Quadratic-Stability Analysis of Fuzzy-Model-Based Control Systems Using Staircase Membership Functions

This paper presents the stability analysis of fuzzy-model-based (FMB) control systems. Staircase membership functions are introduced to facilitate the stability analysis. Through the staircase membership functions approximating those of the fuzzy model and fuzzy controller, the information of the me...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 18; no. 1; pp. 125 - 137
Main Authors Lam, H.K., Narimani, M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2009.2037744

Cover

More Information
Summary:This paper presents the stability analysis of fuzzy-model-based (FMB) control systems. Staircase membership functions are introduced to facilitate the stability analysis. Through the staircase membership functions approximating those of the fuzzy model and fuzzy controller, the information of the membership functions can be brought into the stability analysis. Based on the Lyapunov-stability theory, stability conditions in terms of linear-matrix inequalities (LMIs) are derived in a simple and easy-to-understand manner to guarantee the system stability. The proposed stability-analysis approach offers a nice property that includes the membership functions of both fuzzy model and fuzzy controller in the LMI-based stability conditions for a dedicated FMB control system. Furthermore, the proposed stability-analysis approach can be applied to the FMB control systems of which the membership functions of both fuzzy model and fuzzy controller are not necessarily the same. Greater design flexibility is allowed to choose the membership functions during the design of fuzzy controllers. By employing membership functions with simple structure, it is possible to lower the structural complexity and the implementation cost. Simulation examples are given to illustrate the merits of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2009.2037744