Finite termination of a Newton-type algorithm for a class of affine variational inequality problems
Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimizat...
        Saved in:
      
    
          | Published in | Applied mathematics and computation Vol. 217; no. 7; pp. 3368 - 3378 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Inc
    
        01.12.2010
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0096-3003 1873-5649  | 
| DOI | 10.1016/j.amc.2010.08.069 | 
Cover
| Abstract | Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported. | 
    
|---|---|
| AbstractList | Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported. | 
    
| Author | Huang, Zheng-Hai Zhao, Na  | 
    
| Author_xml | – sequence: 1 givenname: Na surname: Zhao fullname: Zhao, Na email: zhaonatoday@sina.com organization: College of Science, Civil Aviation University of China, Tianjin, 300300, PR China – sequence: 2 givenname: Zheng-Hai surname: Huang fullname: Huang, Zheng-Hai email: huangzhenghai@tju.edu.cn organization: Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, PR China  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23835639$$DView record in Pascal Francis | 
    
| BookMark | eNp9kMFuGyEQhlGVSnWcPkBvXKqe1mGXXVjUUxXFbaUoueSOZvHQYrHgAE7ktw-200sPEQc0zP8Nmu-SXIQYkJAvLVu1rBXX2xXMZtWxWrNxxYT6QBbtKHkziF5dkAVjSjScMf6JXOa8ZYxJ0fYLYtYuuIK0YJpdgOJioNFSoPf4UmJoymGHFPyfmFz5O1MbU-0ZDzmfYta6gPQZkjuh4Gmtn_bgXTnQXYqTxzlfkY8WfMbPb_eSPK5vH29-NXcPP3_f_LhrDB9UacZJdGqalDBygl5sOpCqs30_9JwL5MYyKe2AFhizw9SiGUdpxdRxxOMTX5Jv57H136c95qJnlw16DwHjPuuxV73kx7MkX9-SkA14myAYl_UuuRnSQXd85IPgqubkOWdSzDmh1caV06IlgfO6ZfooX291la-P8jUbdZVfyfY_8t_w95jvZwaro2eHSWfjMBjcuISm6E1079CvocugMQ | 
    
| CODEN | AMHCBQ | 
    
| CitedBy_id | crossref_primary_10_1142_S0217595920500360 | 
    
| Cites_doi | 10.1023/A:1026546230851 10.1137/S0363012997315907 10.1007/BF01589441 10.1007/s10589-006-6512-7 10.1007/s101079900127 10.1007/BF01585180 10.1007/BF01581087 10.1016/S0375-9601(02)00424-3 10.1016/S0375-9601(02)01673-0 10.1137/S1052623498336590 10.1016/j.amc.2010.02.001 10.1007/BF01581275 10.1007/BF01588254 10.1016/S0167-6377(02)00113-X 10.1007/s10898-004-6098-5 10.1023/A:1023065422836 10.1016/j.amc.2009.01.054 10.1007/s10107-003-0457-8 10.1007/s10589-008-9180-y 10.1016/j.amc.2009.08.057 10.1016/j.amc.2010.03.058 10.1007/BF02592200 10.1080/10556780600627727  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1016/j.amc.2010.08.069 | 
    
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1873-5649 | 
    
| EndPage | 3378 | 
    
| ExternalDocumentID | 23835639 10_1016_j_amc_2010_08_069 S0096300310009331  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c359t-8b629bb96c7ba46d2a792f4454336e3cf077f5efa00f5b1ec887f6b23eea00f3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0096-3003 | 
    
| IngestDate | Wed Oct 01 13:41:39 EDT 2025 Mon Jul 21 09:13:23 EDT 2025 Wed Oct 01 04:43:23 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Fri Feb 23 02:31:13 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | 65K10 Affine variational inequality problem Generalized Newton method Smoothing Newton method Finite termination 90C33 Transcendental equation Smoothing methods Optimization method Iteration Algorithm Exact solution Equation system Non linear equation Variational problem Numerical analysis Variational inequality Applied mathematics Algebraic equation Newton method  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-8b629bb96c7ba46d2a792f4454336e3cf077f5efa00f5b1ec887f6b23eea00f3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 849473737 | 
    
| PQPubID | 23500 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_849473737 pascalfrancis_primary_23835639 crossref_citationtrail_10_1016_j_amc_2010_08_069 crossref_primary_10_1016_j_amc_2010_08_069 elsevier_sciencedirect_doi_10_1016_j_amc_2010_08_069  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-12-01 | 
    
| PublicationDateYYYYMMDD | 2010-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Applied mathematics and computation | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Huang, Qi, Sun (b0060) 2004; 99 Mehrotra, Ye (b0080) 1993; 62 Ni, Wang (b0085) 2010; 216 Huang, Sun, Zhao (b0065) 2006; 35 Huang (b0050) 2002; 30 Chen, Chen (b0005) 2000; 13 Qi, Sun (b0095) 1993; 58 Illés, Peng, Roos, Terlaky (b0075) 2000; 11 Huang, Ni (b0055) 2010; 45 Huang, Zhang, Han (b0070) 2004; 22 Wang, Zhao (b0115) 2009; 211 Fang, Han (b0025) 2005; 33 Fischer, Kanzow (b0035) 1996; 74 Chen, Ye (b0010) 1999; 37 Fathi (b0030) 1979; 17 Qi, Sun, Zhou (b0090) 2010; 87 Clarke (b0015) 1983 Sun, Han, Zhao (b0100) 1998; 21 Sun, Huang (b0105) 2006; 21 Zhang, Wang (b0130) 2002; 298 Tang, Liu, Ma (b0110) 2009; 215 Fang (b0020) 2010; 216 Gao, Liao (b0045) 2003; 307 Ye (b0120) 1992; 57 Fukushima (b0040) 1986; 35 Zhang, Xiu (b0125) 2003; 26 Chen (10.1016/j.amc.2010.08.069_b0005) 2000; 13 Fathi (10.1016/j.amc.2010.08.069_b0030) 1979; 17 Fischer (10.1016/j.amc.2010.08.069_b0035) 1996; 74 Huang (10.1016/j.amc.2010.08.069_b0065) 2006; 35 Qi (10.1016/j.amc.2010.08.069_b0090) 2010; 87 Ye (10.1016/j.amc.2010.08.069_b0120) 1992; 57 Clarke (10.1016/j.amc.2010.08.069_b0015) 1983 Huang (10.1016/j.amc.2010.08.069_b0060) 2004; 99 Sun (10.1016/j.amc.2010.08.069_b0105) 2006; 21 Fang (10.1016/j.amc.2010.08.069_b0020) 2010; 216 Sun (10.1016/j.amc.2010.08.069_b0100) 1998; 21 Chen (10.1016/j.amc.2010.08.069_b0010) 1999; 37 Huang (10.1016/j.amc.2010.08.069_b0050) 2002; 30 Fang (10.1016/j.amc.2010.08.069_b0025) 2005; 33 Fukushima (10.1016/j.amc.2010.08.069_b0040) 1986; 35 Huang (10.1016/j.amc.2010.08.069_b0055) 2010; 45 Zhang (10.1016/j.amc.2010.08.069_b0130) 2002; 298 Mehrotra (10.1016/j.amc.2010.08.069_b0080) 1993; 62 Illés (10.1016/j.amc.2010.08.069_b0075) 2000; 11 Zhang (10.1016/j.amc.2010.08.069_b0125) 2003; 26 Wang (10.1016/j.amc.2010.08.069_b0115) 2009; 211 Tang (10.1016/j.amc.2010.08.069_b0110) 2009; 215 Gao (10.1016/j.amc.2010.08.069_b0045) 2003; 307 Huang (10.1016/j.amc.2010.08.069_b0070) 2004; 22 Ni (10.1016/j.amc.2010.08.069_b0085) 2010; 216 Qi (10.1016/j.amc.2010.08.069_b0095) 1993; 58  | 
    
| References_xml | – volume: 35 start-page: 199 year: 2006 end-page: 237 ident: b0065 article-title: A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming, Comput publication-title: Optim. Appl. – volume: 216 start-page: 2207 year: 2010 end-page: 2214 ident: b0085 article-title: A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search publication-title: Appl. Math. Comput. – volume: 57 start-page: 325 year: 1992 end-page: 335 ident: b0120 article-title: On the finite convergence of interior-point algorithms for linear programming publication-title: Math. Program. – volume: 45 start-page: 557 year: 2010 end-page: 579 ident: b0055 article-title: Smoothing algorithms for complementarity problems over symmetric cones publication-title: Comput. Optim. Appl. – volume: 37 start-page: 589 year: 1999 end-page: 616 ident: b0010 article-title: On homotopy-smoothing methods for box-constrained variational inequalities publication-title: SIAM J.Control Optim. – volume: 21 start-page: 597 year: 2006 end-page: 615 ident: b0105 article-title: A smoothing Newton algorithm for the LCP with a sufficient matrix that terminates finitely at a maximally complementary solution publication-title: Optim. Method Softw. – volume: 21 start-page: 148 year: 1998 end-page: 154 ident: b0100 article-title: On the finite termination of the damped-Newton algorithm for the linear complementarity problems publication-title: Acta Math. Appl. Sinica – volume: 58 start-page: 353 year: 1993 end-page: 367 ident: b0095 article-title: A nonsmooth version of Newton’s method publication-title: Math. Program. – volume: 216 start-page: 1087 year: 2010 end-page: 1095 ident: b0020 article-title: A new one-step smoothing Newton method for nonlinear complementarity problem with P publication-title: Appl. Math. Comput. – volume: 17 start-page: 335 year: 1979 end-page: 344 ident: b0030 article-title: Computational complexity of LCPs associated with positive semidefinite matrices publication-title: Math. Program. – volume: 26 start-page: 183 year: 2003 end-page: 198 ident: b0125 article-title: Identification of the optimal active set in a noninterior continuation method for LCP publication-title: J. Global Optim. – volume: 13 start-page: 131 year: 2000 end-page: 158 ident: b0005 article-title: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints publication-title: Comput. Optim. Appl. – volume: 35 start-page: 58 year: 1986 end-page: 70 ident: b0040 article-title: A relaxed projection method for variational inequalities publication-title: Math. Program. – volume: 11 start-page: 320 year: 2000 end-page: 340 ident: b0075 article-title: A strongly polynomial procedure yielding a maximally complementarity solution for P∗( publication-title: SIAM J. Optim. – volume: 211 start-page: 177 year: 2009 end-page: 184 ident: b0115 article-title: Finite termination of a smoothing-type algorithm for the monotone affine variational inequality problem publication-title: Appl. Math. Comput. – volume: 99 start-page: 423 year: 2004 end-page: 441 ident: b0060 article-title: Sub-quadratic convergence of a smoothing Newton algorithm for the P publication-title: Math. Program. – volume: 62 start-page: 497 year: 1993 end-page: 515 ident: b0080 article-title: On finding the optimal facet of linear programs publication-title: Math. Program. – year: 1983 ident: b0015 article-title: Optimization and Nonsmooth Analysis – volume: 22 start-page: 797 year: 2004 end-page: 806 ident: b0070 article-title: A hybrid smoothing-nonsmooth Newton-type algorithm yielding an exact solution of the P publication-title: J. Comput. Math. – volume: 74 start-page: 279 year: 1996 end-page: 292 ident: b0035 article-title: On the finite termination of an iterative method for linear complementarity problems publication-title: Math. Program. – volume: 298 start-page: 271 year: 2002 end-page: 278 ident: b0130 article-title: A dual neural network for convex quadratic programming subject to linear equality and inequality constraints publication-title: Phys. Lett. A. – volume: 215 start-page: 2326 year: 2009 end-page: 2336 ident: b0110 article-title: One-step smoothing Newton method for solving the mixed complementarity problem with a P publication-title: Appl. Math. Comput. – volume: 307 start-page: 118 year: 2003 end-page: 128 ident: b0045 article-title: A neural network for monotone variational inequalities with linear constraints publication-title: Phys. Lett. A. – volume: 30 start-page: 202 year: 2002 end-page: 210 ident: b0050 article-title: Sufficient conditions on nonemptiness and boundedness of the solution set of the P publication-title: Oper. Res. Letters – volume: 87 start-page: 1 year: 2010 end-page: 35 ident: b0090 article-title: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math publication-title: Program. – volume: 33 start-page: 369 year: 2005 end-page: 391 ident: b0025 article-title: On the finite termination of an entropy function based non-interior continuation method for vertical linear complementarity problems publication-title: J. Global Optim. – volume: 13 start-page: 131 year: 2000 ident: 10.1016/j.amc.2010.08.069_b0005 article-title: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints publication-title: Comput. Optim. Appl. doi: 10.1023/A:1026546230851 – volume: 37 start-page: 589 year: 1999 ident: 10.1016/j.amc.2010.08.069_b0010 article-title: On homotopy-smoothing methods for box-constrained variational inequalities publication-title: SIAM J.Control Optim. doi: 10.1137/S0363012997315907 – volume: 35 start-page: 58 year: 1986 ident: 10.1016/j.amc.2010.08.069_b0040 article-title: A relaxed projection method for variational inequalities publication-title: Math. Program. doi: 10.1007/BF01589441 – volume: 35 start-page: 199 year: 2006 ident: 10.1016/j.amc.2010.08.069_b0065 article-title: A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming, Comput publication-title: Optim. Appl. doi: 10.1007/s10589-006-6512-7 – volume: 87 start-page: 1 year: 2010 ident: 10.1016/j.amc.2010.08.069_b0090 article-title: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math publication-title: Program. doi: 10.1007/s101079900127 – volume: 62 start-page: 497 year: 1993 ident: 10.1016/j.amc.2010.08.069_b0080 article-title: On finding the optimal facet of linear programs publication-title: Math. Program. doi: 10.1007/BF01585180 – volume: 57 start-page: 325 year: 1992 ident: 10.1016/j.amc.2010.08.069_b0120 article-title: On the finite convergence of interior-point algorithms for linear programming publication-title: Math. Program. doi: 10.1007/BF01581087 – volume: 298 start-page: 271 year: 2002 ident: 10.1016/j.amc.2010.08.069_b0130 article-title: A dual neural network for convex quadratic programming subject to linear equality and inequality constraints publication-title: Phys. Lett. A. doi: 10.1016/S0375-9601(02)00424-3 – volume: 307 start-page: 118 year: 2003 ident: 10.1016/j.amc.2010.08.069_b0045 article-title: A neural network for monotone variational inequalities with linear constraints publication-title: Phys. Lett. A. doi: 10.1016/S0375-9601(02)01673-0 – volume: 11 start-page: 320 year: 2000 ident: 10.1016/j.amc.2010.08.069_b0075 article-title: A strongly polynomial procedure yielding a maximally complementarity solution for P∗(κ) linear complementarity problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623498336590 – volume: 216 start-page: 1087 issue: 4 year: 2010 ident: 10.1016/j.amc.2010.08.069_b0020 article-title: A new one-step smoothing Newton method for nonlinear complementarity problem with P0-function publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.02.001 – volume: 58 start-page: 353 year: 1993 ident: 10.1016/j.amc.2010.08.069_b0095 article-title: A nonsmooth version of Newton’s method publication-title: Math. Program. doi: 10.1007/BF01581275 – volume: 22 start-page: 797 year: 2004 ident: 10.1016/j.amc.2010.08.069_b0070 article-title: A hybrid smoothing-nonsmooth Newton-type algorithm yielding an exact solution of the P0-LCP publication-title: J. Comput. Math. – volume: 17 start-page: 335 year: 1979 ident: 10.1016/j.amc.2010.08.069_b0030 article-title: Computational complexity of LCPs associated with positive semidefinite matrices publication-title: Math. Program. doi: 10.1007/BF01588254 – volume: 30 start-page: 202 year: 2002 ident: 10.1016/j.amc.2010.08.069_b0050 article-title: Sufficient conditions on nonemptiness and boundedness of the solution set of the P0 function nonlinear complementarity problem publication-title: Oper. Res. Letters doi: 10.1016/S0167-6377(02)00113-X – volume: 21 start-page: 148 year: 1998 ident: 10.1016/j.amc.2010.08.069_b0100 article-title: On the finite termination of the damped-Newton algorithm for the linear complementarity problems publication-title: Acta Math. Appl. Sinica – volume: 33 start-page: 369 year: 2005 ident: 10.1016/j.amc.2010.08.069_b0025 article-title: On the finite termination of an entropy function based non-interior continuation method for vertical linear complementarity problems publication-title: J. Global Optim. doi: 10.1007/s10898-004-6098-5 – volume: 26 start-page: 183 year: 2003 ident: 10.1016/j.amc.2010.08.069_b0125 article-title: Identification of the optimal active set in a noninterior continuation method for LCP publication-title: J. Global Optim. doi: 10.1023/A:1023065422836 – volume: 211 start-page: 177 year: 2009 ident: 10.1016/j.amc.2010.08.069_b0115 article-title: Finite termination of a smoothing-type algorithm for the monotone affine variational inequality problem publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.01.054 – volume: 99 start-page: 423 year: 2004 ident: 10.1016/j.amc.2010.08.069_b0060 article-title: Sub-quadratic convergence of a smoothing Newton algorithm for the P0 and monotone LCP publication-title: Math. Program. doi: 10.1007/s10107-003-0457-8 – volume: 45 start-page: 557 issue: 3 year: 2010 ident: 10.1016/j.amc.2010.08.069_b0055 article-title: Smoothing algorithms for complementarity problems over symmetric cones publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-008-9180-y – volume: 215 start-page: 2326 issue: 6 year: 2009 ident: 10.1016/j.amc.2010.08.069_b0110 article-title: One-step smoothing Newton method for solving the mixed complementarity problem with a P0 function publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.08.057 – volume: 216 start-page: 2207 issue: 7 year: 2010 ident: 10.1016/j.amc.2010.08.069_b0085 article-title: A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.03.058 – year: 1983 ident: 10.1016/j.amc.2010.08.069_b0015 – volume: 74 start-page: 279 year: 1996 ident: 10.1016/j.amc.2010.08.069_b0035 article-title: On the finite termination of an iterative method for linear complementarity problems publication-title: Math. Program. doi: 10.1007/BF02592200 – volume: 21 start-page: 597 year: 2006 ident: 10.1016/j.amc.2010.08.069_b0105 article-title: A smoothing Newton algorithm for the LCP with a sufficient matrix that terminates finitely at a maximally complementary solution publication-title: Optim. Method Softw. doi: 10.1080/10556780600627727  | 
    
| SSID | ssj0007614 | 
    
| Score | 1.9471316 | 
    
| Snippet | Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the... | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3368 | 
    
| SubjectTerms | 65K10 90C33 Affine variational inequality problem Algorithms Calculus of variations and optimal control Exact sciences and technology Exact solutions Finite termination Generalized Newton method Global analysis, analysis on manifolds Inequalities Mathematical analysis Mathematical models Mathematics Newton methods Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Optimization Sciences and techniques of general use Smoothing Smoothing Newton method Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds  | 
    
| Title | Finite termination of a Newton-type algorithm for a class of affine variational inequality problems | 
    
| URI | https://dx.doi.org/10.1016/j.amc.2010.08.069 https://www.proquest.com/docview/849473737  | 
    
| Volume | 217 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9sw9ImVC9OE2GBa-ah82GlSRho7jn1EiKqA4MQkbpbt2qMTtBUtSFz47byXOJHQBAeUUxxbTt57eV9-HwA_dYgFl5ZnQ6tVhkQhM-2dyIKfBJULK1wk18DFpRz_EWfX5fUaHLe5MBRWmXh_w9Nrbp1GDhM0DxfTKeX4aqoXVXuo0SxHE2gd5Y9SPVg_Oj0fX3YMGS31phizpjCvnLeHm3WYl73zKcCLCnnqt8TTl4VdItBi0-3iP8ZdS6PRFmwmNZIdNW_6FdbC7Bt8vuhqsC63wY-mpE-yFO5CCGDzyCxDvkZ9g8n5yuzt3_n9dHVzx1B5xWeelOl6Woyof7JHNKWTu5DhfZOC-cRSG5rlDlyNTq6Ox1lqqZB5XupVppwstHNa-spZISeFrXQRhSgF5zJwH_OqimWINs9j6YbBIw-K0hU8BBri36E3m8_CD2Ca6u6roXWhQoT6QvlJJbVVsYp8UpWyD3kLSONTuXHqenFr2riyfwZhbwj2hjphSt2HX92SRVNr473JosWOeUUwBmXBe8sGrzDZbYSkw0tU1_rAWtQa_NPo-MTOwvxhaZTAb-Z47X5s6z3YKLpYmH3ore4fwgFqNCs3gE-_n4eDRLcvd0z2cA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDIAQ4inK0wMTUiCNHTseEaIqjzIVic2yXRuKoK1oQWLht3OXOEUIwYAyxbHl5Oycvzt_viPkUPmQMWFY0jSqSGBSiEQ5yxPver5IueE2oGugcyPat_zyLr-bIWf1WRikVUbdX-n0UlvHkpMozZNRv49nfBXGiyo91GCWgwk0x_NMogV2_PHF8wA7vQrFrJDklbJ6a7MkeZlnF-ldGMZT_bY4LY3MGEQWqlwXP9R2uRa1VshyBJH0tHrPVTLjB2tksTONwDpeJ67VRzRJI9kFxU-HgRoKWg2zBqPrlZqn--FLf_LwTAG6wjOHULqsFgKgT_oGhnR0FlK4rw5gvtOYhGa8Qbqt8-5ZO4kJFRLHcjVJCisyZa0STlrDRS8zUmWB85wzJjxzIZUy5D6YNA25bXoHGigImzHvsYhtktnBcOC3CFUYdb9oGuslDKfLCteTQpkiyMB6MhcNktaC1C4GG8ecF0-6ZpU9apC9RtlrzIMpVIMcTZuMqkgbf1Xm9ejob9NFw0rwV7P9byM57QiAC8sBrDUIrYdWw3-Gmydm4IevY11w-GYG1_b_uj4g8-1u51pfX9xc7ZCFbMqK2SWzk5dXvwfYZmL3y7n7CYbk9zg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+termination+of+a+Newton-type+algorithm+for+a+class+of+affine+variational+inequality+problems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhao%2C+Na&rft.au=Huang%2C+Zheng-Hai&rft.au=klo%2C+Ams+subject+classifications%3A+oC&rft.date=2010-12-01&rft.issn=0096-3003&rft.volume=217&rft.issue=7&rft.spage=3368&rft.epage=3378&rft_id=info:doi/10.1016%2Fj.amc.2010.08.069&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |