Modeling Topic-Specific Influential Users in QA Forums Using Association Rule Mining
Social networks have enabled the exchange of information that has accelerated the diffusion of online content. Social networks offer multiple forms of social interaction that facilitate users in generating online content. The increasing popularity of social networks has attracted many researchers to...
Saved in:
| Published in | IEEE access Vol. 12; pp. 196498 - 196516 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3517702 |
Cover
| Abstract | Social networks have enabled the exchange of information that has accelerated the diffusion of online content. Social networks offer multiple forms of social interaction that facilitate users in generating online content. The increasing popularity of social networks has attracted many researchers to investigate their impact on users and confirmed significant influence of social networks on markets, social life, and politics. Therefore, identification of the influential users in social networks has become a popular research area due to several of its applications in diverse domains such as e-commerce, viral marketing, political campaigns etc. However, earlier research either consider linguistic content or utilize network-based representation for finding the influential users in social networks. This paper incorporates association rule mining (ARM) based algorithms, that are mostly used for market-basket analysis, for exploring the behavior of users and predict their participation in social interactions. The study identifies topic-based influential users using Apriori and FPGrowth on the dataset of a popular online question-answer community. In addition, the study employs standard evaluation metrics such as confidence, support, lift, and conviction for computing association rules. Subsequently, the obtained results are validated using conventional measures including accuracy, precision, and recall in accordance with the perspective of association rules. The experiments are performed on multiple social networking datasets and the obtained results prove the visibility and quality of the proposed method against well-established degree centrality, PageRank, and HITS. In addition, the results validate the effectiveness of ARM in identifying influential users in social networks. The generated rule set can help create efficient decision support systems that are becoming prevalent in providing solutions to real-world problems. |
|---|---|
| AbstractList | Social networks have enabled the exchange of information that has accelerated the diffusion of online content. Social networks offer multiple forms of social interaction that facilitate users in generating online content. The increasing popularity of social networks has attracted many researchers to investigate their impact on users and confirmed significant influence of social networks on markets, social life, and politics. Therefore, identification of the influential users in social networks has become a popular research area due to several of its applications in diverse domains such as e-commerce, viral marketing, political campaigns etc. However, earlier research either consider linguistic content or utilize network-based representation for finding the influential users in social networks. This paper incorporates association rule mining (ARM) based algorithms, that are mostly used for market-basket analysis, for exploring the behavior of users and predict their participation in social interactions. The study identifies topic-based influential users using Apriori and FPGrowth on the dataset of a popular online question-answer community. In addition, the study employs standard evaluation metrics such as confidence, support, lift, and conviction for computing association rules. Subsequently, the obtained results are validated using conventional measures including accuracy, precision, and recall in accordance with the perspective of association rules. The experiments are performed on multiple social networking datasets and the obtained results prove the visibility and quality of the proposed method against well-established degree centrality, PageRank, and HITS. In addition, the results validate the effectiveness of ARM in identifying influential users in social networks. The generated rule set can help create efficient decision support systems that are becoming prevalent in providing solutions to real-world problems. |
| Author | Alreshoodi, Mohammed Ali, Tassawar Ishfaq, Umar Daud, Ali Irshad, Azeem |
| Author_xml | – sequence: 1 givenname: Umar surname: Ishfaq fullname: Ishfaq, Umar organization: Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan – sequence: 2 givenname: Tassawar surname: Ali fullname: Ali, Tassawar organization: Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan – sequence: 3 givenname: Ali orcidid: 0000-0002-8284-6354 surname: Daud fullname: Daud, Ali organization: Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Mohammed orcidid: 0000-0002-3066-6909 surname: Alreshoodi fullname: Alreshoodi, Mohammed email: mo.alreshoodi@qu.edu.sa organization: Unit of Scientific Research, Applied College, Qassim University, Buraydah, Saudi Arabia – sequence: 5 givenname: Azeem orcidid: 0000-0002-1366-2834 surname: Irshad fullname: Irshad, Azeem email: irshadazeem2@gmail.com organization: Punjab Higher Education Department, Faculty of Computer Science, GGC Asghar Mall, Rawalpindi, Pakistan |
| BookMark | eNplkVtr3DAQhU1JoWmaX9A-GPrsje6yH5cll4WEkuzmWcjjcdDiSK5kU_Lvo61DCaleRnOY88Gc-Vqc-OCxKL5TsqKUNBfrzeZyt1sxwsSKS6o1YZ-KU0ZVU3HJ1cm7_5fiPKUDya_OktSnxf4udDg4_1Tuw-ig2o0IrndQbn0_zOgnZ4fyMWFMpfPl_bq8CnF-Tlk6etYpBXB2csGXD_OA5Z3zWf9WfO7tkPD8rZ4Vj1eX-81NdfvrertZ31bAZTNVGmqrJFjVKk45dEQ3LVAQFvquFQy1QC4ZEtVBK3JDWaegAWwU1J3QLT8rtgu3C_ZgxuiebXwxwTrzVwjxydg4ORjQCFZTygkXeWvBrWiBaS6V5ghUti3LLLGwZj_alz92GP4BKTHHoI0FwJTMMWjzFnS2_VxsYwy_Z0yTOYQ5-ry14VQSKbUiPE_xZQpiSCli_x97OeJH9o_F5RDxnaMmrKGKvwIOMpd1 |
| CODEN | IAECCG |
| Cites_doi | 10.3390/fi13020046 10.3390/su11030618 10.3390/info11060333 10.1016/j.engappai.2020.103735 10.1145/3133811.3133823 10.2139/ssrn.4113695 10.1016/j.jocs.2023.102008 10.1109/ICCST.2014.7045007 10.1109/WISM.2009.15 10.1007/978-3-642-31600-5_11 10.1016/j.chb.2016.11.012 10.1109/TCSS.2022.3174640 10.1146/annurev-economics-081919-050239 10.1111/nyas.14470 10.1108/EJMBE-10-2017-020 10.1109/IWCMC51323.2021.9498773 10.1002/asi.24658 10.1145/1935826.1935845 10.1016/j.ins.2019.04.033 10.1109/ICDCS.2015.29 10.1145/3314204 10.1109/IRI.2015.89 10.1145/3441447 10.1109/ICCIT48885.2019.9038197 10.1016/j.compeleceng.2022.107692 10.1515/biol-2022-0643 10.1609/aaai.v29i1.9277 10.1016/j.chb.2018.06.013 10.3390/e18050164 10.1109/ICSNS.2018.8573634 10.32604/cmc.2022.030881 10.1109/ACCESS.2019.2949678 10.1016/j.ijresmar.2018.05.003 10.1007/978-981-16-2422-3_13 10.1145/2484028.2484166 10.1109/CSCWD49262.2021.9437678 10.1016/j.eswa.2020.113978 10.1109/ICACA.2016.7887945 10.1016/j.comnet.2021.108219 10.1080/0144929X.2021.1915384 10.1007/978-3-031-05237-8_108 10.1145/170036.170072 10.1007/s10618-006-0059-1 10.1145/3397271.3401072 10.1016/j.eswa.2022.117436 10.1504/IJRIS.2018.096225 10.1016/j.ins.2018.11.037 10.1109/ICMLA.2015.73 10.1145/3301286 10.3389/frai.2020.00042 10.1109/ICSESS.2013.6615467 10.2196/17917 10.1016/j.jksuci.2022.09.016 10.1002/dac.4686 10.1145/3489088.3489133 10.14569/IJACSA.2019.0100761 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3517702 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 196516 |
| ExternalDocumentID | oai_doaj_org_article_42811303495743a4bc2735673ec15bb2 10.1109/access.2024.3517702 10_1109_ACCESS_2024_3517702 10802916 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deanship of Graduate Studies and Scientific Research at Qassim University grantid: QU-APC-2024-9/1 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-7c8a65ca6b6313cd079bc1c4acfdb42e74e352e06dcb474e12d6c9ce96c8d47b3 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:39:13 EDT 2025 Sun Sep 07 11:29:12 EDT 2025 Mon Jun 30 13:02:42 EDT 2025 Wed Oct 01 03:43:32 EDT 2025 Wed Aug 27 02:02:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-7c8a65ca6b6313cd079bc1c4acfdb42e74e352e06dcb474e12d6c9ce96c8d47b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1366-2834 0000-0002-3066-6909 0000-0002-8284-6354 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2024.3517702 |
| PQID | 3150557603 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3150557603 ieee_primary_10802916 unpaywall_primary_10_1109_access_2024_3517702 crossref_primary_10_1109_ACCESS_2024_3517702 doaj_primary_oai_doaj_org_article_42811303495743a4bc2735673ec15bb2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 Vijayarani (ref50) ref52 ref11 Hoffman (ref51); 23 ref10 ref54 ref17 ref16 ref19 ref18 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 McCallum (ref46) 2002 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 Ishfaq (ref55) 2017; 16 ref1 ref39 ref38 ref24 He (ref14); 2017 ref23 ref26 ref25 ref20 ref22 ref21 Garg (ref28) ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref7 doi: 10.3390/fi13020046 – ident: ref39 doi: 10.3390/su11030618 – ident: ref33 doi: 10.3390/info11060333 – ident: ref48 doi: 10.1016/j.engappai.2020.103735 – start-page: 593 volume-title: Proc. Int. Conf. Commun. Comput. ident: ref28 article-title: Review of apriori based algorithms on mapreduce framework – ident: ref37 doi: 10.1145/3133811.3133823 – ident: ref27 doi: 10.2139/ssrn.4113695 – ident: ref17 doi: 10.1016/j.jocs.2023.102008 – ident: ref22 doi: 10.1109/ICCST.2014.7045007 – ident: ref23 doi: 10.1109/WISM.2009.15 – ident: ref41 doi: 10.1007/978-3-642-31600-5_11 – ident: ref56 doi: 10.1016/j.chb.2016.11.012 – ident: ref4 doi: 10.1109/TCSS.2022.3174640 – volume: 23 volume-title: Proc. 24th Annu. Conf. Neural Inf. Process. Syst. ident: ref51 article-title: Online learning for latent dirichlet allocation – ident: ref5 doi: 10.1146/annurev-economics-081919-050239 – ident: ref8 doi: 10.1111/nyas.14470 – ident: ref15 doi: 10.1108/EJMBE-10-2017-020 – ident: ref43 doi: 10.1109/IWCMC51323.2021.9498773 – ident: ref10 doi: 10.1002/asi.24658 – ident: ref29 doi: 10.1145/1935826.1935845 – ident: ref16 doi: 10.1016/j.ins.2019.04.033 – ident: ref20 doi: 10.1109/ICDCS.2015.29 – ident: ref32 doi: 10.1145/3314204 – ident: ref30 doi: 10.1109/IRI.2015.89 – ident: ref24 doi: 10.1145/3441447 – ident: ref35 doi: 10.1109/ICCIT48885.2019.9038197 – ident: ref60 doi: 10.1016/j.compeleceng.2022.107692 – ident: ref61 doi: 10.1515/biol-2022-0643 – ident: ref44 doi: 10.1609/aaai.v29i1.9277 – volume: 16 start-page: 505 year: 2017 ident: ref55 article-title: Identifying the influential bloggers: A modular approach based on sentiment analysis publication-title: J. Web Eng. – ident: ref2 doi: 10.1016/j.chb.2018.06.013 – ident: ref42 doi: 10.3390/e18050164 – ident: ref57 doi: 10.1109/ICSNS.2018.8573634 – ident: ref31 doi: 10.32604/cmc.2022.030881 – ident: ref13 doi: 10.1109/ACCESS.2019.2949678 – ident: ref12 doi: 10.1016/j.ijresmar.2018.05.003 – ident: ref26 doi: 10.1007/978-981-16-2422-3_13 – ident: ref47 doi: 10.1145/2484028.2484166 – ident: ref21 doi: 10.1109/CSCWD49262.2021.9437678 – ident: ref34 doi: 10.1016/j.eswa.2020.113978 – ident: ref52 doi: 10.1109/ICACA.2016.7887945 – ident: ref62 doi: 10.1016/j.comnet.2021.108219 – ident: ref3 doi: 10.1080/0144929X.2021.1915384 – start-page: 3980 volume-title: Proc. Int. Conf. Inven. Comput. Technol. (ICICT) ident: ref50 article-title: A novel approach to data security in cyberspace – ident: ref40 doi: 10.1007/978-3-031-05237-8_108 – ident: ref49 doi: 10.1145/170036.170072 – ident: ref25 doi: 10.1007/s10618-006-0059-1 – ident: ref19 doi: 10.1145/3397271.3401072 – ident: ref18 doi: 10.1016/j.eswa.2022.117436 – volume: 2017 start-page: 406 volume-title: Proc. IEEE 1st Int. Conf. Data Sci. Cyberspace, (DSC) ident: ref14 article-title: A novel approach to data security in cyberspace – volume-title: Mallet: A Machine Learning for Languagetoolkit year: 2002 ident: ref46 – ident: ref38 doi: 10.1504/IJRIS.2018.096225 – ident: ref11 doi: 10.1016/j.ins.2018.11.037 – ident: ref45 doi: 10.1109/ICMLA.2015.73 – ident: ref1 doi: 10.1145/3301286 – ident: ref54 doi: 10.3389/frai.2020.00042 – ident: ref53 doi: 10.1109/ICSESS.2013.6615467 – ident: ref6 doi: 10.2196/17917 – ident: ref9 doi: 10.1016/j.jksuci.2022.09.016 – ident: ref59 doi: 10.1002/dac.4686 – ident: ref36 doi: 10.1145/3489088.3489133 – ident: ref58 doi: 10.14569/IJACSA.2019.0100761 |
| SSID | ssj0000816957 |
| Score | 2.3022714 |
| Snippet | Social networks have enabled the exchange of information that has accelerated the diffusion of online content. Social networks offer multiple forms of social... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 196498 |
| SubjectTerms | Algorithms Association rule learning classification Clustering algorithms Data mining Datasets Decision support systems deep learning influential users Itemsets Message systems Prediction algorithms QA forum social network analysis Social networking (online) Social networks StackOverflow System effectiveness Technological innovation Text mining |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll7aH0o-UukmDDj1WjWTr87hduqSFFFp2ITchjWVYWJyl2SXk32cke4NDD73kaGPZ43mS5o2Q5hHyWbfJdgEUC9ABk9inWAwAzKRolY1cJ55PI1_-0hcr-fNKXU2kvvKesKE88OC4c6THIs-zSOQx2AUZAQOu0qZJIFSMZfbl1k2SqTIHW6GxwVhmSHB3PpvP8Y8wIazl10YJY8aFlEMoKhX7R4mVR2zz-b7fhrvbsNlMAs_iNXk1MkY6Gyx9Q56l_i15Oakj-I4ss6JZPldOl9fbNbAiKt-tgf4YJEhwFG_oKp-rpOue_p7RRS7BcEPLfgE6QYj-2W8SvSyiEcdktfi-nF-wUS6BQaPcjhmwQSsIOupGNNBy4yIIkIhCG2WdjEzIthLXLUSJF6JuNThIToNtpYnNe3LUX_fpA6HK1C13dZt0Z6Xj2rmAbUBYUEnqTlXky8FzfjtUxfAlm-DOD4722dF-dHRFvmXvPjyaS1qXGwi0H4H2_wO6IscZm8n3LK-R3Fbk9ACWH8ffjW-Q5ypMpXhTEfYA4D-2hiJK-cjWj09h6wl5kd85LNWckqPd3336hORlF89KP70HYQPm4A priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYXoCHMWCIwkB-4BF3-fBH_Fgqqg1pk0CttDfLPjtSRZVWrNEEfz1nx606EBJvSeTEdn7n-O5ydz9CPkgfmtaCYBZaYBxlijkLwFRwjWhcIUMRs5Gvb-Tlgn-5Fbc5WT3lwoQQUvBZGMfD9C_fr6GPrrKLGA9XoT5zRI5UI4dkrb1DJTJIaKFyZaGy0BeT6RQngTZgxce1KJXKvpPd7pOK9GdWlQcK5uO-29if93a1OthrZs_IzW6UQ4jJ93G_dWP49UcBx_-exik5yVonnQxi8pw8Ct0L8vSgFuFLMo-saDE3nc7XmyWwREzfLoFeDTQm-CVY0UXMzaTLjn6d0Fks43BHU8wBPUCZfutXgV4n4okzsph9nk8vWaZcYFALvWUKGisFWOlkXdbgC6UdlMARSe94FRQPqLGFQnpwHE_KykvQELSExnPl6lfkuFt34TWhQlW-0JUPsm24LqTWFu-BsgERuGzFiHzcQWE2Q2UNkyySQpsBORORMxm5EfkU4do3jWWx0wV8tSavMoO2VBk3ZbT6UDOy3AFqZ0KqOkApnMOHnEU4DvobkBiR8x36Jq_hO1OjrizQHCvqEWF7ifhrrDYRWz4Y65t_dPOWPInNBg_OOTne_ujDO9Rptu59kuXfM9DyvA priority: 102 providerName: IEEE |
| Title | Modeling Topic-Specific Influential Users in QA Forums Using Association Rule Mining |
| URI | https://ieeexplore.ieee.org/document/10802916 https://www.proquest.com/docview/3150557603 https://doi.org/10.1109/access.2024.3517702 https://doaj.org/article/42811303495743a4bc2735673ec15bb2 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVQ94A48LmIwlL5wBEXO_6Kj6WiWpB2BaiVllNkTxypospWtBWCX8_Yya5SkBAcE9mJ4xnHb2zPe4S8MnUsGw-aeWiAKfQpFjwAszGUugzcRJ6ykS8uzflKfbjSVz3PdsqFGe7fC-7e-CwbiHFcoaZSC2sTceSJ0Qi8R-Rkdflx9iXJxwnjmMwbkS_-UvNo7skU_b2myhG8vHtot_7Hd7_ZDGaaxYMuhXuXCQrTAZOv08M-TOHnb_SN__gRD8n9HnHSWecij8id2D4m9wY8hE_IMimipbx0urzeroFlUfpmDfR9J2GCf4ENXaW8TLpu6acZXSQKhx3N5w3owML082ET6UUWnTglq8W75fyc9XILDKR2e2ah9EaDN8FIIaHm1gUQoNCKdVBFtCoiWovc1BAUXoiiNuAgOgNlrWyQT8movW7jM0K1LWruijqaplSOG-c81gFRgo7KNHpMXt8Yotp2rBpVjka4q2bzObpelTqr6jtrTN4mY90WTZTY-QZ2ctWPsArjKJEmZIz4EBV5FQCRmTZWRhA6BHzIaTL14H0lLxAcj8nZje2rfvzuKok4WWMoxuWYsFt_-KOtnWGP2vr8P8ufkdH-2yG-RGizD5O8JDDJWYiT3r1_AURm9PY |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC6isIAPHHHXSfyIj6Wi6sK2EqiV9mbZY0eqqNKKbYTg12M7btUFIXFLoji2843jmcnMfAi9E87XjQFODDRAWJApYg0Akd7WvLZUeBqzkWdzMV2yT9f8Oierp1wY730KPvPDeJj-5bsNdNFVdhHj4cqgz9xF9zhjjPfpWgeXSuSQUFzm2kIFVRej8ThMI1iBJRtWvJAye0_2-08q0595VW6pmKdduzU_f5j1-mi3mTxC8_04-yCTb8NuZ4fw648Sjv89kcfoYdY78agXlCfojm-fogdH1QifoUXkRYvZ6Xix2a6AJGr6ZgX4sicyCd-CNV7G7Ey8avGXEZ7EQg43OEUd4COc8ddu7fEsUU-coeXk42I8JZl0gUDF1Y5IqI3gYIQVVVGBo1JZKIAFLJ1lpZfMB53NU-HAsnBSlE6AAq8E1I5JWz1HJ-2m9S8Q5rJ0VJXOi6ZmigqlTGgDRQ3cM9HwAXq_h0Jv-9oaOtkkVOkeOR2R0xm5AfoQ4TrcGgtjpwvh1eq8znSwpoq4LQe7L-hGhlkI-hkXsvJQcGvDQ84iHEf99UgM0PkefZ1X8Y2ugrbMg0FGqwEiB4n4a6wmUVveGuvLf3TzFp1OF7MrfXU5__wK3Y9Nen_OOTrZfe_866Dh7OybJNe_AQ6o9gk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVQ94A48LmIwoJ84IiLnfgjPpaKakHaFaBWWk6WPXGkiipbbVutll_P2MmuUpAQHBPZiTMzjt_InvcIeavrWDUeFPPQAJMYUyx4AGZiqFQVuI48VSOfnevTpfx8oS56nu1UCzPcvxfcvvdZNhDzuEJOSiWMScSRR1oh8B6Ro-X5l-n3JB8ntGVl3oh89ZeeB2tPpujvNVUO4OX9fbvxN9d-vR6sNPNHXQn3NhMUpgMmPyb7XZjAz9_oG__xIx6Thz3ipNMuRJ6Qe7F9Sh4MeAifkUVSREt16XRxuVkBy6L0zQrop07CBP8Ca7pMdZl01dKvUzpPFA5bms8b0IGH6bf9OtKzLDpxTJbzj4vZKevlFhiUyu6YgcprBV4HXYoSam5sAAESvVgHWUQjI6K1yHUNQeKFKGoNFqLVUNXShPI5GbWXbXxBqDJFzW1RR91U0nJtrcc-ICpQUepGjcm7W0e4Tceq4XI2wq2bzmYYei4Zy_XGGpMPyVl3TRMldr6BRnb9DHOYR4m0IGPGh6jIywCIzJQ2ZQShQsCHHCdXD95X8QLB8Zic3Pre9fN360rEyQpTMV6OCbuLhz_G2jn2YKwv_7P9CRntrvbxNUKbXXjTh_Qv2YzzAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Topic-Specific+Influential+Users+in+QA+Forums+Using+Association+Rule+Mining&rft.jtitle=IEEE+access&rft.au=Ishfaq%2C+Umar&rft.au=Ali%2C+Tassawar&rft.au=Daud%2C+Ali&rft.au=Alreshoodi%2C+Mohammed&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=196498&rft.epage=196516&rft_id=info:doi/10.1109%2FACCESS.2024.3517702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3517702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |