Early Detection of Numerical Typing Errors Using Data Mining Techniques

This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 41; no. 6; pp. 1199 - 1212
Main Authors Shouyi Wang, Cheng-Jhe Lin, Changxu Wu, Chaovalitwongse, W. A.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2011
Subjects
Online AccessGet full text
ISSN1083-4427
1558-2426
DOI10.1109/TSMCA.2011.2116006

Cover

Abstract This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological, and time-frequency (wavelet) characteristics of EEG data. Two most commonly used data mining techniques, namely, linear discriminant analysis (LDA) and support vector machine (SVM), were employed to classify EEG samples associated with correct and erroneous keystrokes. The leave-one-error-pattern-out and leave-one-subject-out cross-validation methods were designed to evaluate the in- and cross-subject classification performances, respectively. For the in-subject classification, the best testing performance had a sensitivity of 62.20% and a specificity of 51.68%, which were achieved by SVM using morphological features. For the cross-subject classification, the best testing performance was achieved by LDA using temporal features, based on which it had a sensitivity of 68.72% and a specificity of 49.45%. In addition, the receiver operating characteristic (ROC) analysis revealed that the averaged values of the area under ROC curves of LDA and SVM for the in- and cross-subject classifications were both greater than 0.60 using the EEG 300 ms prior to the keystrokes. The classification results of this study indicated that the EEG patterns of erroneous keystrokes might be different from those of the correct ones. As a result, it may be possible to predict erroneous keystrokes prior to error occurrence. The classification problem addressed in this study is extremely challenging due to the very limited number of erroneous keystrokes made by each subject and the complex spatiotemporal characteristics of the EEG data. However, the outcome of this study is quite encouraging, and it is promising to develop a prospective early detection system for erroneous keystrokes based on brain-wave signals.
AbstractList This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological, and time-frequency (wavelet) characteristics of EEG data. Two most commonly used data mining techniques, namely, linear discriminant analysis (LDA) and support vector machine (SVM), were employed to classify EEG samples associated with correct and erroneous keystrokes. The leave-one-error-pattern-out and leave-one-subject-out cross-validation methods were designed to evaluate the in- and cross-subject classification performances, respectively. For the in-subject classification, the best testing performance had a sensitivity of 62.20% and a specificity of 51.68%, which were achieved by SVM using morphological features. For the cross-subject classification, the best testing performance was achieved by LDA using temporal features, based on which it had a sensitivity of 68.72% and a specificity of 49.45%. In addition, the receiver operating characteristic (ROC) analysis revealed that the averaged values of the area under ROC curves of LDA and SVM for the in- and cross-subject classifications were both greater than 0.60 using the EEG 300 ms prior to the keystrokes. The classification results of this study indicated that the EEG patterns of erroneous keystrokes might be different from those of the correct ones. As a result, it may be possible to predict erroneous keystrokes prior to error occurrence. The classification problem addressed in this study is extremely challenging due to the very limited number of erroneous keystrokes made by each subject and the complex spatiotemporal characteristics of the EEG data. However, the outcome of this study is quite encouraging, and it is promising to develop a prospective early detection system for erroneous keystrokes based on brain-wave signals.
Author Shouyi Wang
Cheng-Jhe Lin
Chaovalitwongse, W. A.
Changxu Wu
Author_xml – sequence: 1
  surname: Shouyi Wang
  fullname: Shouyi Wang
  email: shouyi@rci.rutgers.edu
  organization: Dept. of Ind. & Syst. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 2
  surname: Cheng-Jhe Lin
  fullname: Cheng-Jhe Lin
  email: cl224@buffalo.edu
  organization: Dept. of Ind. & Syst. Eng., SUNY - Univ. at Buffalo, Buffalo, NY, USA
– sequence: 3
  surname: Changxu Wu
  fullname: Changxu Wu
  email: changxu@buffalo.edu
  organization: Dept. of Ind. & Syst. Eng., SUNY - Univ. at Buffalo, Buffalo, NY, USA
– sequence: 4
  givenname: W. A.
  surname: Chaovalitwongse
  fullname: Chaovalitwongse, W. A.
  email: wchaoval@rci.rutgers.edu
  organization: Dept. of Ind. & Syst. Eng., Rutgers Univ., Piscataway, NJ, USA
BookMark eNp9kE1PwkAQhjcGEwH9A3rpTS_F_d72SADRBPRgOW-226muKS3ulgP_3laIBw-c5p3keWeSZ4QGdVMDQrcETwjB6WP2vp5NJxQTMqGESIzlBRoSIZKYcioHXcYJizmn6gqNQvjCmHCe8iFaLoyvDtEcWrCta-qoKaPX_Ra8s6aKssPO1R_RwvvGh2gT-mVuWhOtXd3nDOxn7b73EK7RZWmqADenOUabp0U2e45Xb8uX2XQVWybSNk5SASXHhhOshIBCMVnmXKQE86IoiEgVy5UqJKVGMVNS4HlRqlxSULm1jLMxuj_e3fmm_9vqrQsWqsrU0OyDTiVLWEoT1pEPZ0kiFWFMYiE6lB5R65sQPJR6593W-IMmWPd-9a9f3fvVJ79dKflXsq41vcPWG1edr94dqw4A_n4JJWiiGPsBoEGJbQ
CODEN ITSHFX
CitedBy_id crossref_primary_10_1109_JBHI_2017_2703873
crossref_primary_10_1007_s10479_014_1589_3
crossref_primary_10_1016_j_ijmedinf_2016_01_002
crossref_primary_10_1109_TNSRE_2018_2829083
crossref_primary_10_3389_fnins_2014_00208
crossref_primary_10_1109_THMS_2015_2476818
crossref_primary_10_1007_s11517_020_02253_2
crossref_primary_10_1109_THMS_2014_2357178
crossref_primary_10_1177_1541931214581180
crossref_primary_10_1287_ijoc_2013_0554
crossref_primary_10_1080_17538157_2021_1990932
crossref_primary_10_1080_02664763_2015_1016410
crossref_primary_10_1109_TITS_2014_2330979
crossref_primary_10_1016_j_ergon_2019_01_007
crossref_primary_10_1016_j_eswa_2014_01_011
Cites_doi 10.1109/TBME.2004.826698
10.1186/1475-925X-3-7
10.1287/opre.1080.0573
10.1016/j.amc.2006.09.022
10.1109/CNE.2003.1196897
10.1109/TNSRE.2003.814446
10.1109/TPAMI.2006.17
10.1016/j.clinph.2008.03.012
10.1109/TSMCA.2007.897589
10.1007/s10559-008-0012-y
10.1097/00000542-199211000-00014
10.1037/0033-2909.99.3.303
10.1109/IEMBS.2001.1020545
10.1016/j.eswa.2006.02.005
10.1016/j.jneumeth.2005.10.009
10.1109/ISCAS.1999.779976
10.1109/TITB.2006.884369
10.1016/S0197-2456(03)00089-8
10.1887/0750306920
10.1109/IEMBS.1995.579248
10.1177/154193120905301003
10.1016/j.sigpro.2008.01.026
10.1145/63238.63246
10.1111/j.1469-8986.1993.tb02081.x
10.1016/0022-3956(94)90003-5
10.1016/j.neunet.2009.06.003
10.1109/MLSP.2004.1423016
10.1002/mds.20995
10.1145/638249.638275
10.1016/S0301-0511(99)00031-9
10.1145/1352782.1352788
10.1007/11550822_8
10.1109/ICASSP.1990.115702
10.1111/1469-8986.3850752
10.1109/TBME.2007.908083
10.1088/1741-2560/6/2/026006
10.1111/j.2517-6161.1974.tb00994.x
10.1109/IEMBS.2004.1404304
10.1109/TITB.2006.872067
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCA.2011.2116006
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1558-2426
EndPage 1212
ExternalDocumentID 10_1109_TSMCA_2011_2116006
5752873
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-895ef40a410755ed736fb459104ddd15973b77d622a73af2e4bdf7b62e7bcc343
IEDL.DBID RIE
ISSN 1083-4427
IngestDate Fri Jul 11 15:18:26 EDT 2025
Fri Jul 11 02:07:43 EDT 2025
Wed Oct 01 06:42:59 EDT 2025
Thu Apr 24 23:07:16 EDT 2025
Tue Aug 26 17:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-895ef40a410755ed736fb459104ddd15973b77d622a73af2e4bdf7b62e7bcc343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1671336055
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1671336055
crossref_primary_10_1109_TSMCA_2011_2116006
ieee_primary_5752873
proquest_miscellaneous_963839283
crossref_citationtrail_10_1109_TSMCA_2011_2116006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-Nov.
2011-11-00
20111101
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-Nov.
PublicationDecade 2010
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
chaovalitwongse (ref8) 2008; 56
ref18
scholtus (ref41) 2008
lu (ref25) 2008
(ref32) 1994
ref46
ref48
anderson (ref3) 1996
ref47
scholtus (ref42) 2009
ref44
ref49
lal (ref23) 2005
ref9
ref4
ref6
ref5
stone (ref45) 1974; 36
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref2
ref1
shen (ref43) 2008; 119
ref39
ref38
fukunaga (ref16) 1990
mika (ref27) 2002
handy (ref19) 2004
ref24
ref26
ref20
ref22
ref21
rakotomamonjy (ref37) 2005
young (ref51) 1996
xu (ref50) 2004
ref28
blankertz (ref7) 2002; 14
ref29
References_xml – ident: ref21
  doi: 10.1109/TBME.2004.826698
– ident: ref29
  doi: 10.1186/1475-925X-3-7
– volume: 56
  start-page: 1450
  year: 2008
  ident: ref8
  article-title: Novel optimization models for abnormal brain activity classification
  publication-title: Oper Res
  doi: 10.1287/opre.1080.0573
– ident: ref35
  doi: 10.1016/j.amc.2006.09.022
– ident: ref17
  doi: 10.1109/CNE.2003.1196897
– ident: ref18
  doi: 10.1109/TNSRE.2003.814446
– ident: ref26
  doi: 10.1109/TPAMI.2006.17
– volume: 119
  start-page: 1524
  year: 2008
  ident: ref43
  article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.03.012
– ident: ref10
  doi: 10.1109/TSMCA.2007.897589
– ident: ref9
  doi: 10.1007/s10559-008-0012-y
– year: 2004
  ident: ref19
  publication-title: Event-Related Potentials A Methods Handbook
– ident: ref38
  doi: 10.1097/00000542-199211000-00014
– ident: ref40
  doi: 10.1037/0033-2909.99.3.303
– start-page: 1
  year: 2008
  ident: ref25
  article-title: Subject-independent brain computer interface through boosting
  publication-title: Proc Int Conf Pattern Recogn
– ident: ref11
  doi: 10.1109/IEMBS.2001.1020545
– ident: ref46
  doi: 10.1016/j.eswa.2006.02.005
– ident: ref39
  doi: 10.1016/j.jneumeth.2005.10.009
– start-page: 407
  year: 1996
  ident: ref3
  article-title: Classification of EEG signals from four subjects during five mental tasks
  publication-title: Solving Eng Problems with Neural Netw Proc Int Conf Eng Appl Neural Netw
– ident: ref2
  doi: 10.1109/ISCAS.1999.779976
– year: 1996
  ident: ref51
  publication-title: Data inaccuracy in the global transportation network
– ident: ref44
  doi: 10.1109/TITB.2006.884369
– ident: ref22
  doi: 10.1016/S0197-2456(03)00089-8
– start-page: 737
  year: 2005
  ident: ref23
  publication-title: Advances in neural information processing systems
– ident: ref1
  doi: 10.1887/0750306920
– year: 2002
  ident: ref27
  publication-title: Kernel Fisher discriminants
– ident: ref4
  doi: 10.1109/IEMBS.1995.579248
– ident: ref24
  doi: 10.1177/154193120905301003
– ident: ref31
  doi: 10.1016/j.sigpro.2008.01.026
– year: 2008
  ident: ref41
  publication-title: Algorithms for Correcting Some Obvious Inconsistencies and Rounding Errors in Business Survey Data
– ident: ref33
  doi: 10.1145/63238.63246
– ident: ref34
  doi: 10.1111/j.1469-8986.1993.tb02081.x
– ident: ref5
  doi: 10.1016/0022-3956(94)90003-5
– ident: ref15
  doi: 10.1016/j.neunet.2009.06.003
– start-page: 391
  year: 2004
  ident: ref50
  article-title: High accuracy classification of EEG signal
  publication-title: Proc 17th Int Conf Pattern Recognit
– ident: ref6
  doi: 10.1109/MLSP.2004.1423016
– ident: ref28
  doi: 10.1002/mds.20995
– year: 1990
  ident: ref16
  publication-title: Statistical Pattern Recognition
– year: 2009
  ident: ref42
  publication-title: Automatic Correction of Simple Typing Errors in Numerical Data With Balance Edits
– year: 1994
  ident: ref32
  publication-title: Automatic detection of seizures using electroencephalographic signals
– ident: ref47
  doi: 10.1145/638249.638275
– ident: ref14
  doi: 10.1016/S0301-0511(99)00031-9
– ident: ref49
  doi: 10.1145/1352782.1352788
– start-page: 45
  year: 2005
  ident: ref37
  publication-title: Artificial Neural Networks Biological InspirationsICANN 2005
  doi: 10.1007/11550822_8
– ident: ref20
  doi: 10.1109/ICASSP.1990.115702
– ident: ref30
  doi: 10.1111/1469-8986.3850752
– ident: ref36
  doi: 10.1109/TBME.2007.908083
– ident: ref48
  doi: 10.1088/1741-2560/6/2/026006
– volume: 36
  start-page: 111
  year: 1974
  ident: ref45
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: ref12
  doi: 10.1109/IEMBS.2004.1404304
– ident: ref13
  doi: 10.1109/TITB.2006.872067
– volume: 14
  start-page: 157
  year: 2002
  ident: ref7
  article-title: Classifying single trial EEG: Towards brain computer interfacing
  publication-title: Adv Neural Inf Process Syst
SSID ssj0014494
Score 2.1051497
Snippet This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1199
SubjectTerms Classification
Data mining
Early detection
Electroencephalography
electroencephalography (EEG) classification
Error detection
Feature extraction
Human
mental state monitoring
Quantitative analysis
Support vector machines
Temporal logic
Training
typing errors
Title Early Detection of Numerical Typing Errors Using Data Mining Techniques
URI https://ieeexplore.ieee.org/document/5752873
https://www.proquest.com/docview/1671336055
https://www.proquest.com/docview/963839283
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2426
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0014494
  issn: 1083-4427
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlIzGAIKWNX8mIoAUhlYUisUWO7SxUCWqThV_P2Ukq3mLLYEeWz_Z9n333HcAJouKIWZEFcaxswNDHBBFH1irRuXCd9nXk5YtHD-Luid0_8-cFuJjnwlhrffCZ7bpP_5ZvCl25qzIk7xwBPl2ERRmJOldr_mLAmC962EdIETAWyjZBphdfjh9H11e1WifSHfTw4pMT8lVVvh3F3r8M12DUjqwOK3npVmXa1W9fRBv_O_R1WG2AJrmqV8YGLNh8E1Y-yA9uwkazsWfktFGfPtuCWy95TG5s6YO0clJk5KGq33UmBGkrdiWD6bSYzoiPNyA3qlRk5AtNkHErCTvbhqfhYHx9FzTVFgJNeVwGUcxtxnqKISHk3BpJRZYyjnCCGWMQ9UiaSmlEGCpJVRZalppMpiK0MtWaMroDS3mR210gPOrJjKqQ2ZgxgwhGZNodLCoURkVGd6DfTn-iGylyVxFjknhK0osTb7LEmSxpTNaB83mf11qI48_WW84G85bN9HfguLVygtvIvY2o3BbVLOkLx9aR2_EOkF_auLMK4WRE937--z4s-xtnn6l4AEvltLKHCFnK9Miv1XczLOTh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gAcoB9UbIHWlTgUQZbdeGwnx6ofLKXZC1upt8ixnQtVgnaTC7--YydZAQXELQc7sjy25z175g3AW0LFCTpZRmmqXYTkY6JEEGtV5FyEKaYmCfLF2VzObvDqVtxuwId1LoxzLgSfubH_DG_5tjatvyoj8i4I4PNHsCUQUXTZWus3A8RQ9nBKoCJCjNWQIjNJPy6-ZmennV4nER7y8fIXNxTqqjw4jIOHuXwO2TC2LrDk27htirH58Zts4_8Ofhue9VCTnXZrYwc2XLULT38SINyFnX5rr9hJrz_9bg8-BdFjdu6aEKZVsbpk87Z72bljRFypK7tYLuvlioWIA3auG82yUGqCLQZR2NULuLm8WJzNor7eQmS4SJsoSYUrcaKRKKEQziouywIFAQq01hLuUbxQyso41orrMnZY2FIVMnaqMIYj34fNqq7cS2AimaiS6xhdimgJw8jS-KNFx9LqxJoRTIfpz00vRu5rYtzlgZRM0jyYLPcmy3uTjeD9us_3Torjn633vA3WLfvpH8HxYOWcNpJ_HdGVq9tVPpWerxO7EyNgf2njTysClAk_-PPfj-DxbJFd59ef519ewZNw_xzyFl_DZrNs3RsCME1xGNbtPVcf6C4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+of+Numerical+Typing+Errors+Using+Data+Mining+Techniques&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Wang%2C+Shouyi&rft.au=Lin%2C+Cheng-Jhe&rft.au=Wu%2C+Changxu&rft.au=Chaovalitwongse%2C+Wanpracha+Art&rft.date=2011-11-01&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=41&rft.issue=6&rft.spage=1199&rft.epage=1212&rft_id=info:doi/10.1109%2FTSMCA.2011.2116006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon