Minima Possible Weights: A Homogenous Deep Ensemble Method for Cross-Subject Motor Imagery Classification
Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible W...
        Saved in:
      
    
          | Published in | IEEE access Vol. 13; pp. 29134 - 29146 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2025.3540164 | 
Cover
| Abstract | Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible Weights (MPW) method, an unsupervised learning approach designed to enhance MI classification through ensemble deep learning. MPW aggregates predicted probabilities from multiple models and selects the class with the lowest associated weight for the final prediction. We evaluated MPW against various ensemble learning and test-time adaptation methods using two benchmark datasets: BCI Competition IV Dataset 2a and PhysionetMI. Our results indicate that MPW achieves cross-subject classification accuracy of up to 64.75% on BCI Competition IV Dataset 2a and 66.92% on PhysionetMI. Although the current performance is not yet sufficient for practical BCI applications, MPW shows potential in reducing calibration time and easing the burden of adapting models to new subjects. | 
    
|---|---|
| AbstractList | Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible Weights (MPW) method, an unsupervised learning approach designed to enhance MI classification through ensemble deep learning. MPW aggregates predicted probabilities from multiple models and selects the class with the lowest associated weight for the final prediction. We evaluated MPW against various ensemble learning and test-time adaptation methods using two benchmark datasets: BCI Competition IV Dataset 2a and PhysionetMI. Our results indicate that MPW achieves cross-subject classification accuracy of up to 64.75% on BCI Competition IV Dataset 2a and 66.92% on PhysionetMI. Although the current performance is not yet sufficient for practical BCI applications, MPW shows potential in reducing calibration time and easing the burden of adapting models to new subjects. | 
    
| Author | Dinh, Quang Pham Lam Nambu, Isao  | 
    
| Author_xml | – sequence: 1 givenname: Quang Pham Lam orcidid: 0009-0008-9560-8823 surname: Dinh fullname: Dinh, Quang Pham Lam email: s193177@stn.nagaokaut.ac.jp organization: Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan – sequence: 2 givenname: Isao orcidid: 0000-0002-1705-6268 surname: Nambu fullname: Nambu, Isao organization: Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan  | 
    
| BookMark | eNplkVFr2zAUhcVooV3bX9A9CPbs7CqSJXtvwcvWQMMG2dijkOXrVMGxMsmm5N9Pnssom14kDud8cI7ekove90jIPYMFY1B-WFXVerdbLGGZL3gugEnxhlwvmSwznnN58ep9Re5iPEA6RZJydU3c1vXuaOg3H6OrO6Q_0e2fhviRruiDP_o99n6M9BPiia77iMfJs8XhyTe09YFWIQWz3Vgf0A5064ekbY5mj-FMq84kaOusGZzvb8lla7qIdy_3Dfnxef29esgev37ZVKvHzPK8HLJSCQaNQORKKgtY55YtGxR1DrnhYKUEViOkMtAwbBUKyVtuWQ21sVCW_IZsZm7jzUGfQmoXztobp_8IPuy1CYOzHWooAFUNxrY5F8q0RgiOnAtRYGKziSVm1tifzPnZdN1fIAM9ra-NtRijntbXL-un2Ps5dgr-14hx0Ac_hj611pzJQkgmlEwuPrvstGHA9j_2_LP_st_NKYeIrxKFKkrF-G-mVp9P | 
    
| CODEN | IAECCG | 
    
| Cites_doi | 10.1016/j.strusafe.2008.06.020 10.1007/978-3-642-76153-9_28 10.1007/3-540-28084-7_6 10.1109/EMBC46164.2021.9630419 10.1038/s41592-019-0686-2 10.3390/s23187908 10.1162/neco.1991.3.4.461 10.3389/fnhum.2020.00338 10.1002/hbm.23730 10.1109/CVPR.2016.308 10.1109/ACCESS.2019.2939288 10.1007/978-3-030-70665-4_150 10.1109/JBHI.2020.2967128 10.1109/TNNLS.2019.2924023 10.1161/01.CIR.101.23.e215 10.3390/electronics12122743 10.1016/j.patcog.2018.03.005 10.1016/j.artmed.2023.102738 10.1017/cbo9781139032803 10.1109/CIBCB49929.2021.9562821 10.1109/tnsre.2017.2778178 10.1088/1741-2552/aace8c 10.1109/CVPR.2015.7298640 10.1109/CVPR.2019.00265 10.1109/TIP.2021.3089942  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2025.3540164 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 29146 | 
    
| ExternalDocumentID | oai_doaj_org_article_080e7b0acf5347afa443e33448ed1e19 10.1109/access.2025.3540164 10_1109_ACCESS_2025_3540164 10878971  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science KAKENHI grantid: 21H03480; 21K18304; 22K19809 funderid: 10.13039/501100000646  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-97410d4ee3767c0eb5c12de4b505a30c6601be05360d1ef7e463f3c1b0bac0993 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:42:23 EDT 2025 Sun Sep 07 11:26:28 EDT 2025 Mon Jun 30 12:32:01 EDT 2025 Wed Oct 01 06:56:38 EDT 2025 Wed Aug 27 01:52:48 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-97410d4ee3767c0eb5c12de4b505a30c6601be05360d1ef7e463f3c1b0bac0993 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0008-9560-8823 0000-0002-1705-6268  | 
    
| OpenAccessLink | https://doaj.org/article/080e7b0acf5347afa443e33448ed1e19 | 
    
| PQID | 3168461476 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_3168461476 doaj_primary_oai_doaj_org_article_080e7b0acf5347afa443e33448ed1e19 crossref_primary_10_1109_ACCESS_2025_3540164 unpaywall_primary_10_1109_access_2025_3540164 ieee_primary_10878971  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 20250000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 Wang (ref18) 2020 ref34 ref15 ref37 ref14 ref36 ref31 Lakshminarayanan (ref12) Sun (ref22) 2019 ref10 ref32 Iwasawa (ref21); 34 Hendrycks (ref38) 2016 ref2 ref1 ref16 ref19 Bashivan (ref27) 2015 Abadi (ref17) 2016 ref24 ref23 ref26 ref25 Brunner (ref13) Gal (ref29) 2015 ref28 Müller (ref11) ref8 ref7 ref9 ref4 ref3 ref6 Baum (ref30) ref5 Narayanan (ref20) Guo (ref33); 70  | 
    
| References_xml | – ident: ref28 doi: 10.1016/j.strusafe.2008.06.020 – year: 2015 ident: ref29 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: arXiv:1506.02142 – ident: ref31 doi: 10.1007/978-3-642-76153-9_28 – ident: ref19 doi: 10.1007/3-540-28084-7_6 – year: 2016 ident: ref38 article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks publication-title: arXiv:1610.02136 – ident: ref9 doi: 10.1109/EMBC46164.2021.9630419 – ident: ref15 doi: 10.1038/s41592-019-0686-2 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: When does label smoothing help? – ident: ref5 doi: 10.3390/s23187908 – ident: ref32 doi: 10.1162/neco.1991.3.4.461 – ident: ref26 doi: 10.3389/fnhum.2020.00338 – ident: ref4 doi: 10.1002/hbm.23730 – ident: ref36 doi: 10.1109/CVPR.2016.308 – ident: ref7 doi: 10.1109/ACCESS.2019.2939288 – ident: ref8 doi: 10.1007/978-3-030-70665-4_150 – ident: ref25 doi: 10.1109/JBHI.2020.2967128 – volume: 70 start-page: 1321 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref33 article-title: On calibration of modern neural networks – volume: 34 start-page: 2427 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Test-time classifier adjustment module for model-agnostic domain generalization – ident: ref37 doi: 10.1109/TNNLS.2019.2924023 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref12 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref20 article-title: A simple test-time adaptation method for source-free domain generalization – ident: ref14 doi: 10.1161/01.CIR.101.23.e215 – ident: ref16 doi: 10.3390/electronics12122743 – ident: ref6 doi: 10.1016/j.patcog.2018.03.005 – ident: ref23 doi: 10.1016/j.artmed.2023.102738 – ident: ref1 doi: 10.1017/cbo9781139032803 – year: 2016 ident: ref17 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv:1603.04467 – year: 2015 ident: ref27 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv:1511.06448 – ident: ref24 doi: 10.1109/CIBCB49929.2021.9562821 – ident: ref2 doi: 10.1109/tnsre.2017.2778178 – ident: ref3 doi: 10.1088/1741-2552/aace8c – year: 2020 ident: ref18 article-title: Tent: Fully test-time adaptation by entropy minimization publication-title: arXiv:2006.10726 – ident: ref34 doi: 10.1109/CVPR.2015.7298640 – year: 2019 ident: ref22 article-title: Test-time training with self-supervision for generalization under distribution shifts publication-title: arXiv:1909.13231 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Supervised learning of probability distributions by neural networks – ident: ref35 doi: 10.1109/CVPR.2019.00265 – ident: ref10 doi: 10.1109/TIP.2021.3089942 – ident: ref13 article-title: BCI competition 2008-Graz data set A  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.3363662 | 
    
| Snippet | Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 29134 | 
    
| SubjectTerms | Accuracy Adaptation models Brain modeling Brain-computer interface Calibration Classification cross-subject Data models Datasets deep ensemble learning Deep learning Ensemble learning Human-computer interface Imagery motor imagery Motors multi-class classification Neurons Predictions Predictive models test-time adaption Testing time Training Unsupervised learning  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgF-DAzyECA_nAERe7duxkt1I2FaROHJjYzbKdF6lam1S0FRp__fyctGpBk3aLIku2895Lvvfi932EfDRc18BBsKLIA1Ne5cwrqRkUwoiy0top7HeeXujJpfp-lV_1zeqpFwYA0uEzGOBl-pdftWGDpbIY4YUpSuwYf2gK3TVr7QoqqCBR5qZnFhK8_Dwaj-MmYg44zAdY3hBaHXx9Ekl_r6pyADAfbZqlu_nj5vO9b835M3KxXWV3xOR6sFn7Qfj7D4HjvbfxnDztUScddW7ygjyA5iV5ssdF-IrMprNmtnD0R4tRMgf6KxVNV6d0RCftou3IXOlXgCU9a1awwDHTpD9NI_ClY9wwi-8hLOzQaRtzefptgQwZNzQpb-KZpOQGx-Ty_OzneMJ6HQYWZF6uWUw5BK8UADK_BA4-D2JYgfIRPTnJg45JnUeJCc0rAbUBpWUtg_DcuxARqHxNjpq2gTeESuFKHSKkqyqpCj50SDfkjPZe65oPq4x82trHLju6DZvSFF7azpwWzWl7c2bkC9pwNxS5stON-LxtH3o2YmIwnrtQ51IZVzulJEgZ81KIyxVlRo7RRnvzdebJyMnWJWwf2CuLOl8qQhqjM8J2bvLfWl1SuzxY69s7pnlHHuOwrqxzQo7WvzfwPgKdtf-QHPwWu9z4-g priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWge0Ac-FxEYEE-cMTFrh074VbKrgpSV3ugYjlZtjORqm2TirZCy6_H42RXLUgIrtFEGXvG8Rt_vEfIG8N1DRwEK4o8MOVVzrySmkEhjCgrrZ3C-86zcz2dq8-X-WXPs413Yfb37wUv37kkGxjruFE-xCWKiO7vkiOdR-A9IEfz84vxN5SPE7pkMm1EvvzLmwdzT6Lo7zVVDuDlvV2zdtc_3HK5N9OcPeyucG8SQSEeMLka7rZ-GH7-Rt_4j414RB70iJOOuxR5TO5A84Tc3-MhfEoWs0WzWDl60eIIWQL9mhZMN-_pmE7bVdsRudKPAGt62mxghTazpD1NI-ilE2wui_8gXNShszbW8fTTCtkxrmlS3cTzSCkFjsn87PTLZMp6DQYWZF5uWSw3BK8UALK-BA4-D2JUgfIROTnJg44FnUd5Cc0rAbUBpWUtg_DcuxDRp3xGBk3bwHNCpXClDhHOVZVUBR85pBpyRnuvdc1HVUbe3kTHrjuqDZtKFF7a8WQS89FiD9q-BzPyASN4a4o82elB7HnbDzsb8TAYz12oc6mMq51SEqSMNSlEd0WZkWOM_973ClOURmTk5CYhbD-oNxY1vlSEM0ZnhN0myR--dtE-8PXFf9qfkMH2-w5eRbyz9a_7PP8F4DT5EA priority: 102 providerName: Unpaywall  | 
    
| Title | Minima Possible Weights: A Homogenous Deep Ensemble Method for Cross-Subject Motor Imagery Classification | 
    
| URI | https://ieeexplore.ieee.org/document/10878971 https://www.proquest.com/docview/3168461476 https://doi.org/10.1109/access.2025.3540164 https://doaj.org/article/080e7b0acf5347afa443e33448ed1e19  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQOAAHxI8hwkblA0fM7NixE26lbCpInXagYpws23mRKrVJRTuh_ffzc7IpFQcuXCMrefme43zvyf4-Qj4YrhvgIFhZFoEprwrmldQMSmFEVWvtFJ53Xlzq-VJ9vy6uR1ZfuCeslwfugTuLjAaM5y40hVTGNU4pCVLGqgJqAUnwM-dlNSqm0hpcCl0VZpAZErw6m85m8Y1iQZgXn7DXIbQ6-BUlxf7BYuWAbT65abfu9o9br0c_nosX5PnAGOm0j_QleQTtK_JspCP4mqwWq3a1cfSqwxm-BvozNTx3n-mUzrtN1wux0q8AW3re7mCDYxbJO5pG0kpnGB-Lawg2Zeiii3U4_bZBdYtbmlwzcT9RSuExWV6c_5jN2eChwIIsqj2L5YLgtQJA1ZbAwRdB5DUoH5mPkzzoWJB5tIfQPMLZGFBaNjIIz70LkT3KN-So7Vp4S6gUrtIh0rG6lqrkuUOpIGe091o3PK8z8vEeTrvtpTJsKjF4ZXv0LaJvB_Qz8gUhfxiKOtfpQsy-HbJv_5X9jBxjwkbPK01ZGZGR0_sM2uGj3Fn06FKRjhidEfaQ1b9idcmp8iDWd_8j1hPyFO_Z929OydH-9w28j4xm7ydp8k7S4cMJeby8vJr-ugMBWPGP | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQclg48FxEYAEfOJJi148k3ErZVRc2FYddsTfLdiZSRZtUtBVafj0eJ61aEBK3KHLkcWYm_mbi-YaQtxnTNTDgaZ4rn0onVeqk0CnkPONFpbWVWO9cTvXkWn6-UTd9sXqshQGAePgMBngZ_-VXrd9gqix4eJ7lBVaM31VSStWVa-1SKthDolBZzy3EWfF-NB6HZYQocKgGmODgWh7sP5Gmv--rcgAxjzfN0t7-tPP53m5z_pBMt3J2h0y-DzZrN_C__qBw_O-FPCIPetxJR52hPCZ3oHlC7u-xET4ls3LWzBaWfm3RT-ZAv8W06eoDHdFJu2g7Olf6CWBJz5oVLHBMGTtQ0wB96RgXnIYvEaZ2aNmGaJ5eLJAj45bG3pt4Kikawgm5Pj-7Gk_SvhND6oUq1mkIOjirJAByv3gGTnk-rEC6gJ-sYF6HsM5hkwnNKg51BlKLWnjumLM-YFDxjBw1bQPPCRXcFtoHUFdVQuZsaJFwyGbaOa1rNqwS8m6rH7PsCDdMDFRYYTp1GlSn6dWZkI-ow91QZMuON8L7Nr3zmYCKIXPM-loJmdnaSilAiBCZQhCXFwk5QR3tzdepJyGnW5MwvWuvDHb6kgHUZDoh6c5M_pLVxn6XB7K--Mc0b8jx5Kq8NJcX0y8vyT18pEvynJKj9Y8NvAqwZ-1eR2P_Debr_Ec | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWge0Ac-FxEYEE-cMTFrh074VbKrgpSV3ugYjlZtjORqm2TirZCy6_H42RXLUgIrtFEGXvG8Rt_vEfIG8N1DRwEK4o8MOVVzrySmkEhjCgrrZ3C-86zcz2dq8-X-WXPs413Yfb37wUv37kkGxjruFE-xCWKiO7vkiOdR-A9IEfz84vxN5SPE7pkMm1EvvzLmwdzT6Lo7zVVDuDlvV2zdtc_3HK5N9OcPeyucG8SQSEeMLka7rZ-GH7-Rt_4j414RB70iJOOuxR5TO5A84Tc3-MhfEoWs0WzWDl60eIIWQL9mhZMN-_pmE7bVdsRudKPAGt62mxghTazpD1NI-ilE2wui_8gXNShszbW8fTTCtkxrmlS3cTzSCkFjsn87PTLZMp6DQYWZF5uWSw3BK8UALK-BA4-D2JUgfIROTnJg44FnUd5Cc0rAbUBpWUtg_DcuxDRp3xGBk3bwHNCpXClDhHOVZVUBR85pBpyRnuvdc1HVUbe3kTHrjuqDZtKFF7a8WQS89FiD9q-BzPyASN4a4o82elB7HnbDzsb8TAYz12oc6mMq51SEqSMNSlEd0WZkWOM_973ClOURmTk5CYhbD-oNxY1vlSEM0ZnhN0myR--dtE-8PXFf9qfkMH2-w5eRbyz9a_7PP8F4DT5EA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minima+Possible+Weights%3A+A+Homogenous+Deep+Ensemble+Method+for+Cross-Subject+Motor+Imagery+Classification&rft.jtitle=IEEE+access&rft.au=Dinh%2C+Quang+Pham+Lam&rft.au=Nambu%2C+Isao&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=29134&rft.epage=29146&rft_id=info:doi/10.1109%2FACCESS.2025.3540164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3540164 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |