Finite termination of a Newton-type algorithm for a class of affine variational inequality problems

Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimizat...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 217; no. 7; pp. 3368 - 3378
Main Authors Zhao, Na, Huang, Zheng-Hai
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2010.08.069

Cover

Abstract Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported.
AbstractList Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported.
Author Huang, Zheng-Hai
Zhao, Na
Author_xml – sequence: 1
  givenname: Na
  surname: Zhao
  fullname: Zhao, Na
  email: zhaonatoday@sina.com
  organization: College of Science, Civil Aviation University of China, Tianjin, 300300, PR China
– sequence: 2
  givenname: Zheng-Hai
  surname: Huang
  fullname: Huang, Zheng-Hai
  email: huangzhenghai@tju.edu.cn
  organization: Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23835639$$DView record in Pascal Francis
BookMark eNp9kMFuGyEQhlGVSnWcPkBvXKqe1mGXXVjUUxXFbaUoueSOZvHQYrHgAE7ktw-200sPEQc0zP8Nmu-SXIQYkJAvLVu1rBXX2xXMZtWxWrNxxYT6QBbtKHkziF5dkAVjSjScMf6JXOa8ZYxJ0fYLYtYuuIK0YJpdgOJioNFSoPf4UmJoymGHFPyfmFz5O1MbU-0ZDzmfYta6gPQZkjuh4Gmtn_bgXTnQXYqTxzlfkY8WfMbPb_eSPK5vH29-NXcPP3_f_LhrDB9UacZJdGqalDBygl5sOpCqs30_9JwL5MYyKe2AFhizw9SiGUdpxdRxxOMTX5Jv57H136c95qJnlw16DwHjPuuxV73kx7MkX9-SkA14myAYl_UuuRnSQXd85IPgqubkOWdSzDmh1caV06IlgfO6ZfooX291la-P8jUbdZVfyfY_8t_w95jvZwaro2eHSWfjMBjcuISm6E1079CvocugMQ
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1142_S0217595920500360
Cites_doi 10.1023/A:1026546230851
10.1137/S0363012997315907
10.1007/BF01589441
10.1007/s10589-006-6512-7
10.1007/s101079900127
10.1007/BF01585180
10.1007/BF01581087
10.1016/S0375-9601(02)00424-3
10.1016/S0375-9601(02)01673-0
10.1137/S1052623498336590
10.1016/j.amc.2010.02.001
10.1007/BF01581275
10.1007/BF01588254
10.1016/S0167-6377(02)00113-X
10.1007/s10898-004-6098-5
10.1023/A:1023065422836
10.1016/j.amc.2009.01.054
10.1007/s10107-003-0457-8
10.1007/s10589-008-9180-y
10.1016/j.amc.2009.08.057
10.1016/j.amc.2010.03.058
10.1007/BF02592200
10.1080/10556780600627727
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2010.08.069
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 3378
ExternalDocumentID 23835639
10_1016_j_amc_2010_08_069
S0096300310009331
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-8b629bb96c7ba46d2a792f4454336e3cf077f5efa00f5b1ec887f6b23eea00f3
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Wed Oct 01 13:41:39 EDT 2025
Mon Jul 21 09:13:23 EDT 2025
Wed Oct 01 04:43:23 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Fri Feb 23 02:31:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 65K10
Affine variational inequality problem
Generalized Newton method
Smoothing Newton method
Finite termination
90C33
Transcendental equation
Smoothing methods
Optimization method
Iteration
Algorithm
Exact solution
Equation system
Non linear equation
Variational problem
Numerical analysis
Variational inequality
Applied mathematics
Algebraic equation
Newton method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-8b629bb96c7ba46d2a792f4454336e3cf077f5efa00f5b1ec887f6b23eea00f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 849473737
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_849473737
pascalfrancis_primary_23835639
crossref_citationtrail_10_1016_j_amc_2010_08_069
crossref_primary_10_1016_j_amc_2010_08_069
elsevier_sciencedirect_doi_10_1016_j_amc_2010_08_069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied mathematics and computation
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Huang, Qi, Sun (b0060) 2004; 99
Mehrotra, Ye (b0080) 1993; 62
Ni, Wang (b0085) 2010; 216
Huang, Sun, Zhao (b0065) 2006; 35
Huang (b0050) 2002; 30
Chen, Chen (b0005) 2000; 13
Qi, Sun (b0095) 1993; 58
Illés, Peng, Roos, Terlaky (b0075) 2000; 11
Huang, Ni (b0055) 2010; 45
Huang, Zhang, Han (b0070) 2004; 22
Wang, Zhao (b0115) 2009; 211
Fang, Han (b0025) 2005; 33
Fischer, Kanzow (b0035) 1996; 74
Chen, Ye (b0010) 1999; 37
Fathi (b0030) 1979; 17
Qi, Sun, Zhou (b0090) 2010; 87
Clarke (b0015) 1983
Sun, Han, Zhao (b0100) 1998; 21
Sun, Huang (b0105) 2006; 21
Zhang, Wang (b0130) 2002; 298
Tang, Liu, Ma (b0110) 2009; 215
Fang (b0020) 2010; 216
Gao, Liao (b0045) 2003; 307
Ye (b0120) 1992; 57
Fukushima (b0040) 1986; 35
Zhang, Xiu (b0125) 2003; 26
Chen (10.1016/j.amc.2010.08.069_b0005) 2000; 13
Fathi (10.1016/j.amc.2010.08.069_b0030) 1979; 17
Fischer (10.1016/j.amc.2010.08.069_b0035) 1996; 74
Huang (10.1016/j.amc.2010.08.069_b0065) 2006; 35
Qi (10.1016/j.amc.2010.08.069_b0090) 2010; 87
Ye (10.1016/j.amc.2010.08.069_b0120) 1992; 57
Clarke (10.1016/j.amc.2010.08.069_b0015) 1983
Huang (10.1016/j.amc.2010.08.069_b0060) 2004; 99
Sun (10.1016/j.amc.2010.08.069_b0105) 2006; 21
Fang (10.1016/j.amc.2010.08.069_b0020) 2010; 216
Sun (10.1016/j.amc.2010.08.069_b0100) 1998; 21
Chen (10.1016/j.amc.2010.08.069_b0010) 1999; 37
Huang (10.1016/j.amc.2010.08.069_b0050) 2002; 30
Fang (10.1016/j.amc.2010.08.069_b0025) 2005; 33
Fukushima (10.1016/j.amc.2010.08.069_b0040) 1986; 35
Huang (10.1016/j.amc.2010.08.069_b0055) 2010; 45
Zhang (10.1016/j.amc.2010.08.069_b0130) 2002; 298
Mehrotra (10.1016/j.amc.2010.08.069_b0080) 1993; 62
Illés (10.1016/j.amc.2010.08.069_b0075) 2000; 11
Zhang (10.1016/j.amc.2010.08.069_b0125) 2003; 26
Wang (10.1016/j.amc.2010.08.069_b0115) 2009; 211
Tang (10.1016/j.amc.2010.08.069_b0110) 2009; 215
Gao (10.1016/j.amc.2010.08.069_b0045) 2003; 307
Huang (10.1016/j.amc.2010.08.069_b0070) 2004; 22
Ni (10.1016/j.amc.2010.08.069_b0085) 2010; 216
Qi (10.1016/j.amc.2010.08.069_b0095) 1993; 58
References_xml – volume: 35
  start-page: 199
  year: 2006
  end-page: 237
  ident: b0065
  article-title: A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming, Comput
  publication-title: Optim. Appl.
– volume: 216
  start-page: 2207
  year: 2010
  end-page: 2214
  ident: b0085
  article-title: A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search
  publication-title: Appl. Math. Comput.
– volume: 57
  start-page: 325
  year: 1992
  end-page: 335
  ident: b0120
  article-title: On the finite convergence of interior-point algorithms for linear programming
  publication-title: Math. Program.
– volume: 45
  start-page: 557
  year: 2010
  end-page: 579
  ident: b0055
  article-title: Smoothing algorithms for complementarity problems over symmetric cones
  publication-title: Comput. Optim. Appl.
– volume: 37
  start-page: 589
  year: 1999
  end-page: 616
  ident: b0010
  article-title: On homotopy-smoothing methods for box-constrained variational inequalities
  publication-title: SIAM J.Control Optim.
– volume: 21
  start-page: 597
  year: 2006
  end-page: 615
  ident: b0105
  article-title: A smoothing Newton algorithm for the LCP with a sufficient matrix that terminates finitely at a maximally complementary solution
  publication-title: Optim. Method Softw.
– volume: 21
  start-page: 148
  year: 1998
  end-page: 154
  ident: b0100
  article-title: On the finite termination of the damped-Newton algorithm for the linear complementarity problems
  publication-title: Acta Math. Appl. Sinica
– volume: 58
  start-page: 353
  year: 1993
  end-page: 367
  ident: b0095
  article-title: A nonsmooth version of Newton’s method
  publication-title: Math. Program.
– volume: 216
  start-page: 1087
  year: 2010
  end-page: 1095
  ident: b0020
  article-title: A new one-step smoothing Newton method for nonlinear complementarity problem with P
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 335
  year: 1979
  end-page: 344
  ident: b0030
  article-title: Computational complexity of LCPs associated with positive semidefinite matrices
  publication-title: Math. Program.
– volume: 26
  start-page: 183
  year: 2003
  end-page: 198
  ident: b0125
  article-title: Identification of the optimal active set in a noninterior continuation method for LCP
  publication-title: J. Global Optim.
– volume: 13
  start-page: 131
  year: 2000
  end-page: 158
  ident: b0005
  article-title: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints
  publication-title: Comput. Optim. Appl.
– volume: 35
  start-page: 58
  year: 1986
  end-page: 70
  ident: b0040
  article-title: A relaxed projection method for variational inequalities
  publication-title: Math. Program.
– volume: 11
  start-page: 320
  year: 2000
  end-page: 340
  ident: b0075
  article-title: A strongly polynomial procedure yielding a maximally complementarity solution for P∗(
  publication-title: SIAM J. Optim.
– volume: 211
  start-page: 177
  year: 2009
  end-page: 184
  ident: b0115
  article-title: Finite termination of a smoothing-type algorithm for the monotone affine variational inequality problem
  publication-title: Appl. Math. Comput.
– volume: 99
  start-page: 423
  year: 2004
  end-page: 441
  ident: b0060
  article-title: Sub-quadratic convergence of a smoothing Newton algorithm for the P
  publication-title: Math. Program.
– volume: 62
  start-page: 497
  year: 1993
  end-page: 515
  ident: b0080
  article-title: On finding the optimal facet of linear programs
  publication-title: Math. Program.
– year: 1983
  ident: b0015
  article-title: Optimization and Nonsmooth Analysis
– volume: 22
  start-page: 797
  year: 2004
  end-page: 806
  ident: b0070
  article-title: A hybrid smoothing-nonsmooth Newton-type algorithm yielding an exact solution of the P
  publication-title: J. Comput. Math.
– volume: 74
  start-page: 279
  year: 1996
  end-page: 292
  ident: b0035
  article-title: On the finite termination of an iterative method for linear complementarity problems
  publication-title: Math. Program.
– volume: 298
  start-page: 271
  year: 2002
  end-page: 278
  ident: b0130
  article-title: A dual neural network for convex quadratic programming subject to linear equality and inequality constraints
  publication-title: Phys. Lett. A.
– volume: 215
  start-page: 2326
  year: 2009
  end-page: 2336
  ident: b0110
  article-title: One-step smoothing Newton method for solving the mixed complementarity problem with a P
  publication-title: Appl. Math. Comput.
– volume: 307
  start-page: 118
  year: 2003
  end-page: 128
  ident: b0045
  article-title: A neural network for monotone variational inequalities with linear constraints
  publication-title: Phys. Lett. A.
– volume: 30
  start-page: 202
  year: 2002
  end-page: 210
  ident: b0050
  article-title: Sufficient conditions on nonemptiness and boundedness of the solution set of the P
  publication-title: Oper. Res. Letters
– volume: 87
  start-page: 1
  year: 2010
  end-page: 35
  ident: b0090
  article-title: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math
  publication-title: Program.
– volume: 33
  start-page: 369
  year: 2005
  end-page: 391
  ident: b0025
  article-title: On the finite termination of an entropy function based non-interior continuation method for vertical linear complementarity problems
  publication-title: J. Global Optim.
– volume: 13
  start-page: 131
  year: 2000
  ident: 10.1016/j.amc.2010.08.069_b0005
  article-title: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1026546230851
– volume: 37
  start-page: 589
  year: 1999
  ident: 10.1016/j.amc.2010.08.069_b0010
  article-title: On homotopy-smoothing methods for box-constrained variational inequalities
  publication-title: SIAM J.Control Optim.
  doi: 10.1137/S0363012997315907
– volume: 35
  start-page: 58
  year: 1986
  ident: 10.1016/j.amc.2010.08.069_b0040
  article-title: A relaxed projection method for variational inequalities
  publication-title: Math. Program.
  doi: 10.1007/BF01589441
– volume: 35
  start-page: 199
  year: 2006
  ident: 10.1016/j.amc.2010.08.069_b0065
  article-title: A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming, Comput
  publication-title: Optim. Appl.
  doi: 10.1007/s10589-006-6512-7
– volume: 87
  start-page: 1
  year: 2010
  ident: 10.1016/j.amc.2010.08.069_b0090
  article-title: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math
  publication-title: Program.
  doi: 10.1007/s101079900127
– volume: 62
  start-page: 497
  year: 1993
  ident: 10.1016/j.amc.2010.08.069_b0080
  article-title: On finding the optimal facet of linear programs
  publication-title: Math. Program.
  doi: 10.1007/BF01585180
– volume: 57
  start-page: 325
  year: 1992
  ident: 10.1016/j.amc.2010.08.069_b0120
  article-title: On the finite convergence of interior-point algorithms for linear programming
  publication-title: Math. Program.
  doi: 10.1007/BF01581087
– volume: 298
  start-page: 271
  year: 2002
  ident: 10.1016/j.amc.2010.08.069_b0130
  article-title: A dual neural network for convex quadratic programming subject to linear equality and inequality constraints
  publication-title: Phys. Lett. A.
  doi: 10.1016/S0375-9601(02)00424-3
– volume: 307
  start-page: 118
  year: 2003
  ident: 10.1016/j.amc.2010.08.069_b0045
  article-title: A neural network for monotone variational inequalities with linear constraints
  publication-title: Phys. Lett. A.
  doi: 10.1016/S0375-9601(02)01673-0
– volume: 11
  start-page: 320
  year: 2000
  ident: 10.1016/j.amc.2010.08.069_b0075
  article-title: A strongly polynomial procedure yielding a maximally complementarity solution for P∗(κ) linear complementarity problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498336590
– volume: 216
  start-page: 1087
  issue: 4
  year: 2010
  ident: 10.1016/j.amc.2010.08.069_b0020
  article-title: A new one-step smoothing Newton method for nonlinear complementarity problem with P0-function
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.02.001
– volume: 58
  start-page: 353
  year: 1993
  ident: 10.1016/j.amc.2010.08.069_b0095
  article-title: A nonsmooth version of Newton’s method
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 22
  start-page: 797
  year: 2004
  ident: 10.1016/j.amc.2010.08.069_b0070
  article-title: A hybrid smoothing-nonsmooth Newton-type algorithm yielding an exact solution of the P0-LCP
  publication-title: J. Comput. Math.
– volume: 17
  start-page: 335
  year: 1979
  ident: 10.1016/j.amc.2010.08.069_b0030
  article-title: Computational complexity of LCPs associated with positive semidefinite matrices
  publication-title: Math. Program.
  doi: 10.1007/BF01588254
– volume: 30
  start-page: 202
  year: 2002
  ident: 10.1016/j.amc.2010.08.069_b0050
  article-title: Sufficient conditions on nonemptiness and boundedness of the solution set of the P0 function nonlinear complementarity problem
  publication-title: Oper. Res. Letters
  doi: 10.1016/S0167-6377(02)00113-X
– volume: 21
  start-page: 148
  year: 1998
  ident: 10.1016/j.amc.2010.08.069_b0100
  article-title: On the finite termination of the damped-Newton algorithm for the linear complementarity problems
  publication-title: Acta Math. Appl. Sinica
– volume: 33
  start-page: 369
  year: 2005
  ident: 10.1016/j.amc.2010.08.069_b0025
  article-title: On the finite termination of an entropy function based non-interior continuation method for vertical linear complementarity problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-004-6098-5
– volume: 26
  start-page: 183
  year: 2003
  ident: 10.1016/j.amc.2010.08.069_b0125
  article-title: Identification of the optimal active set in a noninterior continuation method for LCP
  publication-title: J. Global Optim.
  doi: 10.1023/A:1023065422836
– volume: 211
  start-page: 177
  year: 2009
  ident: 10.1016/j.amc.2010.08.069_b0115
  article-title: Finite termination of a smoothing-type algorithm for the monotone affine variational inequality problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.01.054
– volume: 99
  start-page: 423
  year: 2004
  ident: 10.1016/j.amc.2010.08.069_b0060
  article-title: Sub-quadratic convergence of a smoothing Newton algorithm for the P0 and monotone LCP
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0457-8
– volume: 45
  start-page: 557
  issue: 3
  year: 2010
  ident: 10.1016/j.amc.2010.08.069_b0055
  article-title: Smoothing algorithms for complementarity problems over symmetric cones
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-008-9180-y
– volume: 215
  start-page: 2326
  issue: 6
  year: 2009
  ident: 10.1016/j.amc.2010.08.069_b0110
  article-title: One-step smoothing Newton method for solving the mixed complementarity problem with a P0 function
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.08.057
– volume: 216
  start-page: 2207
  issue: 7
  year: 2010
  ident: 10.1016/j.amc.2010.08.069_b0085
  article-title: A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.03.058
– year: 1983
  ident: 10.1016/j.amc.2010.08.069_b0015
– volume: 74
  start-page: 279
  year: 1996
  ident: 10.1016/j.amc.2010.08.069_b0035
  article-title: On the finite termination of an iterative method for linear complementarity problems
  publication-title: Math. Program.
  doi: 10.1007/BF02592200
– volume: 21
  start-page: 597
  year: 2006
  ident: 10.1016/j.amc.2010.08.069_b0105
  article-title: A smoothing Newton algorithm for the LCP with a sufficient matrix that terminates finitely at a maximally complementary solution
  publication-title: Optim. Method Softw.
  doi: 10.1080/10556780600627727
SSID ssj0007614
Score 1.9471316
Snippet Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3368
SubjectTerms 65K10
90C33
Affine variational inequality problem
Algorithms
Calculus of variations and optimal control
Exact sciences and technology
Exact solutions
Finite termination
Generalized Newton method
Global analysis, analysis on manifolds
Inequalities
Mathematical analysis
Mathematical models
Mathematics
Newton methods
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Optimization
Sciences and techniques of general use
Smoothing
Smoothing Newton method
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title Finite termination of a Newton-type algorithm for a class of affine variational inequality problems
URI https://dx.doi.org/10.1016/j.amc.2010.08.069
https://www.proquest.com/docview/849473737
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9sw9ImVC9OE2GBa-ah82GlSRho7jn1EiKqA4MQkbpbt2qMTtBUtSFz47byXOJHQBAeUUxxbTt57eV9-HwA_dYgFl5ZnQ6tVhkQhM-2dyIKfBJULK1wk18DFpRz_EWfX5fUaHLe5MBRWmXh_w9Nrbp1GDhM0DxfTKeX4aqoXVXuo0SxHE2gd5Y9SPVg_Oj0fX3YMGS31phizpjCvnLeHm3WYl73zKcCLCnnqt8TTl4VdItBi0-3iP8ZdS6PRFmwmNZIdNW_6FdbC7Bt8vuhqsC63wY-mpE-yFO5CCGDzyCxDvkZ9g8n5yuzt3_n9dHVzx1B5xWeelOl6Woyof7JHNKWTu5DhfZOC-cRSG5rlDlyNTq6Ox1lqqZB5XupVppwstHNa-spZISeFrXQRhSgF5zJwH_OqimWINs9j6YbBIw-K0hU8BBri36E3m8_CD2Ca6u6roXWhQoT6QvlJJbVVsYp8UpWyD3kLSONTuXHqenFr2riyfwZhbwj2hjphSt2HX92SRVNr473JosWOeUUwBmXBe8sGrzDZbYSkw0tU1_rAWtQa_NPo-MTOwvxhaZTAb-Z47X5s6z3YKLpYmH3ore4fwgFqNCs3gE-_n4eDRLcvd0z2cA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDIAQ4inK0wMTUiCNHTseEaIqjzIVic2yXRuKoK1oQWLht3OXOEUIwYAyxbHl5Oycvzt_viPkUPmQMWFY0jSqSGBSiEQ5yxPver5IueE2oGugcyPat_zyLr-bIWf1WRikVUbdX-n0UlvHkpMozZNRv49nfBXGiyo91GCWgwk0x_NMogV2_PHF8wA7vQrFrJDklbJ6a7MkeZlnF-ldGMZT_bY4LY3MGEQWqlwXP9R2uRa1VshyBJH0tHrPVTLjB2tksTONwDpeJ67VRzRJI9kFxU-HgRoKWg2zBqPrlZqn--FLf_LwTAG6wjOHULqsFgKgT_oGhnR0FlK4rw5gvtOYhGa8Qbqt8-5ZO4kJFRLHcjVJCisyZa0STlrDRS8zUmWB85wzJjxzIZUy5D6YNA25bXoHGigImzHvsYhtktnBcOC3CFUYdb9oGuslDKfLCteTQpkiyMB6MhcNktaC1C4GG8ecF0-6ZpU9apC9RtlrzIMpVIMcTZuMqkgbf1Xm9ejob9NFw0rwV7P9byM57QiAC8sBrDUIrYdWw3-Gmydm4IevY11w-GYG1_b_uj4g8-1u51pfX9xc7ZCFbMqK2SWzk5dXvwfYZmL3y7n7CYbk9zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+termination+of+a+Newton-type+algorithm+for+a+class+of+affine+variational+inequality+problems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhao%2C+Na&rft.au=Huang%2C+Zheng-Hai&rft.au=klo%2C+Ams+subject+classifications%3A+oC&rft.date=2010-12-01&rft.issn=0096-3003&rft.volume=217&rft.issue=7&rft.spage=3368&rft.epage=3378&rft_id=info:doi/10.1016%2Fj.amc.2010.08.069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon