Minima Possible Weights: A Homogenous Deep Ensemble Method for Cross-Subject Motor Imagery Classification

Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible W...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 29134 - 29146
Main Authors Dinh, Quang Pham Lam, Nambu, Isao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3540164

Cover

Abstract Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible Weights (MPW) method, an unsupervised learning approach designed to enhance MI classification through ensemble deep learning. MPW aggregates predicted probabilities from multiple models and selects the class with the lowest associated weight for the final prediction. We evaluated MPW against various ensemble learning and test-time adaptation methods using two benchmark datasets: BCI Competition IV Dataset 2a and PhysionetMI. Our results indicate that MPW achieves cross-subject classification accuracy of up to 64.75% on BCI Competition IV Dataset 2a and 66.92% on PhysionetMI. Although the current performance is not yet sufficient for practical BCI applications, MPW shows potential in reducing calibration time and easing the burden of adapting models to new subjects.
AbstractList Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet cross-subject classification remains challenging due to substantial inter-subject variability. In this study, we propose the Minima Possible Weights (MPW) method, an unsupervised learning approach designed to enhance MI classification through ensemble deep learning. MPW aggregates predicted probabilities from multiple models and selects the class with the lowest associated weight for the final prediction. We evaluated MPW against various ensemble learning and test-time adaptation methods using two benchmark datasets: BCI Competition IV Dataset 2a and PhysionetMI. Our results indicate that MPW achieves cross-subject classification accuracy of up to 64.75% on BCI Competition IV Dataset 2a and 66.92% on PhysionetMI. Although the current performance is not yet sufficient for practical BCI applications, MPW shows potential in reducing calibration time and easing the burden of adapting models to new subjects.
Author Dinh, Quang Pham Lam
Nambu, Isao
Author_xml – sequence: 1
  givenname: Quang Pham Lam
  orcidid: 0009-0008-9560-8823
  surname: Dinh
  fullname: Dinh, Quang Pham Lam
  email: s193177@stn.nagaokaut.ac.jp
  organization: Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan
– sequence: 2
  givenname: Isao
  orcidid: 0000-0002-1705-6268
  surname: Nambu
  fullname: Nambu, Isao
  organization: Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan
BookMark eNplkVFr2zAUhcVooV3bX9A9CPbs7CqSJXtvwcvWQMMG2dijkOXrVMGxMsmm5N9Pnssom14kDud8cI7ekove90jIPYMFY1B-WFXVerdbLGGZL3gugEnxhlwvmSwznnN58ep9Re5iPEA6RZJydU3c1vXuaOg3H6OrO6Q_0e2fhviRruiDP_o99n6M9BPiia77iMfJs8XhyTe09YFWIQWz3Vgf0A5064ekbY5mj-FMq84kaOusGZzvb8lla7qIdy_3Dfnxef29esgev37ZVKvHzPK8HLJSCQaNQORKKgtY55YtGxR1DrnhYKUEViOkMtAwbBUKyVtuWQ21sVCW_IZsZm7jzUGfQmoXztobp_8IPuy1CYOzHWooAFUNxrY5F8q0RgiOnAtRYGKziSVm1tifzPnZdN1fIAM9ra-NtRijntbXL-un2Ps5dgr-14hx0Ac_hj611pzJQkgmlEwuPrvstGHA9j_2_LP_st_NKYeIrxKFKkrF-G-mVp9P
CODEN IAECCG
Cites_doi 10.1016/j.strusafe.2008.06.020
10.1007/978-3-642-76153-9_28
10.1007/3-540-28084-7_6
10.1109/EMBC46164.2021.9630419
10.1038/s41592-019-0686-2
10.3390/s23187908
10.1162/neco.1991.3.4.461
10.3389/fnhum.2020.00338
10.1002/hbm.23730
10.1109/CVPR.2016.308
10.1109/ACCESS.2019.2939288
10.1007/978-3-030-70665-4_150
10.1109/JBHI.2020.2967128
10.1109/TNNLS.2019.2924023
10.1161/01.CIR.101.23.e215
10.3390/electronics12122743
10.1016/j.patcog.2018.03.005
10.1016/j.artmed.2023.102738
10.1017/cbo9781139032803
10.1109/CIBCB49929.2021.9562821
10.1109/tnsre.2017.2778178
10.1088/1741-2552/aace8c
10.1109/CVPR.2015.7298640
10.1109/CVPR.2019.00265
10.1109/TIP.2021.3089942
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3540164
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 29146
ExternalDocumentID oai_doaj_org_article_080e7b0acf5347afa443e33448ed1e19
10.1109/access.2025.3540164
10_1109_ACCESS_2025_3540164
10878971
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: 21H03480; 21K18304; 22K19809
  funderid: 10.13039/501100000646
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-97410d4ee3767c0eb5c12de4b505a30c6601be05360d1ef7e463f3c1b0bac0993
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:23 EDT 2025
Sun Sep 07 11:26:28 EDT 2025
Mon Jun 30 12:32:01 EDT 2025
Wed Oct 01 06:56:38 EDT 2025
Wed Aug 27 01:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-97410d4ee3767c0eb5c12de4b505a30c6601be05360d1ef7e463f3c1b0bac0993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-9560-8823
0000-0002-1705-6268
OpenAccessLink https://doaj.org/article/080e7b0acf5347afa443e33448ed1e19
PQID 3168461476
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_3168461476
doaj_primary_oai_doaj_org_article_080e7b0acf5347afa443e33448ed1e19
crossref_primary_10_1109_ACCESS_2025_3540164
unpaywall_primary_10_1109_access_2025_3540164
ieee_primary_10878971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
Wang (ref18) 2020
ref34
ref15
ref37
ref14
ref36
ref31
Lakshminarayanan (ref12)
Sun (ref22) 2019
ref10
ref32
Iwasawa (ref21); 34
Hendrycks (ref38) 2016
ref2
ref1
ref16
ref19
Bashivan (ref27) 2015
Abadi (ref17) 2016
ref24
ref23
ref26
ref25
Brunner (ref13)
Gal (ref29) 2015
ref28
Müller (ref11)
ref8
ref7
ref9
ref4
ref3
ref6
Baum (ref30)
ref5
Narayanan (ref20)
Guo (ref33); 70
References_xml – ident: ref28
  doi: 10.1016/j.strusafe.2008.06.020
– year: 2015
  ident: ref29
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
  publication-title: arXiv:1506.02142
– ident: ref31
  doi: 10.1007/978-3-642-76153-9_28
– ident: ref19
  doi: 10.1007/3-540-28084-7_6
– year: 2016
  ident: ref38
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
  publication-title: arXiv:1610.02136
– ident: ref9
  doi: 10.1109/EMBC46164.2021.9630419
– ident: ref15
  doi: 10.1038/s41592-019-0686-2
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: When does label smoothing help?
– ident: ref5
  doi: 10.3390/s23187908
– ident: ref32
  doi: 10.1162/neco.1991.3.4.461
– ident: ref26
  doi: 10.3389/fnhum.2020.00338
– ident: ref4
  doi: 10.1002/hbm.23730
– ident: ref36
  doi: 10.1109/CVPR.2016.308
– ident: ref7
  doi: 10.1109/ACCESS.2019.2939288
– ident: ref8
  doi: 10.1007/978-3-030-70665-4_150
– ident: ref25
  doi: 10.1109/JBHI.2020.2967128
– volume: 70
  start-page: 1321
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref33
  article-title: On calibration of modern neural networks
– volume: 34
  start-page: 2427
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Test-time classifier adjustment module for model-agnostic domain generalization
– ident: ref37
  doi: 10.1109/TNNLS.2019.2924023
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref20
  article-title: A simple test-time adaptation method for source-free domain generalization
– ident: ref14
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref16
  doi: 10.3390/electronics12122743
– ident: ref6
  doi: 10.1016/j.patcog.2018.03.005
– ident: ref23
  doi: 10.1016/j.artmed.2023.102738
– ident: ref1
  doi: 10.1017/cbo9781139032803
– year: 2016
  ident: ref17
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv:1603.04467
– year: 2015
  ident: ref27
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv:1511.06448
– ident: ref24
  doi: 10.1109/CIBCB49929.2021.9562821
– ident: ref2
  doi: 10.1109/tnsre.2017.2778178
– ident: ref3
  doi: 10.1088/1741-2552/aace8c
– year: 2020
  ident: ref18
  article-title: Tent: Fully test-time adaptation by entropy minimization
  publication-title: arXiv:2006.10726
– ident: ref34
  doi: 10.1109/CVPR.2015.7298640
– year: 2019
  ident: ref22
  article-title: Test-time training with self-supervision for generalization under distribution shifts
  publication-title: arXiv:1909.13231
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Supervised learning of probability distributions by neural networks
– ident: ref35
  doi: 10.1109/CVPR.2019.00265
– ident: ref10
  doi: 10.1109/TIP.2021.3089942
– ident: ref13
  article-title: BCI competition 2008-Graz data set A
SSID ssj0000816957
Score 2.3363662
Snippet Motor Imagery (MI) systems in Brain-Computer Interface (BCI) research provide communication and control solutions for individuals with motor impairments, yet...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29134
SubjectTerms Accuracy
Adaptation models
Brain modeling
Brain-computer interface
Calibration
Classification
cross-subject
Data models
Datasets
deep ensemble learning
Deep learning
Ensemble learning
Human-computer interface
Imagery
motor imagery
Motors
multi-class classification
Neurons
Predictions
Predictive models
test-time adaption
Testing time
Training
Unsupervised learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgF-DAzyECA_nAERe7duxkt1I2FaROHJjYzbKdF6lam1S0FRp__fyctGpBk3aLIku2895Lvvfi932EfDRc18BBsKLIA1Ne5cwrqRkUwoiy0top7HeeXujJpfp-lV_1zeqpFwYA0uEzGOBl-pdftWGDpbIY4YUpSuwYf2gK3TVr7QoqqCBR5qZnFhK8_Dwaj-MmYg44zAdY3hBaHXx9Ekl_r6pyADAfbZqlu_nj5vO9b835M3KxXWV3xOR6sFn7Qfj7D4HjvbfxnDztUScddW7ygjyA5iV5ssdF-IrMprNmtnD0R4tRMgf6KxVNV6d0RCftou3IXOlXgCU9a1awwDHTpD9NI_ClY9wwi-8hLOzQaRtzefptgQwZNzQpb-KZpOQGx-Ty_OzneMJ6HQYWZF6uWUw5BK8UADK_BA4-D2JYgfIRPTnJg45JnUeJCc0rAbUBpWUtg_DcuxARqHxNjpq2gTeESuFKHSKkqyqpCj50SDfkjPZe65oPq4x82trHLju6DZvSFF7azpwWzWl7c2bkC9pwNxS5stON-LxtH3o2YmIwnrtQ51IZVzulJEgZ81KIyxVlRo7RRnvzdebJyMnWJWwf2CuLOl8qQhqjM8J2bvLfWl1SuzxY69s7pnlHHuOwrqxzQo7WvzfwPgKdtf-QHPwWu9z4-g
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWge0Ac-FxEYEE-cMTFrh074VbKrgpSV3ugYjlZtjORqm2TirZCy6_H42RXLUgIrtFEGXvG8Rt_vEfIG8N1DRwEK4o8MOVVzrySmkEhjCgrrZ3C-86zcz2dq8-X-WXPs413Yfb37wUv37kkGxjruFE-xCWKiO7vkiOdR-A9IEfz84vxN5SPE7pkMm1EvvzLmwdzT6Lo7zVVDuDlvV2zdtc_3HK5N9OcPeyucG8SQSEeMLka7rZ-GH7-Rt_4j414RB70iJOOuxR5TO5A84Tc3-MhfEoWs0WzWDl60eIIWQL9mhZMN-_pmE7bVdsRudKPAGt62mxghTazpD1NI-ilE2wui_8gXNShszbW8fTTCtkxrmlS3cTzSCkFjsn87PTLZMp6DQYWZF5uWSw3BK8UALK-BA4-D2JUgfIROTnJg44FnUd5Cc0rAbUBpWUtg_DcuxDRp3xGBk3bwHNCpXClDhHOVZVUBR85pBpyRnuvdc1HVUbe3kTHrjuqDZtKFF7a8WQS89FiD9q-BzPyASN4a4o82elB7HnbDzsb8TAYz12oc6mMq51SEqSMNSlEd0WZkWOM_973ClOURmTk5CYhbD-oNxY1vlSEM0ZnhN0myR--dtE-8PXFf9qfkMH2-w5eRbyz9a_7PP8F4DT5EA
  priority: 102
  providerName: Unpaywall
Title Minima Possible Weights: A Homogenous Deep Ensemble Method for Cross-Subject Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/10878971
https://www.proquest.com/docview/3168461476
https://doi.org/10.1109/access.2025.3540164
https://doaj.org/article/080e7b0acf5347afa443e33448ed1e19
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQOAAHxI8hwkblA0fM7NixE26lbCpInXagYpws23mRKrVJRTuh_ffzc7IpFQcuXCMrefme43zvyf4-Qj4YrhvgIFhZFoEprwrmldQMSmFEVWvtFJ53Xlzq-VJ9vy6uR1ZfuCeslwfugTuLjAaM5y40hVTGNU4pCVLGqgJqAUnwM-dlNSqm0hpcCl0VZpAZErw6m85m8Y1iQZgXn7DXIbQ6-BUlxf7BYuWAbT65abfu9o9br0c_nosX5PnAGOm0j_QleQTtK_JspCP4mqwWq3a1cfSqwxm-BvozNTx3n-mUzrtN1wux0q8AW3re7mCDYxbJO5pG0kpnGB-Lawg2Zeiii3U4_bZBdYtbmlwzcT9RSuExWV6c_5jN2eChwIIsqj2L5YLgtQJA1ZbAwRdB5DUoH5mPkzzoWJB5tIfQPMLZGFBaNjIIz70LkT3KN-So7Vp4S6gUrtIh0rG6lqrkuUOpIGe091o3PK8z8vEeTrvtpTJsKjF4ZXv0LaJvB_Qz8gUhfxiKOtfpQsy-HbJv_5X9jBxjwkbPK01ZGZGR0_sM2uGj3Fn06FKRjhidEfaQ1b9idcmp8iDWd_8j1hPyFO_Z929OydH-9w28j4xm7ydp8k7S4cMJeby8vJr-ugMBWPGP
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQclg48FxEYAEfOJJi148k3ErZVRc2FYddsTfLdiZSRZtUtBVafj0eJ61aEBK3KHLkcWYm_mbi-YaQtxnTNTDgaZ4rn0onVeqk0CnkPONFpbWVWO9cTvXkWn6-UTd9sXqshQGAePgMBngZ_-VXrd9gqix4eJ7lBVaM31VSStWVa-1SKthDolBZzy3EWfF-NB6HZYQocKgGmODgWh7sP5Gmv--rcgAxjzfN0t7-tPP53m5z_pBMt3J2h0y-DzZrN_C__qBw_O-FPCIPetxJR52hPCZ3oHlC7u-xET4ls3LWzBaWfm3RT-ZAv8W06eoDHdFJu2g7Olf6CWBJz5oVLHBMGTtQ0wB96RgXnIYvEaZ2aNmGaJ5eLJAj45bG3pt4Kikawgm5Pj-7Gk_SvhND6oUq1mkIOjirJAByv3gGTnk-rEC6gJ-sYF6HsM5hkwnNKg51BlKLWnjumLM-YFDxjBw1bQPPCRXcFtoHUFdVQuZsaJFwyGbaOa1rNqwS8m6rH7PsCDdMDFRYYTp1GlSn6dWZkI-ow91QZMuON8L7Nr3zmYCKIXPM-loJmdnaSilAiBCZQhCXFwk5QR3tzdepJyGnW5MwvWuvDHb6kgHUZDoh6c5M_pLVxn6XB7K--Mc0b8jx5Kq8NJcX0y8vyT18pEvynJKj9Y8NvAqwZ-1eR2P_Debr_Ec
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWge0Ac-FxEYEE-cMTFrh074VbKrgpSV3ugYjlZtjORqm2TirZCy6_H42RXLUgIrtFEGXvG8Rt_vEfIG8N1DRwEK4o8MOVVzrySmkEhjCgrrZ3C-86zcz2dq8-X-WXPs413Yfb37wUv37kkGxjruFE-xCWKiO7vkiOdR-A9IEfz84vxN5SPE7pkMm1EvvzLmwdzT6Lo7zVVDuDlvV2zdtc_3HK5N9OcPeyucG8SQSEeMLka7rZ-GH7-Rt_4j414RB70iJOOuxR5TO5A84Tc3-MhfEoWs0WzWDl60eIIWQL9mhZMN-_pmE7bVdsRudKPAGt62mxghTazpD1NI-ilE2wui_8gXNShszbW8fTTCtkxrmlS3cTzSCkFjsn87PTLZMp6DQYWZF5uWSw3BK8UALK-BA4-D2JUgfIROTnJg44FnUd5Cc0rAbUBpWUtg_DcuxDRp3xGBk3bwHNCpXClDhHOVZVUBR85pBpyRnuvdc1HVUbe3kTHrjuqDZtKFF7a8WQS89FiD9q-BzPyASN4a4o82elB7HnbDzsb8TAYz12oc6mMq51SEqSMNSlEd0WZkWOM_973ClOURmTk5CYhbD-oNxY1vlSEM0ZnhN0myR--dtE-8PXFf9qfkMH2-w5eRbyz9a_7PP8F4DT5EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minima+Possible+Weights%3A+A+Homogenous+Deep+Ensemble+Method+for+Cross-Subject+Motor+Imagery+Classification&rft.jtitle=IEEE+access&rft.au=Dinh%2C+Quang+Pham+Lam&rft.au=Nambu%2C+Isao&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=29134&rft.epage=29146&rft_id=info:doi/10.1109%2FACCESS.2025.3540164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3540164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon