiuKPrioritized grammar enumeration: symbolic regression by dynamic programmingProceedings of the 15th annual conference on genetic and evolutionary computation2013New York, NY, USAACM1021102810.1145/2463372.2463486
d Melo VV, Fowler B, Banzhaf W (2015) Evaluating methods for constant optimization of symbolic regression benchmark problems. In: 2015 Brazilian conference on intelligent systems (BRACIS), pp 25–30. https://doi.org/10.1109/BRACIS.2015.55
WhiteDRMcDermottJCastelliMManzoniLGoldmanBWKronbergerGJaśkowskiWO’ReillyUMLukeSBetter GP benchmarks: community survey results and proposalsGenet Program Evolvable Mach201314132910.1007/s10710-012-9177-2
ChenSHNavetNFailure of genetic-programming induced trading strategies: distinguishing between efficient markets and inefficient algorithmsComputational intelligence in economics and finance2007BerlinSpringer16918210.1007/978-3-540-72821-4_11
Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated program repair. In: Jalote P, Briand L, VanderHoek A (eds) 36th international conference on software engineering (ICSE 2014), Association for Computing Machinery, New York, NY, USA, pp 254–265. https://doi.org/10.1145/2568225.2568254
WolpertDHMacreadyWGCoevolutionary free lunchesIEEE Trans Evol Comput20059672173510.1109/TEVC.2005.856205
KommendaMAffenzellerMKronbergerGWinklerSMMoreno-DíazRPichlerFQuesada-ArencibiaANonlinear least squares optimization of constants in symbolic regressionComputer aided systems theory—EUROCAST 20132013BerlinSpringer42042710.1007/978-3-642-53856-8_53
Kommenda M, Kronberger G, Winkler S, Affenzeller M, Wagner S (2013b) Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, ACM, New York, GECCO ’13 Companion, pp 1121–1128. https://doi.org/10.1145/2464576.2482691
KornsMFAccuracy in symbolic regressionGenetic programming theory and practice IX2011New YorkSpringer12915110.1007/978-1-4614-1770-5_8
BoulesteixALStierleVHapfelmeierAPublication bias in methodological computational researchCancer Inform201514(S5)111910.4137/CIN.S30747
Arnaldo I, O’Reilly UM, Veeramachaneni K (2015) Building predictive models via feature synthesis. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO’15, pp 983–990. https://doi.org/10.1145/2739480.2754693
KozaJRGenetic programming as a means for programming computers by natural selectionStat Comput1994428711210.1007/BF00175355
MeurerASmithCPPaprockiMČertíkOKirpichevSBRocklinMKumarAIvanovSMooreJKSinghSRathnayakeTVigSGrangerBEMullerRPBonazziFGuptaHVatsSJohanssonFPedregosaFCurryMJTerrelARRoučkavSabooAFernandoIKulalSCimrmanRScopatzASymPy: symbolic computing in PythonPeerJ Comput Sci20173e10310.7717/peerj-cs.103
KozakMComparison of random search method and genetic algorithm for stratificationCommun Stat Simul Comput2014432249253320096710.1080/03610918.2012.7003641361.62007
KronbergerGKammererLBurlacuBWinklerSMKommendaMAffenzellerMBanzhafWSpectorLShenemanLCluster analysis of a symbolic regression search spaceGenetic programming theory and practice XVI2019ChamSpringer8510210.1007/978-3-030-04735-1_5
NissenSBMagidsonTGrossKBergstromCTResearch: publication bias and the canonization of false factsELife20165e2145110.7554/eLife.21451
FJ Solis (1734_CR25) 1981; 6
M Kommenda (1734_CR10) 2013
JR Woodward (1734_CR33) 2003
ZB Zabinsky (1734_CR35) 2003
M Kozak (1734_CR14) 2014; 43
1734_CR28
NQ Uy (1734_CR29) 2011; 12
S Towfighi (1734_CR27) 2019; 4
1734_CR21
1734_CR1
DH Wolpert (1734_CR32) 2005; 9
1734_CR2
1734_CR6
1734_CR7
1734_CR9
AL Boulesteix (1734_CR3) 2015; 14
A Meurer (1734_CR19) 2017; 3
M Sipper (1734_CR24) 2018; 11
1734_CR18
FO de França (1734_CR8) 2018; 442–443
JR Koza (1734_CR13) 1994; 4
1734_CR17
SB Nissen (1734_CR20) 2016; 5
1734_CR11
T Worm (1734_CR34) 2013
F Rothlauf (1734_CR22) 2006
A Cozad (1734_CR5) 2018; 170
DH Wolpert (1734_CR31) 1997; 1
SH Chen (1734_CR4) 2007
S Shamshiri (1734_CR23) 2018; 28
MJ Streeter (1734_CR26) 2003
MF Korns (1734_CR12) 2011
G Kronberger (1734_CR15) 2019
DR White (1734_CR30) 2013; 14
ZB Zabinsky (1734_CR36) 2011
T McConaghy (1734_CR16) 2011
References_xml – reference: Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated program repair. In: Jalote P, Briand L, VanderHoek A (eds) 36th international conference on software engineering (ICSE 2014), Association for Computing Machinery, New York, NY, USA, pp 254–265. https://doi.org/10.1145/2568225.2568254
– reference: ShamshiriSRojasJMGazzolaLFraserGMcMinnPMarianiLArcuriARandom or evolutionary search for object-oriented test suite generation?Softw Test Verif Reliab2018284e166010.1002/stvr.1660
– reference: WolpertDHMacreadyWGCoevolutionary free lunchesIEEE Trans Evol Comput20059672173510.1109/TEVC.2005.856205
– reference: CozadASahinidisNVA global MINLP approach to symbolic regressionMath Program2018170197119381655910.1007/s10107-018-1289-x1402.90092
– reference: TowfighiSpySRURGS - a python package for symbolic regression by uniform random global searchJ Op Source Softw2019441167510.21105/joss.01675
– reference: Galván-López E, McDermott J, O’Neill M, Brabazon A (2010) Defining locality in genetic programming to predict performance. In: IEEE congress on evolutionary computation, Barcelona, Spain, pp 1–8. https://doi.org/10.1109/CEC.2010.5586095
– reference: ZabinskyZBRandom search algorithmsWiley Encyclopedia of Operations Research and Management Science201110.1002/9780470400531.eorms0704
– reference: KommendaMAffenzellerMKronbergerGWinklerSMMoreno-DíazRPichlerFQuesada-ArencibiaANonlinear least squares optimization of constants in symbolic regressionComputer aided systems theory—EUROCAST 20132013BerlinSpringer42042710.1007/978-3-642-53856-8_53
– reference: StreeterMJTwo broad classes of functions for which a no free lunch result does not holdProceedings of the 2003 international conference on genetic and evolutionary computation2003BerlinSpringer1418143010.1007/3-540-45110-2_151038.68880
– reference: Amaral JN, Neto ATC, Dias AV (1997) Genetic algorithms in optimization: Better than random search? In: International conference on engineering and informatics, pp 320–326
– reference: RothlaufFOetzelMColletPTomassiniMEbnerMGustafsonSEkártAOn the locality of grammatical evolutionGenetic programming2006BerlinSpringer32033010.1007/11729976_29
– reference: d Melo VV, Fowler B, Banzhaf W (2015) Evaluating methods for constant optimization of symbolic regression benchmark problems. In: 2015 Brazilian conference on intelligent systems (BRACIS), pp 25–30. https://doi.org/10.1109/BRACIS.2015.55
– reference: WormTChiuKPrioritized grammar enumeration: symbolic regression by dynamic programmingProceedings of the 15th annual conference on genetic and evolutionary computation2013New York, NY, USAACM1021102810.1145/2463372.2463486
– reference: ZabinskyZBPure random search and pure adaptive searchStochastic adaptive search for global optimization2003Boston, MASpringer255410.1007/978-1-4419-9182-9_21044.90001
– reference: MeurerASmithCPPaprockiMČertíkOKirpichevSBRocklinMKumarAIvanovSMooreJKSinghSRathnayakeTVigSGrangerBEMullerRPBonazziFGuptaHVatsSJohanssonFPedregosaFCurryMJTerrelARRoučkavSabooAFernandoIKulalSCimrmanRScopatzASymPy: symbolic computing in PythonPeerJ Comput Sci20173e10310.7717/peerj-cs.103
– reference: SipperMFuWAhujaKMooreJHInvestigating the parameter space of evolutionary algorithmsBioData Min2018111210.1186/s13040-018-0164-x
– reference: Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175. http://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf
– reference: Kommenda M, Kronberger G, Winkler S, Affenzeller M, Wagner S (2013b) Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, ACM, New York, GECCO ’13 Companion, pp 1121–1128. https://doi.org/10.1145/2464576.2482691
– reference: de FrançaFOA greedy search tree heuristic for symbolic regressionInform Sci2018442–4431832377180310.1016/j.ins.2018.02.040
– reference: McConaghyTRioloRVladislavlevaEMooreJFFX: fast, scalable, deterministic symbolic regression technologyGenetic programming theory and practice IX2011New YorkSpringer23526010.1007/978-1-4614-1770-5_13
– reference: UyNQHoaiNXO’NeillMMckayRIGalván-LópezESemantically-based crossover in genetic programming: application to real-valued symbolic regressionGenetic Program Evol Mach20111229111910.1007/s10710-010-9121-2
– reference: ChenSHNavetNFailure of genetic-programming induced trading strategies: distinguishing between efficient markets and inefficient algorithmsComputational intelligence in economics and finance2007BerlinSpringer16918210.1007/978-3-540-72821-4_11
– reference: Arnaldo I, O’Reilly UM, Veeramachaneni K (2015) Building predictive models via feature synthesis. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO’15, pp 983–990. https://doi.org/10.1145/2739480.2754693
– reference: NissenSBMagidsonTGrossKBergstromCTResearch: publication bias and the canonization of false factsELife20165e2145110.7554/eLife.21451
– reference: KronbergerGKammererLBurlacuBWinklerSMKommendaMAffenzellerMBanzhafWSpectorLShenemanLCluster analysis of a symbolic regression search spaceGenetic programming theory and practice XVI2019ChamSpringer8510210.1007/978-3-030-04735-1_5
– reference: WoodwardJRNeilJRRyanCSouleTKeijzerMTsangEPoliRCostaENo free lunch, program induction and combinatorial problemsGenetic programming2003BerlinSpringer47548410.1007/3-540-36599-0_45
– reference: KozaJRGenetic programming as a means for programming computers by natural selectionStat Comput1994428711210.1007/BF00175355
– reference: SolisFJWetsRJBMinimization by random search techniquesMath Oper Res198161193061896110.1287/moor.6.1.190502.90070
– reference: WhiteDRMcDermottJCastelliMManzoniLGoldmanBWKronbergerGJaśkowskiWO’ReillyUMLukeSBetter GP benchmarks: community survey results and proposalsGenet Program Evolvable Mach201314132910.1007/s10710-012-9177-2
– reference: BoulesteixALStierleVHapfelmeierAPublication bias in methodological computational researchCancer Inform201514(S5)111910.4137/CIN.S30747
– reference: KozakMComparison of random search method and genetic algorithm for stratificationCommun Stat Simul Comput2014432249253320096710.1080/03610918.2012.7003641361.62007
– reference: Ghodrat MA, Givargis T, Nicolau A (2005) Equivalence checking of arithmetic expressions using fast evaluation. In: Proceedings of the 2005 international conference on compilers, architectures and synthesis for embedded systems, ACM, New York, NY, USA, CASES’05, pp 147–156. https://doi.org/10.1145/1086297.1086317
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
– reference: KornsMFAccuracy in symbolic regressionGenetic programming theory and practice IX2011New YorkSpringer12915110.1007/978-1-4614-1770-5_8
– reference: McDermott J, White DR, Luke S, Manzoni L, Castelli M, Vanneschi L, Jaskowski W, Krawiec K, Harper R, De Jong K, O’Reilly UM (2012) Genetic programming needs better benchmarks. In: Proceedings of the 14th annual conference on genetic and evolutionary computation, ACM, New York, GECCO ’12, pp 791–798. https://doi.org/10.1145/2330163.2330273
– reference: Tychonievich L (2013) Enumerating trees. https://www.cs.virginia.edu/~lat7h/blog/posts/434.html
– start-page: 129
  volume-title: Genetic programming theory and practice IX
  year: 2011
  ident: 1734_CR12
  doi: 10.1007/978-1-4614-1770-5_8
– start-page: 25
  volume-title: Stochastic adaptive search for global optimization
  year: 2003
  ident: 1734_CR35
  doi: 10.1007/978-1-4419-9182-9_2
– year: 2011
  ident: 1734_CR36
  publication-title: Wiley Encyclopedia of Operations Research and Management Science
  doi: 10.1002/9780470400531.eorms0704
– volume: 4
  start-page: 87
  issue: 2
  year: 1994
  ident: 1734_CR13
  publication-title: Stat Comput
  doi: 10.1007/BF00175355
– volume: 5
  start-page: e21451
  year: 2016
  ident: 1734_CR20
  publication-title: ELife
  doi: 10.7554/eLife.21451
– volume: 3
  start-page: e103
  year: 2017
  ident: 1734_CR19
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.103
– volume: 12
  start-page: 91
  issue: 2
  year: 2011
  ident: 1734_CR29
  publication-title: Genetic Program Evol Mach
  doi: 10.1007/s10710-010-9121-2
– volume: 14
  start-page: 3
  issue: 1
  year: 2013
  ident: 1734_CR30
  publication-title: Genet Program Evolvable Mach
  doi: 10.1007/s10710-012-9177-2
– ident: 1734_CR11
  doi: 10.1145/2464576.2482691
– start-page: 85
  volume-title: Genetic programming theory and practice XVI
  year: 2019
  ident: 1734_CR15
  doi: 10.1007/978-3-030-04735-1_5
– volume: 170
  start-page: 97
  issue: 1
  year: 2018
  ident: 1734_CR5
  publication-title: Math Program
  doi: 10.1007/s10107-018-1289-x
– volume: 6
  start-page: 19
  issue: 1
  year: 1981
  ident: 1734_CR25
  publication-title: Math Oper Res
  doi: 10.1287/moor.6.1.19
– ident: 1734_CR1
– start-page: 235
  volume-title: Genetic programming theory and practice IX
  year: 2011
  ident: 1734_CR16
  doi: 10.1007/978-1-4614-1770-5_13
– ident: 1734_CR9
  doi: 10.1109/CEC.2010.5586095
– ident: 1734_CR28
– start-page: 1021
  volume-title: Proceedings of the 15th annual conference on genetic and evolutionary computation
  year: 2013
  ident: 1734_CR34
  doi: 10.1145/2463372.2463486
– volume: 4
  start-page: 1675
  issue: 41
  year: 2019
  ident: 1734_CR27
  publication-title: J Op Source Softw
  doi: 10.21105/joss.01675
– ident: 1734_CR18
  doi: 10.1109/BRACIS.2015.55
– start-page: 320
  volume-title: Genetic programming
  year: 2006
  ident: 1734_CR22
  doi: 10.1007/11729976_29
– volume: 11
  start-page: 2
  issue: 1
  year: 2018
  ident: 1734_CR24
  publication-title: BioData Min
  doi: 10.1186/s13040-018-0164-x
– start-page: 1418
  volume-title: Proceedings of the 2003 international conference on genetic and evolutionary computation
  year: 2003
  ident: 1734_CR26
  doi: 10.1007/3-540-45110-2_15
– ident: 1734_CR7
– volume: 28
  start-page: e1660
  issue: 4
  year: 2018
  ident: 1734_CR23
  publication-title: Softw Test Verif Reliab
  doi: 10.1002/stvr.1660
– volume: 14
  start-page: 11
  issue: (S5)
  year: 2015
  ident: 1734_CR3
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S30747
– start-page: 169
  volume-title: Computational intelligence in economics and finance
  year: 2007
  ident: 1734_CR4
  doi: 10.1007/978-3-540-72821-4_11
– start-page: 475
  volume-title: Genetic programming
  year: 2003
  ident: 1734_CR33
  doi: 10.1007/3-540-36599-0_45
– volume: 442–443
  start-page: 18
  year: 2018
  ident: 1734_CR8
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2018.02.040
– ident: 1734_CR2
  doi: 10.1145/2739480.2754693
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 1734_CR31
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 43
  start-page: 249
  issue: 2
  year: 2014
  ident: 1734_CR14
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2012.700364
– volume: 9
  start-page: 721
  issue: 6
  year: 2005
  ident: 1734_CR32
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.856205
– ident: 1734_CR6
  doi: 10.1145/1086297.1086317
– start-page: 420
  volume-title: Computer aided systems theory—EUROCAST 2013
  year: 2013
  ident: 1734_CR10
  doi: 10.1007/978-3-642-53856-8_53
– ident: 1734_CR21
  doi: 10.1145/2568225.2568254
– ident: 1734_CR17
  doi: 10.1145/2330163.2330273
SSID ssj0002793483
ssib051670015
Score 2.116602
Snippet This work describes a novel algorithm for symbolic regression, namely symbolic regression by uniform random global search (SRURGS). SRURGS has only one tuning...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms 3. Engineering (general)
Applied and Technical Physics
Chemistry/Food Science
Datasets
Earth Sciences
Engineering
Environment
Experiments
Generalized linear models
Genetic algorithms
Materials Science
Mathematical analysis
Optimization algorithms
Regression
Research Article
Software
Source code
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB5qe9AexCdWq-TgybKY7G42m4OIiqUIFlELvYV9JIK0aa0t0n_vbl6tl3pOsgtfZnZmdma-AbhUEpMkYC4KiMSIMhqikOoAeVwpYy6wENl9x3Of9Qb0aegPa9Ave2FsWWV5JmYHtZ4oe0d-jQObkSJGg2-nX8hOjbLZ1XKEhihGK-ibjGJsCxrYMmPVoXH_2H95LSXM92xXSmEAP7O0W0hoxtWJTUSGiBHHMvVp--tsWtBWLoTICwhF5K_xWnmkVRK1CduLdCqWP2I0WrNT3T3YLRxM5y6XiH2oxekBNNdoBw-BvC3H0vIBO7P4I6-DTR25dBapbdMaO8Z86cnYyblCnFwXjmDQfXx_6KFieAJSxA_nSDA_EVJyIWLfZVorhQPOJFOuMCGH9DE3voinEqKYwJIqqXwT2TEtTXwoBXfJMdTTSRqfgMO0EArrhMeCUFcTzj0vNn5hEieepj5vgVuiEqmCWdwOuBhFFSdyBmRkgIwskBFpwVX1yTSn1dj0cruEOio07DtayUMLOiX8q8cbFutUf-j_rU83b30GO9jG39mVTBvq89kiPjdOylxeFJL3C6ms3dE
  priority: 102
  providerName: ProQuest
Title Symbolic regression by uniform random global search
URI https://link.springer.com/article/10.1007/s42452-019-1734-3
https://www.proquest.com/docview/2729543000
https://link.springer.com/content/pdf/10.1007/s42452-019-1734-3.pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2523-3971
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssib051670015
  issn: 2523-3963
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76OEgPvsWKlhw8WbZNsslmc1RpLUJLUQv1FPaReLCNRVOkHvzt7jYPq0hFvCVks2FnZ5lvMjPfAJwKbuPIIybyMLeRQxwf-Y70kEWFUObCZmz5v6M_IL2Rcz12xyW4zGthltnueUgyrWnQLE1x0p7JqF0Uvul4nU4p8JHlYQcpf1BGZagSVwHyClRHg-H5vW4rp9wshP1lP7Xs2rPy2OZP83y1Tp-Qs4iS1mBjHs_Y4pVNJiuGqLsFMl9Cmn_y2JonvCXevrE7_nON27CZAVXjPNWsHSiF8S7UVugL9wDfLqZc8wobz-FDmk8bG3xhzGNd7jU1lBmUT1Mj5Rwx0jO1D6Nu5-6yh7ImDEhg108QI27EOKeMha5JpBTC9ijhRJhMuS7ctanCNJaIsCDM5o7gwlUeIpFc-ZmcURMfQCV-isNDMIhkTNgyoiHDjikxpZYVKnwZhZElHZfWwcyFH4iMoVw3ypgEBbfyUiaBkkmgZRLgOpwVr8xSeo51g4_zHQ2yk_oS2J6OdGJlGerQzDfl8_GayZqFIvz-6aM_jT6GSvI8D08U3El4A8q0e9WA6kVnMLxRd_33TiNT8Q9LLPmh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4FcgAOFfQhUgL4UC4gq7u21-s9oIpXFF5R1YLEbevXIlXJJkAilD_X31Z7Hwlcwonzem3p89gz45n5BuCbVoRmMQ9wTBXBjLMEJ8zEOBRaO3VBpCzeO657vHvLLu6iuwb8q2thfFplfScWF7UZav9G_p3EPiJF3Qn-MXrAvmuUj67WLTRk1VrBHBYUY1Vhx6WdPjsX7unw_NTt9x4hnbObky6uugxgTaNkjCWPMqmUkNJGATdGaxILrrgOpLPNVUSEU9qhzqjmkiimlY6cC8SNco6UkiKgbt4laDLKEuf8NY_Pej9_1RIdhb4KplK4f4swX0JZwQ1KnAeIqRP_OtTq6_l8GNJnSiQ4jCnD9LWynFvAs6DtGqxM8pGcPst-_4Ve7KzDh8qgRUelBG5Aw-YfYe0FzeEnoL-nA-X5h9GjvS_zbnOkpmiS-7KwAXLq0gwHqOQmQSWon-H2XWD8Asv5MLebgLiRUhOTCSspCwwVIgyts0Mzm4WGRaIFQY1Kqismc99Qo5_OOJgLIFMHZOqBTGkL9me_jEoaj0WD2zXUaXWin9K5_LXgoIZ__nnBZAezHXp76a-Ll96Fle7N9VV6dd673IJV4n3_4jmoDcvjx4nddgbSWO1UUojgz3sL_n9_nRv2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkAocKqAgFij4AJcii8R2HOeAqqqw7PJSpRaJW_Arlard7LIPof1r_DrsPHbpZTlxTmJLXz57ZjwznwGOtCI0i3mAY6oIZpwlOGEmxqHQ2pkLImVx3nF7x1v37OoheliAl7oXxpdV1ntisVGbnvZn5Kck9hkp6lbwaVaVRfw6b37vP2F_g5TPtNbXaZQUubaTZxe-Dc_a5-5fHxPSvPjzs4WrGwawplEywpJHmVRKSGmjgBujNYkFV1wH0vnlKiLCGexQZ1RzSRTTSkcu_OFGuSBKSRFQN-4iLMdexd13qTcvay5Hoe9_qUztvyLBl1BWqIISF_th6ohfJ1l9J59PQPoaiQSHMWWY_m8mZ77vNF27BivjvC8nz7LTeWMRm-vwuXJl0Y-SexuwYPNNWHsjcPgF6O9JV3nlYTSwf8uK2xypCRrnviGsi5yhNL0uKlVJUAnpFtx_CIjbsJT3crsDiBspNTGZsJKywFAhwtA6DzSzWWhYJBoQ1KikutIw91dpdNKp-nIBZOqATD2QKW3At-kn_VLAY97L-zXUabWWh-mMeQ04qeGfPZ4z2Mn0D70_9e78qQ_hk6N7etO-u96DVeKD_uIcaB-WRoOx_eo8o5E6KCiI4PGjOf8KpIMZkA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qexAPvsVKlRw8WbZNsslmcyzFUgSLoIV6CvtIPNimpSZI_fXu5tUqUhFvgexu2NlZ5pvMzDcA14LbOPKIiTzMbeQQx0e-Iz1kUSGUubAZy_533I_IcOzcTdxJDfplLUyW7V6GJPOaBs3SFCfdhYy6VeGbjtfplAIfWR52kPIHZbQDDeIqQF6Hxnj00HvWbeWUm4Wwn_VTK549q4xt_rTOV-u0hpxVlHQPdtN4wVbvbDrdMESDA5DlFvL8k9dOmvCO-PjG7vjPPR7CfgFUjV6uWUdQC-Nj2NugLzwB_Liacc0rbCzDlzyfNjb4ykhjXe41M5QZlPOZkXOOGPmdOoXx4PapP0RFEwYksOsniBE3YpxTxkLXJFIKYXuUcCJMplwX7tpUYRpLRFgQZnNHcOEqD5FIrvxMzqiJz6Aez-PwHAwiGRO2jGjIsGNKTKllhQpfRmFkScelTTBL4QeiYCjXjTKmQcWtnMkkUDIJtEwC3ISbasoip-fYNrhVnmhQ3NS3wPZ0pBMry9CEdnko69dbFmtXivD7py_-NLoF9WSZhpcK7iT8qlDnT_bd9fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic+regression+by+uniform+random+global+search&rft.jtitle=SN+applied+sciences&rft.au=Towfighi%2C+Sohrab&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1007%2Fs42452-019-1734-3&rft.externalDocID=10_1007_s42452_019_1734_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon