Early Detection of Numerical Typing Errors Using Data Mining Techniques
This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological,...
Saved in:
| Published in | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 41; no. 6; pp. 1199 - 1212 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.11.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-4427 1558-2426 |
| DOI | 10.1109/TSMCA.2011.2116006 |
Cover
| Abstract | This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological, and time-frequency (wavelet) characteristics of EEG data. Two most commonly used data mining techniques, namely, linear discriminant analysis (LDA) and support vector machine (SVM), were employed to classify EEG samples associated with correct and erroneous keystrokes. The leave-one-error-pattern-out and leave-one-subject-out cross-validation methods were designed to evaluate the in- and cross-subject classification performances, respectively. For the in-subject classification, the best testing performance had a sensitivity of 62.20% and a specificity of 51.68%, which were achieved by SVM using morphological features. For the cross-subject classification, the best testing performance was achieved by LDA using temporal features, based on which it had a sensitivity of 68.72% and a specificity of 49.45%. In addition, the receiver operating characteristic (ROC) analysis revealed that the averaged values of the area under ROC curves of LDA and SVM for the in- and cross-subject classifications were both greater than 0.60 using the EEG 300 ms prior to the keystrokes. The classification results of this study indicated that the EEG patterns of erroneous keystrokes might be different from those of the correct ones. As a result, it may be possible to predict erroneous keystrokes prior to error occurrence. The classification problem addressed in this study is extremely challenging due to the very limited number of erroneous keystrokes made by each subject and the complex spatiotemporal characteristics of the EEG data. However, the outcome of this study is quite encouraging, and it is promising to develop a prospective early detection system for erroneous keystrokes based on brain-wave signals. |
|---|---|
| AbstractList | This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis of multichannel electroencephalogram (EEG) recordings. Three feature extraction techniques were developed to capture temporal, morphological, and time-frequency (wavelet) characteristics of EEG data. Two most commonly used data mining techniques, namely, linear discriminant analysis (LDA) and support vector machine (SVM), were employed to classify EEG samples associated with correct and erroneous keystrokes. The leave-one-error-pattern-out and leave-one-subject-out cross-validation methods were designed to evaluate the in- and cross-subject classification performances, respectively. For the in-subject classification, the best testing performance had a sensitivity of 62.20% and a specificity of 51.68%, which were achieved by SVM using morphological features. For the cross-subject classification, the best testing performance was achieved by LDA using temporal features, based on which it had a sensitivity of 68.72% and a specificity of 49.45%. In addition, the receiver operating characteristic (ROC) analysis revealed that the averaged values of the area under ROC curves of LDA and SVM for the in- and cross-subject classifications were both greater than 0.60 using the EEG 300 ms prior to the keystrokes. The classification results of this study indicated that the EEG patterns of erroneous keystrokes might be different from those of the correct ones. As a result, it may be possible to predict erroneous keystrokes prior to error occurrence. The classification problem addressed in this study is extremely challenging due to the very limited number of erroneous keystrokes made by each subject and the complex spatiotemporal characteristics of the EEG data. However, the outcome of this study is quite encouraging, and it is promising to develop a prospective early detection system for erroneous keystrokes based on brain-wave signals. |
| Author | Shouyi Wang Cheng-Jhe Lin Chaovalitwongse, W. A. Changxu Wu |
| Author_xml | – sequence: 1 surname: Shouyi Wang fullname: Shouyi Wang email: shouyi@rci.rutgers.edu organization: Dept. of Ind. & Syst. Eng., Rutgers Univ., Piscataway, NJ, USA – sequence: 2 surname: Cheng-Jhe Lin fullname: Cheng-Jhe Lin email: cl224@buffalo.edu organization: Dept. of Ind. & Syst. Eng., SUNY - Univ. at Buffalo, Buffalo, NY, USA – sequence: 3 surname: Changxu Wu fullname: Changxu Wu email: changxu@buffalo.edu organization: Dept. of Ind. & Syst. Eng., SUNY - Univ. at Buffalo, Buffalo, NY, USA – sequence: 4 givenname: W. A. surname: Chaovalitwongse fullname: Chaovalitwongse, W. A. email: wchaoval@rci.rutgers.edu organization: Dept. of Ind. & Syst. Eng., Rutgers Univ., Piscataway, NJ, USA |
| BookMark | eNp9kE1PwkAQhjcGEwH9A3rpTS_F_d72SADRBPRgOW-226muKS3ulgP_3laIBw-c5p3keWeSZ4QGdVMDQrcETwjB6WP2vp5NJxQTMqGESIzlBRoSIZKYcioHXcYJizmn6gqNQvjCmHCe8iFaLoyvDtEcWrCta-qoKaPX_Ra8s6aKssPO1R_RwvvGh2gT-mVuWhOtXd3nDOxn7b73EK7RZWmqADenOUabp0U2e45Xb8uX2XQVWybSNk5SASXHhhOshIBCMVnmXKQE86IoiEgVy5UqJKVGMVNS4HlRqlxSULm1jLMxuj_e3fmm_9vqrQsWqsrU0OyDTiVLWEoT1pEPZ0kiFWFMYiE6lB5R65sQPJR6593W-IMmWPd-9a9f3fvVJ79dKflXsq41vcPWG1edr94dqw4A_n4JJWiiGPsBoEGJbQ |
| CODEN | ITSHFX |
| CitedBy_id | crossref_primary_10_1109_JBHI_2017_2703873 crossref_primary_10_1007_s10479_014_1589_3 crossref_primary_10_1016_j_ijmedinf_2016_01_002 crossref_primary_10_1109_TNSRE_2018_2829083 crossref_primary_10_3389_fnins_2014_00208 crossref_primary_10_1109_THMS_2015_2476818 crossref_primary_10_1007_s11517_020_02253_2 crossref_primary_10_1109_THMS_2014_2357178 crossref_primary_10_1177_1541931214581180 crossref_primary_10_1287_ijoc_2013_0554 crossref_primary_10_1080_17538157_2021_1990932 crossref_primary_10_1080_02664763_2015_1016410 crossref_primary_10_1109_TITS_2014_2330979 crossref_primary_10_1016_j_ergon_2019_01_007 crossref_primary_10_1016_j_eswa_2014_01_011 |
| Cites_doi | 10.1109/TBME.2004.826698 10.1186/1475-925X-3-7 10.1287/opre.1080.0573 10.1016/j.amc.2006.09.022 10.1109/CNE.2003.1196897 10.1109/TNSRE.2003.814446 10.1109/TPAMI.2006.17 10.1016/j.clinph.2008.03.012 10.1109/TSMCA.2007.897589 10.1007/s10559-008-0012-y 10.1097/00000542-199211000-00014 10.1037/0033-2909.99.3.303 10.1109/IEMBS.2001.1020545 10.1016/j.eswa.2006.02.005 10.1016/j.jneumeth.2005.10.009 10.1109/ISCAS.1999.779976 10.1109/TITB.2006.884369 10.1016/S0197-2456(03)00089-8 10.1887/0750306920 10.1109/IEMBS.1995.579248 10.1177/154193120905301003 10.1016/j.sigpro.2008.01.026 10.1145/63238.63246 10.1111/j.1469-8986.1993.tb02081.x 10.1016/0022-3956(94)90003-5 10.1016/j.neunet.2009.06.003 10.1109/MLSP.2004.1423016 10.1002/mds.20995 10.1145/638249.638275 10.1016/S0301-0511(99)00031-9 10.1145/1352782.1352788 10.1007/11550822_8 10.1109/ICASSP.1990.115702 10.1111/1469-8986.3850752 10.1109/TBME.2007.908083 10.1088/1741-2560/6/2/026006 10.1111/j.2517-6161.1974.tb00994.x 10.1109/IEMBS.2004.1404304 10.1109/TITB.2006.872067 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMCA.2011.2116006 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1558-2426 |
| EndPage | 1212 |
| ExternalDocumentID | 10_1109_TSMCA_2011_2116006 5752873 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS VH1 VJK AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-895ef40a410755ed736fb459104ddd15973b77d622a73af2e4bdf7b62e7bcc343 |
| IEDL.DBID | RIE |
| ISSN | 1083-4427 |
| IngestDate | Fri Jul 11 15:18:26 EDT 2025 Fri Jul 11 02:07:43 EDT 2025 Wed Oct 01 06:42:59 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Tue Aug 26 17:18:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-895ef40a410755ed736fb459104ddd15973b77d622a73af2e4bdf7b62e7bcc343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1671336055 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1671336055 crossref_primary_10_1109_TSMCA_2011_2116006 ieee_primary_5752873 proquest_miscellaneous_963839283 crossref_citationtrail_10_1109_TSMCA_2011_2116006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Nov. 2011-11-00 20111101 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
| PublicationTitleAbbrev | TSMCA |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 chaovalitwongse (ref8) 2008; 56 ref18 scholtus (ref41) 2008 lu (ref25) 2008 (ref32) 1994 ref46 ref48 anderson (ref3) 1996 ref47 scholtus (ref42) 2009 ref44 ref49 lal (ref23) 2005 ref9 ref4 ref6 ref5 stone (ref45) 1974; 36 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref2 ref1 shen (ref43) 2008; 119 ref39 ref38 fukunaga (ref16) 1990 mika (ref27) 2002 handy (ref19) 2004 ref24 ref26 ref20 ref22 ref21 rakotomamonjy (ref37) 2005 young (ref51) 1996 xu (ref50) 2004 ref28 blankertz (ref7) 2002; 14 ref29 |
| References_xml | – ident: ref21 doi: 10.1109/TBME.2004.826698 – ident: ref29 doi: 10.1186/1475-925X-3-7 – volume: 56 start-page: 1450 year: 2008 ident: ref8 article-title: Novel optimization models for abnormal brain activity classification publication-title: Oper Res doi: 10.1287/opre.1080.0573 – ident: ref35 doi: 10.1016/j.amc.2006.09.022 – ident: ref17 doi: 10.1109/CNE.2003.1196897 – ident: ref18 doi: 10.1109/TNSRE.2003.814446 – ident: ref26 doi: 10.1109/TPAMI.2006.17 – volume: 119 start-page: 1524 year: 2008 ident: ref43 article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.03.012 – ident: ref10 doi: 10.1109/TSMCA.2007.897589 – ident: ref9 doi: 10.1007/s10559-008-0012-y – year: 2004 ident: ref19 publication-title: Event-Related Potentials A Methods Handbook – ident: ref38 doi: 10.1097/00000542-199211000-00014 – ident: ref40 doi: 10.1037/0033-2909.99.3.303 – start-page: 1 year: 2008 ident: ref25 article-title: Subject-independent brain computer interface through boosting publication-title: Proc Int Conf Pattern Recogn – ident: ref11 doi: 10.1109/IEMBS.2001.1020545 – ident: ref46 doi: 10.1016/j.eswa.2006.02.005 – ident: ref39 doi: 10.1016/j.jneumeth.2005.10.009 – start-page: 407 year: 1996 ident: ref3 article-title: Classification of EEG signals from four subjects during five mental tasks publication-title: Solving Eng Problems with Neural Netw Proc Int Conf Eng Appl Neural Netw – ident: ref2 doi: 10.1109/ISCAS.1999.779976 – year: 1996 ident: ref51 publication-title: Data inaccuracy in the global transportation network – ident: ref44 doi: 10.1109/TITB.2006.884369 – ident: ref22 doi: 10.1016/S0197-2456(03)00089-8 – start-page: 737 year: 2005 ident: ref23 publication-title: Advances in neural information processing systems – ident: ref1 doi: 10.1887/0750306920 – year: 2002 ident: ref27 publication-title: Kernel Fisher discriminants – ident: ref4 doi: 10.1109/IEMBS.1995.579248 – ident: ref24 doi: 10.1177/154193120905301003 – ident: ref31 doi: 10.1016/j.sigpro.2008.01.026 – year: 2008 ident: ref41 publication-title: Algorithms for Correcting Some Obvious Inconsistencies and Rounding Errors in Business Survey Data – ident: ref33 doi: 10.1145/63238.63246 – ident: ref34 doi: 10.1111/j.1469-8986.1993.tb02081.x – ident: ref5 doi: 10.1016/0022-3956(94)90003-5 – ident: ref15 doi: 10.1016/j.neunet.2009.06.003 – start-page: 391 year: 2004 ident: ref50 article-title: High accuracy classification of EEG signal publication-title: Proc 17th Int Conf Pattern Recognit – ident: ref6 doi: 10.1109/MLSP.2004.1423016 – ident: ref28 doi: 10.1002/mds.20995 – year: 1990 ident: ref16 publication-title: Statistical Pattern Recognition – year: 2009 ident: ref42 publication-title: Automatic Correction of Simple Typing Errors in Numerical Data With Balance Edits – year: 1994 ident: ref32 publication-title: Automatic detection of seizures using electroencephalographic signals – ident: ref47 doi: 10.1145/638249.638275 – ident: ref14 doi: 10.1016/S0301-0511(99)00031-9 – ident: ref49 doi: 10.1145/1352782.1352788 – start-page: 45 year: 2005 ident: ref37 publication-title: Artificial Neural Networks Biological InspirationsICANN 2005 doi: 10.1007/11550822_8 – ident: ref20 doi: 10.1109/ICASSP.1990.115702 – ident: ref30 doi: 10.1111/1469-8986.3850752 – ident: ref36 doi: 10.1109/TBME.2007.908083 – ident: ref48 doi: 10.1088/1741-2560/6/2/026006 – volume: 36 start-page: 111 year: 1974 ident: ref45 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1974.tb00994.x – ident: ref12 doi: 10.1109/IEMBS.2004.1404304 – ident: ref13 doi: 10.1109/TITB.2006.872067 – volume: 14 start-page: 157 year: 2002 ident: ref7 article-title: Classifying single trial EEG: Towards brain computer interfacing publication-title: Adv Neural Inf Process Syst |
| SSID | ssj0014494 |
| Score | 2.1051497 |
| Snippet | This paper studies the applications of data mining techniques in early detection of numerical typing errors by human operators through a quantitative analysis... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1199 |
| SubjectTerms | Classification Data mining Early detection Electroencephalography electroencephalography (EEG) classification Error detection Feature extraction Human mental state monitoring Quantitative analysis Support vector machines Temporal logic Training typing errors |
| Title | Early Detection of Numerical Typing Errors Using Data Mining Techniques |
| URI | https://ieeexplore.ieee.org/document/5752873 https://www.proquest.com/docview/1671336055 https://www.proquest.com/docview/963839283 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2426 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0014494 issn: 1083-4427 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlIzGAIKWNX8mIoAUhlYUisUWO7SxUCWqThV_P2Ukq3mLLYEeWz_Z9n333HcAJouKIWZEFcaxswNDHBBFH1irRuXCd9nXk5YtHD-Luid0_8-cFuJjnwlhrffCZ7bpP_5ZvCl25qzIk7xwBPl2ERRmJOldr_mLAmC962EdIETAWyjZBphdfjh9H11e1WifSHfTw4pMT8lVVvh3F3r8M12DUjqwOK3npVmXa1W9fRBv_O_R1WG2AJrmqV8YGLNh8E1Y-yA9uwkazsWfktFGfPtuCWy95TG5s6YO0clJk5KGq33UmBGkrdiWD6bSYzoiPNyA3qlRk5AtNkHErCTvbhqfhYHx9FzTVFgJNeVwGUcxtxnqKISHk3BpJRZYyjnCCGWMQ9UiaSmlEGCpJVRZalppMpiK0MtWaMroDS3mR210gPOrJjKqQ2ZgxgwhGZNodLCoURkVGd6DfTn-iGylyVxFjknhK0osTb7LEmSxpTNaB83mf11qI48_WW84G85bN9HfguLVygtvIvY2o3BbVLOkLx9aR2_EOkF_auLMK4WRE937--z4s-xtnn6l4AEvltLKHCFnK9Miv1XczLOTh |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gAcoB9UbIHWlTgUQZbdeGwnx6ofLKXZC1upt8ixnQtVgnaTC7--YydZAQXELQc7sjy25z175g3AW0LFCTpZRmmqXYTkY6JEEGtV5FyEKaYmCfLF2VzObvDqVtxuwId1LoxzLgSfubH_DG_5tjatvyoj8i4I4PNHsCUQUXTZWus3A8RQ9nBKoCJCjNWQIjNJPy6-ZmennV4nER7y8fIXNxTqqjw4jIOHuXwO2TC2LrDk27htirH58Zts4_8Ofhue9VCTnXZrYwc2XLULT38SINyFnX5rr9hJrz_9bg8-BdFjdu6aEKZVsbpk87Z72bljRFypK7tYLuvlioWIA3auG82yUGqCLQZR2NULuLm8WJzNor7eQmS4SJsoSYUrcaKRKKEQziouywIFAQq01hLuUbxQyso41orrMnZY2FIVMnaqMIYj34fNqq7cS2AimaiS6xhdimgJw8jS-KNFx9LqxJoRTIfpz00vRu5rYtzlgZRM0jyYLPcmy3uTjeD9us_3Torjn633vA3WLfvpH8HxYOWcNpJ_HdGVq9tVPpWerxO7EyNgf2njTysClAk_-PPfj-DxbJFd59ef519ewZNw_xzyFl_DZrNs3RsCME1xGNbtPVcf6C4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+of+Numerical+Typing+Errors+Using+Data+Mining+Techniques&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Wang%2C+Shouyi&rft.au=Lin%2C+Cheng-Jhe&rft.au=Wu%2C+Changxu&rft.au=Chaovalitwongse%2C+Wanpracha+Art&rft.date=2011-11-01&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=41&rft.issue=6&rft.spage=1199&rft.epage=1212&rft_id=info:doi/10.1109%2FTSMCA.2011.2116006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon |