SensorDBSCAN: Semi-Supervised Active Learning Powered Method for Anomaly Detection and Diagnosis
Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas...
Saved in:
| Published in | IEEE access Vol. 13; pp. 25186 - 25197 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3537649 |
Cover
| Abstract | Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas unsupervised methods do not depend on labeled data, though are inferior in performance compared to supervised ones. In this paper, we propose SensorDBSCAN, a novel semi-supervised method for anomaly detection and diagnosis. The key innovation lies in achieving good performance with minimal labeled data - less than 1% of the dataset - by leveraging active and contrastive learning techniques. The proposed approach combines a transformer-based encoder trained with a triplet-based contrastive learning objective and the classical density-based clustering algorithm DBSCAN, enabling strong feature extraction, efficient and interpretable feature space organization and simple clustering algorithm. Unlike existing methods, SensorDBSCAN eliminates the need for manual labeling large amounts of data, cluster analysis, and pre-defining cluster numbers, providing greater usability in real-world cases. We validate the effectiveness of our method on the Tennessee Eastman Process (TEP) and its advanced simulations (TEP Rieth and TEP Rieker). SensorDBSCAN demonstrates better performance on well-known and realistic datasets, reducing labeling requirements while maintaining high accuracy of fault detection and diagnostics. The code is available at https://github.com/K0mp0t/sensordbscan . |
|---|---|
| AbstractList | Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas unsupervised methods do not depend on labeled data, though are inferior in performance compared to supervised ones. In this paper, we propose SensorDBSCAN, a novel semi-supervised method for anomaly detection and diagnosis. The key innovation lies in achieving good performance with minimal labeled data - less than 1% of the dataset - by leveraging active and contrastive learning techniques. The proposed approach combines a transformer-based encoder trained with a triplet-based contrastive learning objective and the classical density-based clustering algorithm DBSCAN, enabling strong feature extraction, efficient and interpretable feature space organization and simple clustering algorithm. Unlike existing methods, SensorDBSCAN eliminates the need for manual labeling large amounts of data, cluster analysis, and pre-defining cluster numbers, providing greater usability in real-world cases. We validate the effectiveness of our method on the Tennessee Eastman Process (TEP) and its advanced simulations (TEP Rieth and TEP Rieker). SensorDBSCAN demonstrates better performance on well-known and realistic datasets, reducing labeling requirements while maintaining high accuracy of fault detection and diagnostics. The code is available at https://github.com/K0mp0t/sensordbscan . |
| Author | Kozhevnikov, Alexander Ivanov, Petr Botov, Dmitry Shtark, Maria Golyadkin, Maksim Makarov, Ilya |
| Author_xml | – sequence: 1 givenname: Petr orcidid: 0000-0003-0527-8354 surname: Ivanov fullname: Ivanov, Petr email: petr_ivanov@niuitmo.ru organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia – sequence: 2 givenname: Maria surname: Shtark fullname: Shtark, Maria organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia – sequence: 3 givenname: Alexander orcidid: 0009-0008-7840-8651 surname: Kozhevnikov fullname: Kozhevnikov, Alexander organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia – sequence: 4 givenname: Maksim surname: Golyadkin fullname: Golyadkin, Maksim organization: Artificial Intelligence Research Institute (AIRI), Moscow, Russia – sequence: 5 givenname: Dmitry surname: Botov fullname: Botov, Dmitry organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia – sequence: 6 givenname: Ilya orcidid: 0000-0002-3308-8825 surname: Makarov fullname: Makarov, Ilya organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia |
| BookMark | eNplkUtv1DAUhSNUJErpL4BFJNYZHD8TdiFToNLwkAJr48fN4FHGHuxMq_n3eEiFKvDGvlfnfNI5fl5c-OChKF7WaFXXqH3T9f3NMKwwwmxFGBGctk-KS1zztsojv3j0flZcp7RD-TR5xcRl8WMAn0Jcvxv67vPbcoC9q4bjAeKdS2DLzszuDsoNqOid35Zfwz3EvP8E889gyzHEsvNhr6ZTuYYZsjr4Unlbrp3a-pBcelE8HdWU4Prhviq-v7_51n-sNl8-3PbdpjKEtXMlSMtaikyDGTOc5BSCcwFaU40abo0WALUm9YgtazSlnChKrcWYCKutVuSquF24NqidPES3V_Ekg3LyzyLErVRxdmYCKUChlmELQBWtbdMwC3hsCB4BcaFRZtGFdfQHdbpX0_QXWCN5Ll0qYyAleS5dPpSeba8X2yGGX0dIs9yFY_Q5tSQ1P8djjGUVWVQmhpQijP-xlw_9l_1qcTkAeORoeEuoIL8Bw8Sb8g |
| CODEN | IAECCG |
| Cites_doi | 10.1016/0098-1354(94)00057-U 10.1021/ie000586y 10.3390/math11153369 10.1016/j.isatra.2021.04.042 10.1109/CEECT55960.2022.10030442 10.1016/j.ifacol.2020.12.2856 10.1109/CISP-BMEI.2017.8302003 10.1109/ISMAR55827.2022.00089 10.1109/ISMAR59233.2023.00138 10.1002/cite.202200238 10.1142/S0218001493000339 10.1016/j.neucom.2023.127063 10.3390/app132112029 10.3390/s23010126 10.1016/0098-1354(94)00113-3 10.1109/ACCESS.2024.3481331 10.1093/rasti/rzad032 10.1016/0959-1524(96)00031-5 10.1007/978-3-030-58607-2_16 10.1016/j.aei.2023.101949 10.1109/ACCESS.2022.3197651 10.1109/ICTAI56018.2022.00016 10.1016/S0169-7439(99)00061-1 10.1016/j.compchemeng.2020.106755 10.1016/j.jtice.2023.105098 10.1016/j.knosys.2024.111465 10.7717/peerj-cs.865 10.1016/j.artint.2023.104012 10.1109/IAI59504.2023.10327579 10.14778/3514061.3514067 10.3390/info11040193 10.5120/739-1038 10.1109/ISMAR-Adjunct60411.2023.00137 10.1007/s10462-022-10246-w 10.3390/app12178868 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.jfranklin.2020.04.024 10.48550/ARXIV.1706.03762 10.1109/ICASSP49357.2023.10096179 10.1109/ICASSP39728.2021.9413883 10.1109/ChiCC.2016.7554366 10.1016/j.compchemeng.2021.107281 10.1016/0098-1354(93)80018-I 10.1109/SAFEPROCESS58597.2023.10295900 10.1007/BF01908075 10.1109/BigData55660.2022.10020872 10.1145/304181.304187 10.1177/0959651818764510 10.1109/ICPR.2016.7899663 10.1016/j.pnucene.2021.103990 10.1016/j.neucom.2020.07.088 10.23919/EPE23ECCEEurope58414.2023.10264291 10.1016/j.compind.2018.12.001 10.1016/j.compind.2018.11.003 10.1007/978-3-030-11220-2_8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3537649 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 25197 |
| ExternalDocumentID | oai_doaj_org_article_7ea0952dee4a41d885de2f832fe067b0 10.1109/access.2025.3537649 10_1109_ACCESS_2025_3537649 10869347 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Artificial Intelligence (AI) provided by the Analytical Center (ACRF) in accordance with the agreement on the provision of subsidies (identifier of the agreement 000000D730324P540002) and the agreement with National Research Nuclear University Moscow Engineering Physics Institute (MEPhI) grantid: 70-2023-001309 funderid: 10.13039/501100010334 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-7395940c8255c633767667ebb4b086dcb7ee1b31f2d58b4463a44dd2237dbdba3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:33:18 EDT 2025 Sun Sep 07 10:59:20 EDT 2025 Mon Jun 30 12:39:40 EDT 2025 Wed Oct 01 06:53:44 EDT 2025 Wed Aug 27 01:50:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-7395940c8255c633767667ebb4b086dcb7ee1b31f2d58b4463a44dd2237dbdba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3308-8825 0000-0003-0527-8354 0009-0008-7840-8651 |
| OpenAccessLink | https://doaj.org/article/7ea0952dee4a41d885de2f832fe067b0 |
| PQID | 3165940555 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3165940555 ieee_primary_10869347 unpaywall_primary_10_1109_access_2025_3537649 crossref_primary_10_1109_ACCESS_2025_3537649 doaj_primary_oai_doaj_org_article_7ea0952dee4a41d885de2f832fe067b0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Fix (ref50) 1985; 1 ref51 ref46 ref45 ref42 ref41 ref44 ref43 Ioffe (ref47); 37 Jennings (ref1) ref49 Amatov (ref29) ref8 ref7 Xu (ref34) 2021 ref9 ref4 ref3 ref6 ref5 ref40 ref37 ref36 ref31 ref30 Zorin (ref14) ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref63 ref22 Radford (ref64) 2015 ref21 Sohn (ref48); 29 ref28 ref27 ref60 ref62 ref61 Cacciarelli (ref35) 2022 |
| References_xml | – ident: ref52 doi: 10.1016/0098-1354(94)00057-U – ident: ref56 doi: 10.1021/ie000586y – ident: ref16 doi: 10.3390/math11153369 – ident: ref23 doi: 10.1016/j.isatra.2021.04.042 – ident: ref13 doi: 10.1109/CEECT55960.2022.10030442 – year: 2015 ident: ref64 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – start-page: 649 volume-title: Proc. ISMIR ident: ref29 article-title: A semi-supervised deep learning approach to dataset collection for query- By-Humming task – ident: ref30 doi: 10.1016/j.ifacol.2020.12.2856 – ident: ref44 doi: 10.1109/CISP-BMEI.2017.8302003 – ident: ref26 doi: 10.1109/ISMAR55827.2022.00089 – ident: ref28 doi: 10.1109/ISMAR59233.2023.00138 – ident: ref9 doi: 10.1002/cite.202200238 – ident: ref43 doi: 10.1142/S0218001493000339 – ident: ref46 doi: 10.1016/j.neucom.2023.127063 – ident: ref39 doi: 10.3390/app132112029 – ident: ref42 doi: 10.3390/s23010126 – ident: ref55 doi: 10.1016/0098-1354(94)00113-3 – ident: ref8 doi: 10.1109/ACCESS.2024.3481331 – ident: ref40 doi: 10.1093/rasti/rzad032 – ident: ref54 doi: 10.1016/0959-1524(96)00031-5 – ident: ref4 doi: 10.1007/978-3-030-58607-2_16 – volume: 29 start-page: 1857 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref48 article-title: Improved deep metric learning with multi-class N-pair loss objective – year: 2022 ident: ref35 article-title: Online active learning for soft sensor development using semi-supervised autoencoders publication-title: arXiv:2212.13067 – ident: ref10 doi: 10.1016/j.aei.2023.101949 – year: 2021 ident: ref34 article-title: Anomaly transformer: Time series anomaly detection with association discrepancy publication-title: arXiv:2110.02642 – ident: ref36 doi: 10.1109/ACCESS.2022.3197651 – ident: ref18 doi: 10.1109/ICTAI56018.2022.00016 – ident: ref53 doi: 10.1016/S0169-7439(99)00061-1 – ident: ref63 doi: 10.1016/j.compchemeng.2020.106755 – ident: ref31 doi: 10.1016/j.jtice.2023.105098 – ident: ref33 doi: 10.1016/j.knosys.2024.111465 – ident: ref25 doi: 10.7717/peerj-cs.865 – ident: ref2 doi: 10.1016/j.artint.2023.104012 – ident: ref12 doi: 10.1109/IAI59504.2023.10327579 – ident: ref11 doi: 10.14778/3514061.3514067 – ident: ref61 doi: 10.3390/info11040193 – volume: 37 start-page: 448 volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn. ident: ref47 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref5 doi: 10.5120/739-1038 – ident: ref27 doi: 10.1109/ISMAR-Adjunct60411.2023.00137 – ident: ref38 doi: 10.1007/s10462-022-10246-w – ident: ref15 doi: 10.3390/app12178868 – ident: ref60 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref62 doi: 10.1016/j.jfranklin.2020.04.024 – ident: ref3 doi: 10.48550/ARXIV.1706.03762 – ident: ref17 doi: 10.1109/ICASSP49357.2023.10096179 – ident: ref57 doi: 10.1109/ICASSP39728.2021.9413883 – ident: ref41 doi: 10.1109/ChiCC.2016.7554366 – ident: ref58 doi: 10.1016/j.compchemeng.2021.107281 – ident: ref51 doi: 10.1016/0098-1354(93)80018-I – ident: ref19 doi: 10.1109/SAFEPROCESS58597.2023.10295900 – ident: ref59 doi: 10.1007/BF01908075 – volume-title: Proc. DCASE Challenge ident: ref14 article-title: Anomaly detection with self-supervised audio embeddings – ident: ref37 doi: 10.1109/BigData55660.2022.10020872 – ident: ref49 doi: 10.1145/304181.304187 – ident: ref6 doi: 10.1177/0959651818764510 – volume: 1 volume-title: Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties year: 1985 ident: ref50 – ident: ref45 doi: 10.1109/ICPR.2016.7899663 – ident: ref32 doi: 10.1016/j.pnucene.2021.103990 – ident: ref22 doi: 10.1016/j.neucom.2020.07.088 – start-page: 113 volume-title: Proc. ACEEE ident: ref1 article-title: Collaborating with architecture firms to influence design of high performance buildings – ident: ref7 doi: 10.23919/EPE23ECCEEurope58414.2023.10264291 – ident: ref21 doi: 10.1016/j.compind.2018.12.001 – ident: ref20 doi: 10.1016/j.compind.2018.11.003 – ident: ref24 doi: 10.1007/978-3-030-11220-2_8 |
| SSID | ssj0000816957 |
| Score | 2.3368776 |
| Snippet | Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 25186 |
| SubjectTerms | Accuracy Active learning Algorithms Anomalies Anomaly detection Cluster analysis Clustering Computational modeling Datasets Fault detection Fault diagnosis Feature extraction Labeling Machine learning Semi-supervised learning Time series analysis time series anomaly detection and diagnosis Training Transformers |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBFigi0CIfOJJtHrYTc0t3W1VIXSEtlXozfoxR1W121U2E2l9f2_GutiAkbpEVyY8Ze2bsme9D6LOzMUpnhU0LwzJfkqPTmmubcmZY6VxoZQIS08WUnV-Sb1f0Kharh1oYAAjJZzDyn-Et3yx076_Kjj0rEC9JtYN2qpoNxVqbCxXPIMFpFZGF8owfN-Oxm4SLAQs6Kj1siQfM3LI-AaQ_sqo8cTCf9-1S3v-W8_mWrTnbQ9P1KIcUk5tR36mRfvgDwPG_p7GPXkWvEzeDmrxGz6B9g15uYRG-RT9nLqBd3E1OZuNm-hXP4PY6nfVLf5SswOAmnIs4wrH-wt89u5prvwgM1Ni5vrhpF7dyfo8n0IX8rhbL1uDJkMt3vTpAl2enP8bnaaRfSHVJeZf6JzxOMu1iSKpZ6WFfGKtAKaLcBIxWFUCuytwWhtbKhZWlJMQY529URhkly3dot1208B5hY_PCZlJn3LpwMFOKE2sV4Vr52tYKEvRlLRaxHFA2RIhOMi4GKQovRRGlmKATL7rNrx4iOzS4ZRZxx4kKpHMfCwNAJMlNXVMDhXUHmAVnoVWWoAMvmq3-Bqkk6HCtCSLu55Uoc-bXglKaoHSjHX-NVQaSyydj_fCPbj6iF_634TbnEO12dz0cOf-mU5-CXj8CNpz2XQ priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPSAOUKCIhRb5wBGH3fVj171tE6oKqVGlEKmcjJ9VRbqJmo2q9tfX9rpVAhKCq-WVvTNjzzfyzDcAfPI-Rum8dKg0LA8lORrVXDvEmWHYQ2hlIhPT6YSdzMi3c3qeeLZDLczm-32R8y8ytg30cVxJhzhQjxD-FOww6oH3AOzMJmfNj9A-rmAc4fgQ-eEvX275nkjRn3qqbMHLZ-t2KW9v5Hy-4WmOX_Yl3KtIUBgSTH4N150a6rvf6Bv_8Sd2wYuEOGHTm8gr8MS2r8HzDR7CN-Dn1Aezi-vx0XTUTA7h1F5doul6Ga6RlTWwiXciTFSsF_AsdFbz46ex-zT0sBc27eJKzm_h2HYxt6uFsjVw3OfxXa72wOz46_fRCUqtF5DGlHcoPN9xkmsfP1LNcKB8YayyShHlFWi0qqwtFC5caWitfEiJJSHGeKxRGWWUxG_BoF209h2AxhWly6XOufOhYK4UJ84pwrUKda2VzcDnB6WIZc-wIWJkknPRjEbeDEUQnEiCy8BRUNzj1ECPHQe8wEU6baKy0kPH0lhLJClMXVNjS-cvL2e9d1Z5BvaC2jfWqxnHpMrA_oMdiHSWVwIXLMiCUpoB9Ggbf-y1V_LWXt__5_x9MOiu1_bAw5xOfUzmfQ_NAvam priority: 102 providerName: Unpaywall |
| Title | SensorDBSCAN: Semi-Supervised Active Learning Powered Method for Anomaly Detection and Diagnosis |
| URI | https://ieeexplore.ieee.org/document/10869347 https://www.proquest.com/docview/3165940555 https://doi.org/10.1109/access.2025.3537649 https://doaj.org/article/7ea0952dee4a41d885de2f832fe067b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0heoAeqtJSNS1d-dAjKU78kbi3sAtClVghLSvByfVnhbRkV-yuKv59bSegoB566TWKkskbZ_xeYr8B-BrmGG1w6fPSchy35Ji8FsbngltOAoXWNjkxXU75xZz-uGE3g1ZfcU1YZw_cAXdSORVYQGmdo4oWtq6ZdaUP49C7UGh1Uuu4FgMxlWpwXXDBqt5mqMDipBmPwxMFQViybyR6mET3zMFUlBz7-xYrL9jm3rZdqcffarEYTDznb-FNzxhR00V6ADuufQevBz6C7-HnLIjR5cPkdDZupt_RzN3f5bPtKpaBtbOoSTUN9Vaqv9BV7IwWjl-m7tEo0FbUtMt7tXhEE7dJa7NapFqLJt06vLv1IczPz67HF3nfOiE3hIlNHn-_CYpN0H_McBItWzivnNZUhwRYoyvnCk0KX1pW6yAJiaLU2sAVKqutVuQD7LbL1n0EZH1ReqwMFj5IOay1oN5rKoyO-1Irl8HxE4py1TlkyKQssJAd6DKCLnvQMziNSD-fGu2t04GQdNknXf4r6RkcxjwN7ldzQWiVwdFT4mT_Lq4lKXjEgjGWQf6czL9iValB5YtYP_2PWD_Dfrxm99nmCHY3D1v3JRCZjR6lMTtKew5H8Go-vWpu_wCXs-9z |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBg88DlEYIAfeCRdPuyk5i1rmQqsFVI3aW_GH2c00aXVmgiNvx7bSasOhMRbZCWK7Tv7fmff_Q7gnbMxSieZjTNTJD4lR8dDrm3MC1PkDkIrE5iYprNick4_X7CLPlk95MIgYgg-w4F_DHf5Zqlbf1R25KsC8ZyWd-Eeo5SyLl1re6Tia0hwVvbcQmnCj6rRyA3DeYEZG-SeuMRTZu7Yn0DT39dVuQUx99t6JW9-ysVix9qcPILZpp9dkMmPQduogf71B4Xjfw_kMTzscSepOkV5AnewfgoPdtgIn8G3uXNpl9fj4_momn0gc7y6jOftym8mazSkCjsj6QlZv5Ovvr6aa5-GGtTEgV9S1csrubghY2xChFdNZG3IuIvmu1wfwPnJx7PRJO4LMMQ6Z7yJ_SUep4l2XiTTRe6JX4qiRKWocgMwWpWIqcpTmxk2VM6xzCWlxjjEURpllMyfw169rPEFEGPTzCZSJ9w6hzBRilNrFeVa-ezWEiN4vxGLWHU8GyL4JwkXnRSFl6LopRjBsRfd9lVPkh0a3DSLfs2JEqUDkJlBpJKmZjhkBjPrtjCLzkarJIIDL5qd_3VSieBwowmiX9FrkaeFnwvGWATxVjv-6qsMZS5v9fXlP37zFvYnZ9NTcfpp9uUV3PefdGc7h7DXXLf42qGdRr0JOv4bPrz5qg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPSAOUKCIhRb5wBGH3fVj171tE6oKqVGlEKmcjJ9VRbqJmo2q9tfX9rpVAhKCq-WVvTNjzzfyzDcAfPI-Rum8dKg0LA8lORrVXDvEmWHYQ2hlIhPT6YSdzMi3c3qeeLZDLczm-32R8y8ytg30cVxJhzhQjxD-FOww6oH3AOzMJmfNj9A-rmAc4fgQ-eEvX275nkjRn3qqbMHLZ-t2KW9v5Hy-4WmOX_Yl3KtIUBgSTH4N150a6rvf6Bv_8Sd2wYuEOGHTm8gr8MS2r8HzDR7CN-Dn1Aezi-vx0XTUTA7h1F5doul6Ga6RlTWwiXciTFSsF_AsdFbz46ex-zT0sBc27eJKzm_h2HYxt6uFsjVw3OfxXa72wOz46_fRCUqtF5DGlHcoPN9xkmsfP1LNcKB8YayyShHlFWi0qqwtFC5caWitfEiJJSHGeKxRGWWUxG_BoF209h2AxhWly6XOufOhYK4UJ84pwrUKda2VzcDnB6WIZc-wIWJkknPRjEbeDEUQnEiCy8BRUNzj1ECPHQe8wEU6baKy0kPH0lhLJClMXVNjS-cvL2e9d1Z5BvaC2jfWqxnHpMrA_oMdiHSWVwIXLMiCUpoB9Ggbf-y1V_LWXt__5_x9MOiu1_bAw5xOfUzmfQ_NAvam |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SensorDBSCAN%3A+Semi-Supervised+Active+Learning+Powered+Method+for+Anomaly+Detection+and+Diagnosis&rft.jtitle=IEEE+access&rft.au=Ivanov%2C+Petr&rft.au=Shtark%2C+Maria&rft.au=Kozhevnikov%2C+Alexander&rft.au=Golyadkin%2C+Maksim&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=25186&rft.epage=25197&rft_id=info:doi/10.1109%2FACCESS.2025.3537649&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3537649 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |