A Zero-Shot Interpretable Framework for Sentiment Polarity Extraction

Sentiment analysis is a task in natural language processing that focuses on identifying and categorizing emotions expressed in text. Despite the remarkable predictive performance achieved by deep learning models in this domain, their limited interpretability posed a significant challenge. Furthermor...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Chaisen, T., Charoenkwan, P., Kim, C. G., Thiengburanathum, P.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3322103

Cover

Abstract Sentiment analysis is a task in natural language processing that focuses on identifying and categorizing emotions expressed in text. Despite the remarkable predictive performance achieved by deep learning models in this domain, their limited interpretability posed a significant challenge. Furthermore, the development of interpretable sentiment analysis models for the Thai language had received inadequate attention. To address this gap, this study proposed a Zero-shot Interpretable Sentiment Analysis Framework, integrating sentiment polarity extraction and leveraging the zero-shot learning with the powerful WangchanBERTa model. Our framework utilized the word selection method from the feeling wheel to represent six primary feelings as sentiment polarities, effectively capturing the subtle emotions expressed in the text. These sentiment polarities played a crucial role as features in training our model, enhancing its interpretability for sentiment analysis tasks. Through the evaluation of three Thai sentiment analysis datasets, we compared the sentiment polarity extraction with two traditional feature extraction methods and ten classification algorithms. The results showed the superiority of the sentiment polarity extraction over Bag of words and its competitive performance compared to TF-IDF in terms of accuracy. To gain insights into the model's decision-making process, SHAP (SHapley Additive exPlanations) was employed to analyze feature importance. Our findings highlighted the alignment of influential features with the sentiment polarities of the text, providing a crucial understanding of the model's functionality. Notably, we uncovered a clear relationship between specific feeling features and their corresponding sentiment classes, deepening our comprehension of the model's performance in sentiment analysis. This study not only contributed to the advancement of sentiment analysis in the Thai language but also bridged the gap between predictive performance and model transparency, yielding a novel and interpretable approach for sentiment analysis.
AbstractList Sentiment analysis is a task in natural language processing that focuses on identifying and categorizing emotions expressed in text. Despite the remarkable predictive performance achieved by deep learning models in this domain, their limited interpretability posed a significant challenge. Furthermore, the development of interpretable sentiment analysis models for the Thai language had received inadequate attention. To address this gap, this study proposed a Zero-shot Interpretable Sentiment Analysis Framework, integrating sentiment polarity extraction and leveraging the zero-shot learning with the powerful WangchanBERTa model. Our framework utilized the word selection method from the feeling wheel to represent six primary feelings as sentiment polarities, effectively capturing the subtle emotions expressed in the text. These sentiment polarities played a crucial role as features in training our model, enhancing its interpretability for sentiment analysis tasks. Through the evaluation of three Thai sentiment analysis datasets, we compared the sentiment polarity extraction with two traditional feature extraction methods and ten classification algorithms. The results showed the superiority of the sentiment polarity extraction over Bag of words and its competitive performance compared to TF-IDF in terms of accuracy. To gain insights into the model's decision-making process, SHAP (SHapley Additive exPlanations) was employed to analyze feature importance. Our findings highlighted the alignment of influential features with the sentiment polarities of the text, providing a crucial understanding of the model's functionality. Notably, we uncovered a clear relationship between specific feeling features and their corresponding sentiment classes, deepening our comprehension of the model's performance in sentiment analysis. This study not only contributed to the advancement of sentiment analysis in the Thai language but also bridged the gap between predictive performance and model transparency, yielding a novel and interpretable approach for sentiment analysis.
Sentiment analysis is a task in natural language processing that focuses on identifying and categorizing emotions expressed in text. Despite the remarkable predictive performance achieved by deep learning models in this domain, their limited interpretability poses a significant challenge. Moreover, the development of interpretable sentiment analysis models for the Thai language has received insufficient attention. To address this gap, this study proposed a Zero-shot Interpretable Sentiment Analysis Framework, integrating sentiment polarity extraction and leveraging the zero-shot learning with the powerful WangchanBERTa model. Our framework utilized the word selection method from the feeling wheel to represent six primary feelings as sentiment polarities, effectively capturing the subtle emotions expressed in the text. These sentiment polarities played a crucial role as features in training our model, enhancing its interpretability for sentiment analysis tasks. Through the evaluation of three Thai sentiment analysis datasets, we compared the sentiment polarity extraction with two traditional feature extraction methods and ten classification algorithms. The results showed the superiority of the sentiment polarity extraction over Bag of Words and its competitive performance compared to TF-IDF in terms of accuracy. To gain insights into the model’s decision-making process, SHAP (SHapley Additive exPlanations) was employed to analyze feature importance. Our findings highlighted the alignment of influential features with the sentiment polarities of the text, providing a crucial understanding of the model’s functionality. Notably, we uncovered a clear relationship between specific feeling features and their corresponding sentiment classes, deepening our comprehension of the model’s performance in sentiment analysis. This study not only contributed to the advancement of sentiment analysis in the Thai language but also bridged the gap between predictive performance and model transparency, yielding a novel and interpretable approach for sentiment analysis.
Author Kim, C. G.
Thiengburanathum, P.
Charoenkwan, P.
Chaisen, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Chaisen
  fullname: Chaisen, T.
  organization: Data science Consortium, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
– sequence: 2
  givenname: P.
  surname: Charoenkwan
  fullname: Charoenkwan, P.
  organization: Department of Modern Management Information and Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
– sequence: 3
  givenname: C. G.
  orcidid: 0000-0001-8577-9348
  surname: Kim
  fullname: Kim, C. G.
  organization: Department of Computer Science, Namseoul University, Cheonan, Republic of Korea
– sequence: 4
  givenname: P.
  orcidid: 0000-0001-6983-8336
  surname: Thiengburanathum
  fullname: Thiengburanathum, P.
  organization: College of Arts, Media and Technology, Research Group of Modern Management Information and Technology, Chiang Mai University, Chiang Mai, Thailand
BookMark eNpNUE1LAzEQDaLgV3-BHhY8b00y2aQ5llK1UFCoXryEbHaiW9tNzUbUf290RZzDm-Ex783wjsl-Fzok5IzRMWNUX05ns_lqNeaUwxiAc0ZhjxxxJnUJFcj9f_MhGfX9muaaZKpSR2Q-LR4xhnL1HFKx6BLGXcRk6w0WV9Fu8T3El8KHWKywS-02Q3EXNja26bOYf6RoXWpDd0oOvN30OPrtJ-Than4_uymXt9eL2XRZOqh0KhVY4TQTqDxvbMOk9yAqpqoGKHNa1hMKqm68r0B4ybUWGqWywBw45ngNJ2Qx-DbBrs0utlsbP02wrfkhQnwyNqbWbdDUlQbVABfWVqLmom4kcCW1Vw06AJG9LgavXQyvb9gnsw5vscvvG67ZhGaQKm_BsOVi6PuI_u8qo-Y7fjPEb77jN7_xZ9X5oGoR8Z-CK5Z_gC8fKIFn
CODEN IAECCG
Cites_doi 10.1038/s42256-019-0048-x
10.1109/DSAA53316.2021.9564230
10.1007/s40596-020-01261-6
10.1155/2021/9986920
10.1109/MIC.2022.3187080
10.1007/s10489-022-04046-6
10.1145/3461764
10.48550/arXiv.1810.04805
10.1002/asi.21662
10.1145/3551890
10.3846/ntcs.2023.17901
10.1016/j.ipm.2022.103058
10.1016/j.neunet.2022.03.017
10.1016/j.artint.2021.103502
10.18653/v1/2021.naacl-srw.3
10.1016/j.dajour.2023.100162
10.1109/INDICON56171.2022.10039878
10.1080/10447318.2022.2062113
10.1016/j.ipm.2021.102544
10.3390/app12178662
10.1016/j.scs.2019.101615
10.18653/v1/D18-1352
10.3390/info13110536
10.1109/ECTIDAMTNCON51128.2021.9425718
10.1177/036215378201200411
10.1007/s11280-021-00992-2
10.18653/v1/2021.naacl-main.226
10.1007/s12046-022-01964-6
10.18653/v1/n19-1108
10.1109/ACCESS.2019.2940051
10.1145/3342827.3342850
10.1007/s11042-023-14432-y
10.1109/iSAI-NLP.2018.8692836
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3322103
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (UHCL Subscription)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_b5937d324aa54b24bd632769f7dec334
10_1109_ACCESS_2023_3322103
10271276
Genre orig-research
GrantInformation_xml – fundername: College of Arts, Media and Technology, Chiang Mai University
– fundername: National Research Foundation of Korea
  grantid: NRF-2021R1I1A4A01049755
  funderid: 10.13039/501100003725
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-73a4c914e7f2dad16ff345175d301c96b8037bdff534f629949e67a31c3c1c2b3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:21 EDT 2025
Sun Jun 29 16:51:55 EDT 2025
Tue Jul 01 04:14:02 EDT 2025
Wed Aug 27 02:50:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-73a4c914e7f2dad16ff345175d301c96b8037bdff534f629949e67a31c3c1c2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6983-8336
0000-0001-8577-9348
0009-0008-9297-6153
OpenAccessLink https://doaj.org/article/b5937d324aa54b24bd632769f7dec334
PQID 2918029167
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10271276
crossref_primary_10_1109_ACCESS_2023_3322103
proquest_journals_2918029167
doaj_primary_oai_doaj_org_article_b5937d324aa54b24bd632769f7dec334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Horsuwan (ref12) 2019
Sirihattasak (ref33)
ref34
ref37
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref23
ref26
ref25
ref41
ref22
ref28
ref27
ref29
ref8
Lowphansirikul (ref20) 2021
ref7
ref9
ref4
ref3
ref5
ref40
Suriyawongkul (ref42) 2019
Jerslin (ref14) 2022; 14
Nakwijit (ref24) 2022
Lundberg (ref21); 30
Cambria (ref6)
Jorgensen (ref15) 2020
References_xml – ident: ref30
  doi: 10.1038/s42256-019-0048-x
– year: 2019
  ident: ref12
  article-title: A comparative study of pretrained language models on Thai social text categorization
  publication-title: arXiv:1912.01580
– ident: ref16
  doi: 10.1109/DSAA53316.2021.9564230
– ident: ref22
  doi: 10.1007/s40596-020-01261-6
– ident: ref27
  doi: 10.1155/2021/9986920
– ident: ref11
  doi: 10.1109/MIC.2022.3187080
– year: 2021
  ident: ref20
  article-title: WangchanBERTa: Pretraining transformer-based Thai language models
  publication-title: arXiv:2101.09635
– ident: ref18
  doi: 10.1007/s10489-022-04046-6
– ident: ref17
  doi: 10.1145/3461764
– ident: ref8
  doi: 10.48550/arXiv.1810.04805
– volume-title: The applicability of transsentientism within effective altruism
  year: 2020
  ident: ref15
– ident: ref35
  doi: 10.1002/asi.21662
– ident: ref4
  doi: 10.1145/3551890
– ident: ref10
  doi: 10.3846/ntcs.2023.17901
– start-page: 1
  volume-title: Proc. 2nd Workshop Text Analytics Cybersecurity Online Safety (TA-COS)
  ident: ref33
  article-title: Annotation and classification of toxicity for Thai Twitter
– ident: ref28
  doi: 10.1016/j.ipm.2022.103058
– ident: ref19
  doi: 10.1016/j.neunet.2022.03.017
– ident: ref1
  doi: 10.1016/j.artint.2021.103502
– ident: ref32
  doi: 10.18653/v1/2021.naacl-srw.3
– ident: ref23
  doi: 10.1016/j.dajour.2023.100162
– start-page: 3829
  volume-title: Proc. 13th Lang. Resour. Eval. Conf.
  ident: ref6
  article-title: SenticNet 7: A commonsense-based neurosymbolic AI framework for explainable sentiment analysis
– volume-title: PyThaiNLP/wisesight-sentiment: First release (v1.0)
  year: 2019
  ident: ref42
– ident: ref3
  doi: 10.1109/INDICON56171.2022.10039878
– ident: ref7
  doi: 10.1080/10447318.2022.2062113
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: A unified approach to interpreting model predictions
– ident: ref25
  doi: 10.1016/j.ipm.2021.102544
– ident: ref34
  doi: 10.3390/app12178662
– ident: ref26
  doi: 10.1016/j.scs.2019.101615
– ident: ref29
  doi: 10.18653/v1/D18-1352
– ident: ref2
  doi: 10.3390/info13110536
– year: 2022
  ident: ref24
  article-title: Misspelling semantics in Thai
  publication-title: arXiv:2206.09680
– ident: ref36
  doi: 10.1109/ECTIDAMTNCON51128.2021.9425718
– ident: ref39
  doi: 10.1177/036215378201200411
– ident: ref41
  doi: 10.1007/s11280-021-00992-2
– ident: ref9
  doi: 10.18653/v1/2021.naacl-main.226
– ident: ref38
  doi: 10.1007/s12046-022-01964-6
– ident: ref40
  doi: 10.18653/v1/n19-1108
– volume: 14
  start-page: 370
  issue: 7
  year: 2022
  ident: ref14
  article-title: Emotional wheel: Measuring emotions
  publication-title: Int. J. Early Childhood Special Educ.
– ident: ref37
  doi: 10.1109/ACCESS.2019.2940051
– ident: ref31
  doi: 10.1145/3342827.3342850
– ident: ref13
  doi: 10.1007/s11042-023-14432-y
– ident: ref5
  doi: 10.1109/iSAI-NLP.2018.8692836
SSID ssj0000816957
Score 2.3035092
Snippet Sentiment analysis is a task in natural language processing that focuses on identifying and categorizing emotions expressed in text. Despite the remarkable...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analytical models
Data mining
Decision analysis
Deep learning
Emotions
Feature extraction
Machine learning
Model Interpretation
Natural language processing
Performance prediction
Predictive models
Semantics
Sentiment analysis
Task analysis
Training
Zero-shot learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJDm6Qp3TYtOuQYu7b1Wh23yy4h0FBIAqEXoSeFlt2w8ULor-9IlpPQUujNCBvJ87A-jWe-AThVwdNoRFMhFppWib-8smZKK8QOXEbaeJXJdL5civMbdnHLb0uxeq6FCSHk5LNQp8v8L9-v3TaFytDDO9l2UuzCLtrZUKz1GFBJHSQUl4VZqG3Up9l8ji9RpwbhNUXDbcfOWGX3yST9pavKX5_ivL8sX8HluLIhreRHve1t7X79Qdr430s_gJcFaZLZYBqHsBNWR_DiGf_ga1jMyLewWVdX39c9eUo_tD8DWY5JWwRRLblKOUVpBvI1HYURuZPFQ78ZiiKO4Wa5uJ6fV6WvQuUoV30lqWFOtSzI2HnjWxEjZRxxhEdvd0rYaUOl9TFyyqLA_YqpIKShraOudZ2lb2BvtV6Ft0AEjgeFZzSXSGMst86ipNXUNtEYZ9QEzkZ567uBPkPnY0ej9KAendSji3om8Dnp5PHWxH2dB1CWuriSthwhlUcgaAxntmPWC4qSVVH64ChlEzhO8n823yD6CZyMKtbFUe91pxIFHmJk-e4fj72HfVwiG8IuJ7DXb7bhAwKR3n7MBvgb8F_ZKw
  priority: 102
  providerName: IEEE
Title A Zero-Shot Interpretable Framework for Sentiment Polarity Extraction
URI https://ieeexplore.ieee.org/document/10271276
https://www.proquest.com/docview/2918029167
https://doaj.org/article/b5937d324aa54b24bd632769f7dec334
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_io-L6IgePru5uXptjLS0iKEItFC8hTzxIK3UFf76T7FYXPHjxGgJJvkky34TJNwhdSO9I0LzIgQvVedQvz42uSQ7cgYlACieTmM79A7-d0bs5m_dKfcWcsFYeuAXu2jBwoA7cvtaMmooax0kluAzCeUtIUgItZNELptIdXJdcMtHJDJWFvB6ORrCiq1gt_IrALi7XZbI6V5QU-7sSK7_u5eRsJrtop2OJeNjObg9t-MU-2u5pBx6g8RA_-9Uyn74sG_yTOmhePZ6sE64wMFI8jflA8Q0QP8YwFlg3Hn82q_ZDwwDNJuOn0W3e1UTILWGyyQXR1MqSehEqp13JQyCUAQdwcFKt5KYuiDAuBEZo4OBrqPRcaFJaYktbGXKINhfLhT9CmEO7lxBf2Sj4YpixBoCRtSmC1lbLDF2u4VFvrfSFSiFDIVWLpopoqg7NDN1ECL-7Rt3q1ADWVJ011V_WzNAgGqA3XiVK6JCh07VFVHfI3lUlo3wd8Ftx_B9jn6AtWA9t31dO0Waz-vBnwDgac54213n6HPgF0CzP6A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB-0PqgP9avitVXz4KOJSfYr-3g97ji1PYS2UHxZ9pOCcidnDsS_3tnNphZF8C0sCbuZ2cn-ZjLzG4A30jsSNK9LxEJdGfnLS6M7UiJ2YCKQ2slEpnO24stL-uGKXeVi9VQL471PyWe-ipfpX77b2F0MlaGFt6JpBb8L9xi6Fd1QrnUTUok9JCQTmVuoqeW76WyGr1HFFuEVwa3bjL2x8vmTaPpzX5W_PsbphFk8gtW4tiGx5Eu1601lf_5B2_jfi38M-xlrFtNhczyBO379FB7eYiB8BvNp8dlvN-X59aYvficgmq--WIxpWwXi2uI8ZhXFGYpP0RlG7F7Mf_TboSziAC4X84vZssydFUpLmOxLQTS1sqFehNZp1_AQCGWIJBzau5XcdDURxoXACA0cTywqPReaNJbYxraGPIe99WbtX0DBcdxL9NJspI0xzFiDkpadqYPWVssJvB3lrb4NBBoqOR61VIN6VFSPyuqZwEnUyc2tkf06DaAsVTYmZRiCKodQUGtGTUuN4wQlK4Nw3hJCJ3AQ5X9rvkH0EzgeVayyqX5XrYwkeIiSxeE_HnsN95cXZ6fq9P3q4xE8wOXSIQhzDHv9dudfIizpzau0GX8Bh6ncfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Zero-Shot+Interpretable+Framework+for+Sentiment+Polarity+Extraction&rft.jtitle=IEEE+access&rft.au=Thanakorn+Chaisen&rft.au=Phasit+Charoenkwan&rft.au=Cheong+Ghil+Kim&rft.au=Pree+Thiengburanathum&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=10586&rft.epage=10607&rft_id=info:doi/10.1109%2FACCESS.2023.3322103&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b5937d324aa54b24bd632769f7dec334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon