SensorDBSCAN: Semi-Supervised Active Learning Powered Method for Anomaly Detection and Diagnosis

Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 25186 - 25197
Main Authors Ivanov, Petr, Shtark, Maria, Kozhevnikov, Alexander, Golyadkin, Maksim, Botov, Dmitry, Makarov, Ilya
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3537649

Cover

Abstract Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas unsupervised methods do not depend on labeled data, though are inferior in performance compared to supervised ones. In this paper, we propose SensorDBSCAN, a novel semi-supervised method for anomaly detection and diagnosis. The key innovation lies in achieving good performance with minimal labeled data - less than 1% of the dataset - by leveraging active and contrastive learning techniques. The proposed approach combines a transformer-based encoder trained with a triplet-based contrastive learning objective and the classical density-based clustering algorithm DBSCAN, enabling strong feature extraction, efficient and interpretable feature space organization and simple clustering algorithm. Unlike existing methods, SensorDBSCAN eliminates the need for manual labeling large amounts of data, cluster analysis, and pre-defining cluster numbers, providing greater usability in real-world cases. We validate the effectiveness of our method on the Tennessee Eastman Process (TEP) and its advanced simulations (TEP Rieth and TEP Rieker). SensorDBSCAN demonstrates better performance on well-known and realistic datasets, reducing labeling requirements while maintaining high accuracy of fault detection and diagnostics. The code is available at https://github.com/K0mp0t/sensordbscan .
AbstractList Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and suboptimal production. Traditional supervised FDD methods offer great performance while heavily relying on large volumes of labeled data, whereas unsupervised methods do not depend on labeled data, though are inferior in performance compared to supervised ones. In this paper, we propose SensorDBSCAN, a novel semi-supervised method for anomaly detection and diagnosis. The key innovation lies in achieving good performance with minimal labeled data - less than 1% of the dataset - by leveraging active and contrastive learning techniques. The proposed approach combines a transformer-based encoder trained with a triplet-based contrastive learning objective and the classical density-based clustering algorithm DBSCAN, enabling strong feature extraction, efficient and interpretable feature space organization and simple clustering algorithm. Unlike existing methods, SensorDBSCAN eliminates the need for manual labeling large amounts of data, cluster analysis, and pre-defining cluster numbers, providing greater usability in real-world cases. We validate the effectiveness of our method on the Tennessee Eastman Process (TEP) and its advanced simulations (TEP Rieth and TEP Rieker). SensorDBSCAN demonstrates better performance on well-known and realistic datasets, reducing labeling requirements while maintaining high accuracy of fault detection and diagnostics. The code is available at https://github.com/K0mp0t/sensordbscan .
Author Kozhevnikov, Alexander
Ivanov, Petr
Botov, Dmitry
Shtark, Maria
Golyadkin, Maksim
Makarov, Ilya
Author_xml – sequence: 1
  givenname: Petr
  orcidid: 0000-0003-0527-8354
  surname: Ivanov
  fullname: Ivanov, Petr
  email: petr_ivanov@niuitmo.ru
  organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia
– sequence: 2
  givenname: Maria
  surname: Shtark
  fullname: Shtark, Maria
  organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia
– sequence: 3
  givenname: Alexander
  orcidid: 0009-0008-7840-8651
  surname: Kozhevnikov
  fullname: Kozhevnikov, Alexander
  organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia
– sequence: 4
  givenname: Maksim
  surname: Golyadkin
  fullname: Golyadkin, Maksim
  organization: Artificial Intelligence Research Institute (AIRI), Moscow, Russia
– sequence: 5
  givenname: Dmitry
  surname: Botov
  fullname: Botov, Dmitry
  organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia
– sequence: 6
  givenname: Ilya
  orcidid: 0000-0002-3308-8825
  surname: Makarov
  fullname: Makarov, Ilya
  organization: AI Talent Hub, ITMO University, Saint Petersburg, Russia
BookMark eNplkUtv1DAUhSNUJErpL4BFJNYZHD8TdiFToNLwkAJr48fN4FHGHuxMq_n3eEiFKvDGvlfnfNI5fl5c-OChKF7WaFXXqH3T9f3NMKwwwmxFGBGctk-KS1zztsojv3j0flZcp7RD-TR5xcRl8WMAn0Jcvxv67vPbcoC9q4bjAeKdS2DLzszuDsoNqOid35Zfwz3EvP8E889gyzHEsvNhr6ZTuYYZsjr4Unlbrp3a-pBcelE8HdWU4Prhviq-v7_51n-sNl8-3PbdpjKEtXMlSMtaikyDGTOc5BSCcwFaU40abo0WALUm9YgtazSlnChKrcWYCKutVuSquF24NqidPES3V_Ekg3LyzyLErVRxdmYCKUChlmELQBWtbdMwC3hsCB4BcaFRZtGFdfQHdbpX0_QXWCN5Ll0qYyAleS5dPpSeba8X2yGGX0dIs9yFY_Q5tSQ1P8djjGUVWVQmhpQijP-xlw_9l_1qcTkAeORoeEuoIL8Bw8Sb8g
CODEN IAECCG
Cites_doi 10.1016/0098-1354(94)00057-U
10.1021/ie000586y
10.3390/math11153369
10.1016/j.isatra.2021.04.042
10.1109/CEECT55960.2022.10030442
10.1016/j.ifacol.2020.12.2856
10.1109/CISP-BMEI.2017.8302003
10.1109/ISMAR55827.2022.00089
10.1109/ISMAR59233.2023.00138
10.1002/cite.202200238
10.1142/S0218001493000339
10.1016/j.neucom.2023.127063
10.3390/app132112029
10.3390/s23010126
10.1016/0098-1354(94)00113-3
10.1109/ACCESS.2024.3481331
10.1093/rasti/rzad032
10.1016/0959-1524(96)00031-5
10.1007/978-3-030-58607-2_16
10.1016/j.aei.2023.101949
10.1109/ACCESS.2022.3197651
10.1109/ICTAI56018.2022.00016
10.1016/S0169-7439(99)00061-1
10.1016/j.compchemeng.2020.106755
10.1016/j.jtice.2023.105098
10.1016/j.knosys.2024.111465
10.7717/peerj-cs.865
10.1016/j.artint.2023.104012
10.1109/IAI59504.2023.10327579
10.14778/3514061.3514067
10.3390/info11040193
10.5120/739-1038
10.1109/ISMAR-Adjunct60411.2023.00137
10.1007/s10462-022-10246-w
10.3390/app12178868
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.jfranklin.2020.04.024
10.48550/ARXIV.1706.03762
10.1109/ICASSP49357.2023.10096179
10.1109/ICASSP39728.2021.9413883
10.1109/ChiCC.2016.7554366
10.1016/j.compchemeng.2021.107281
10.1016/0098-1354(93)80018-I
10.1109/SAFEPROCESS58597.2023.10295900
10.1007/BF01908075
10.1109/BigData55660.2022.10020872
10.1145/304181.304187
10.1177/0959651818764510
10.1109/ICPR.2016.7899663
10.1016/j.pnucene.2021.103990
10.1016/j.neucom.2020.07.088
10.23919/EPE23ECCEEurope58414.2023.10264291
10.1016/j.compind.2018.12.001
10.1016/j.compind.2018.11.003
10.1007/978-3-030-11220-2_8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3537649
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 25197
ExternalDocumentID oai_doaj_org_article_7ea0952dee4a41d885de2f832fe067b0
10.1109/access.2025.3537649
10_1109_ACCESS_2025_3537649
10869347
Genre orig-research
GrantInformation_xml – fundername: Artificial Intelligence (AI) provided by the Analytical Center (ACRF) in accordance with the agreement on the provision of subsidies (identifier of the agreement 000000D730324P540002) and the agreement with National Research Nuclear University Moscow Engineering Physics Institute (MEPhI)
  grantid: 70-2023-001309
  funderid: 10.13039/501100010334
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-7395940c8255c633767667ebb4b086dcb7ee1b31f2d58b4463a44dd2237dbdba3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:33:18 EDT 2025
Sun Sep 07 10:59:20 EDT 2025
Mon Jun 30 12:39:40 EDT 2025
Wed Oct 01 06:53:44 EDT 2025
Wed Aug 27 01:50:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-7395940c8255c633767667ebb4b086dcb7ee1b31f2d58b4463a44dd2237dbdba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3308-8825
0000-0003-0527-8354
0009-0008-7840-8651
OpenAccessLink https://doaj.org/article/7ea0952dee4a41d885de2f832fe067b0
PQID 3165940555
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_3165940555
ieee_primary_10869347
unpaywall_primary_10_1109_access_2025_3537649
crossref_primary_10_1109_ACCESS_2025_3537649
doaj_primary_oai_doaj_org_article_7ea0952dee4a41d885de2f832fe067b0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Fix (ref50) 1985; 1
ref51
ref46
ref45
ref42
ref41
ref44
ref43
Ioffe (ref47); 37
Jennings (ref1)
ref49
Amatov (ref29)
ref8
ref7
Xu (ref34) 2021
ref9
ref4
ref3
ref6
ref5
ref40
ref37
ref36
ref31
ref30
Zorin (ref14)
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref63
ref22
Radford (ref64) 2015
ref21
Sohn (ref48); 29
ref28
ref27
ref60
ref62
ref61
Cacciarelli (ref35) 2022
References_xml – ident: ref52
  doi: 10.1016/0098-1354(94)00057-U
– ident: ref56
  doi: 10.1021/ie000586y
– ident: ref16
  doi: 10.3390/math11153369
– ident: ref23
  doi: 10.1016/j.isatra.2021.04.042
– ident: ref13
  doi: 10.1109/CEECT55960.2022.10030442
– year: 2015
  ident: ref64
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– start-page: 649
  volume-title: Proc. ISMIR
  ident: ref29
  article-title: A semi-supervised deep learning approach to dataset collection for query- By-Humming task
– ident: ref30
  doi: 10.1016/j.ifacol.2020.12.2856
– ident: ref44
  doi: 10.1109/CISP-BMEI.2017.8302003
– ident: ref26
  doi: 10.1109/ISMAR55827.2022.00089
– ident: ref28
  doi: 10.1109/ISMAR59233.2023.00138
– ident: ref9
  doi: 10.1002/cite.202200238
– ident: ref43
  doi: 10.1142/S0218001493000339
– ident: ref46
  doi: 10.1016/j.neucom.2023.127063
– ident: ref39
  doi: 10.3390/app132112029
– ident: ref42
  doi: 10.3390/s23010126
– ident: ref55
  doi: 10.1016/0098-1354(94)00113-3
– ident: ref8
  doi: 10.1109/ACCESS.2024.3481331
– ident: ref40
  doi: 10.1093/rasti/rzad032
– ident: ref54
  doi: 10.1016/0959-1524(96)00031-5
– ident: ref4
  doi: 10.1007/978-3-030-58607-2_16
– volume: 29
  start-page: 1857
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: Improved deep metric learning with multi-class N-pair loss objective
– year: 2022
  ident: ref35
  article-title: Online active learning for soft sensor development using semi-supervised autoencoders
  publication-title: arXiv:2212.13067
– ident: ref10
  doi: 10.1016/j.aei.2023.101949
– year: 2021
  ident: ref34
  article-title: Anomaly transformer: Time series anomaly detection with association discrepancy
  publication-title: arXiv:2110.02642
– ident: ref36
  doi: 10.1109/ACCESS.2022.3197651
– ident: ref18
  doi: 10.1109/ICTAI56018.2022.00016
– ident: ref53
  doi: 10.1016/S0169-7439(99)00061-1
– ident: ref63
  doi: 10.1016/j.compchemeng.2020.106755
– ident: ref31
  doi: 10.1016/j.jtice.2023.105098
– ident: ref33
  doi: 10.1016/j.knosys.2024.111465
– ident: ref25
  doi: 10.7717/peerj-cs.865
– ident: ref2
  doi: 10.1016/j.artint.2023.104012
– ident: ref12
  doi: 10.1109/IAI59504.2023.10327579
– ident: ref11
  doi: 10.14778/3514061.3514067
– ident: ref61
  doi: 10.3390/info11040193
– volume: 37
  start-page: 448
  volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn.
  ident: ref47
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref5
  doi: 10.5120/739-1038
– ident: ref27
  doi: 10.1109/ISMAR-Adjunct60411.2023.00137
– ident: ref38
  doi: 10.1007/s10462-022-10246-w
– ident: ref15
  doi: 10.3390/app12178868
– ident: ref60
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref62
  doi: 10.1016/j.jfranklin.2020.04.024
– ident: ref3
  doi: 10.48550/ARXIV.1706.03762
– ident: ref17
  doi: 10.1109/ICASSP49357.2023.10096179
– ident: ref57
  doi: 10.1109/ICASSP39728.2021.9413883
– ident: ref41
  doi: 10.1109/ChiCC.2016.7554366
– ident: ref58
  doi: 10.1016/j.compchemeng.2021.107281
– ident: ref51
  doi: 10.1016/0098-1354(93)80018-I
– ident: ref19
  doi: 10.1109/SAFEPROCESS58597.2023.10295900
– ident: ref59
  doi: 10.1007/BF01908075
– volume-title: Proc. DCASE Challenge
  ident: ref14
  article-title: Anomaly detection with self-supervised audio embeddings
– ident: ref37
  doi: 10.1109/BigData55660.2022.10020872
– ident: ref49
  doi: 10.1145/304181.304187
– ident: ref6
  doi: 10.1177/0959651818764510
– volume: 1
  volume-title: Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties
  year: 1985
  ident: ref50
– ident: ref45
  doi: 10.1109/ICPR.2016.7899663
– ident: ref32
  doi: 10.1016/j.pnucene.2021.103990
– ident: ref22
  doi: 10.1016/j.neucom.2020.07.088
– start-page: 113
  volume-title: Proc. ACEEE
  ident: ref1
  article-title: Collaborating with architecture firms to influence design of high performance buildings
– ident: ref7
  doi: 10.23919/EPE23ECCEEurope58414.2023.10264291
– ident: ref21
  doi: 10.1016/j.compind.2018.12.001
– ident: ref20
  doi: 10.1016/j.compind.2018.11.003
– ident: ref24
  doi: 10.1007/978-3-030-11220-2_8
SSID ssj0000816957
Score 2.3368776
Snippet Fault detection and diagnosis (FDD) is a critical challenge in industrial processes aimed at minimizing risks such as safety hazards, costly downtime, and...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25186
SubjectTerms Accuracy
Active learning
Algorithms
Anomalies
Anomaly detection
Cluster analysis
Clustering
Computational modeling
Datasets
Fault detection
Fault diagnosis
Feature extraction
Labeling
Machine learning
Semi-supervised learning
Time series analysis
time series anomaly detection and diagnosis
Training
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBFigi0CIfOJJtHrYTc0t3W1VIXSEtlXozfoxR1W121U2E2l9f2_GutiAkbpEVyY8Ze2bsme9D6LOzMUpnhU0LwzJfkqPTmmubcmZY6VxoZQIS08WUnV-Sb1f0Kharh1oYAAjJZzDyn-Et3yx076_Kjj0rEC9JtYN2qpoNxVqbCxXPIMFpFZGF8owfN-Oxm4SLAQs6Kj1siQfM3LI-AaQ_sqo8cTCf9-1S3v-W8_mWrTnbQ9P1KIcUk5tR36mRfvgDwPG_p7GPXkWvEzeDmrxGz6B9g15uYRG-RT9nLqBd3E1OZuNm-hXP4PY6nfVLf5SswOAmnIs4wrH-wt89u5prvwgM1Ni5vrhpF7dyfo8n0IX8rhbL1uDJkMt3vTpAl2enP8bnaaRfSHVJeZf6JzxOMu1iSKpZ6WFfGKtAKaLcBIxWFUCuytwWhtbKhZWlJMQY529URhkly3dot1208B5hY_PCZlJn3LpwMFOKE2sV4Vr52tYKEvRlLRaxHFA2RIhOMi4GKQovRRGlmKATL7rNrx4iOzS4ZRZxx4kKpHMfCwNAJMlNXVMDhXUHmAVnoVWWoAMvmq3-Bqkk6HCtCSLu55Uoc-bXglKaoHSjHX-NVQaSyydj_fCPbj6iF_634TbnEO12dz0cOf-mU5-CXj8CNpz2XQ
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPSAOUKCIhRb5wBGH3fVj171tE6oKqVGlEKmcjJ9VRbqJmo2q9tfX9rpVAhKCq-WVvTNjzzfyzDcAfPI-Rum8dKg0LA8lORrVXDvEmWHYQ2hlIhPT6YSdzMi3c3qeeLZDLczm-32R8y8ytg30cVxJhzhQjxD-FOww6oH3AOzMJmfNj9A-rmAc4fgQ-eEvX275nkjRn3qqbMHLZ-t2KW9v5Hy-4WmOX_Yl3KtIUBgSTH4N150a6rvf6Bv_8Sd2wYuEOGHTm8gr8MS2r8HzDR7CN-Dn1Aezi-vx0XTUTA7h1F5doul6Ga6RlTWwiXciTFSsF_AsdFbz46ex-zT0sBc27eJKzm_h2HYxt6uFsjVw3OfxXa72wOz46_fRCUqtF5DGlHcoPN9xkmsfP1LNcKB8YayyShHlFWi0qqwtFC5caWitfEiJJSHGeKxRGWWUxG_BoF209h2AxhWly6XOufOhYK4UJ84pwrUKda2VzcDnB6WIZc-wIWJkknPRjEbeDEUQnEiCy8BRUNzj1ECPHQe8wEU6baKy0kPH0lhLJClMXVNjS-cvL2e9d1Z5BvaC2jfWqxnHpMrA_oMdiHSWVwIXLMiCUpoB9Ggbf-y1V_LWXt__5_x9MOiu1_bAw5xOfUzmfQ_NAvam
  priority: 102
  providerName: Unpaywall
Title SensorDBSCAN: Semi-Supervised Active Learning Powered Method for Anomaly Detection and Diagnosis
URI https://ieeexplore.ieee.org/document/10869347
https://www.proquest.com/docview/3165940555
https://doi.org/10.1109/access.2025.3537649
https://doaj.org/article/7ea0952dee4a41d885de2f832fe067b0
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0heoAeqtJSNS1d-dAjKU78kbi3sAtClVghLSvByfVnhbRkV-yuKv59bSegoB566TWKkskbZ_xeYr8B-BrmGG1w6fPSchy35Ji8FsbngltOAoXWNjkxXU75xZz-uGE3g1ZfcU1YZw_cAXdSORVYQGmdo4oWtq6ZdaUP49C7UGh1Uuu4FgMxlWpwXXDBqt5mqMDipBmPwxMFQViybyR6mET3zMFUlBz7-xYrL9jm3rZdqcffarEYTDznb-FNzxhR00V6ADuufQevBz6C7-HnLIjR5cPkdDZupt_RzN3f5bPtKpaBtbOoSTUN9Vaqv9BV7IwWjl-m7tEo0FbUtMt7tXhEE7dJa7NapFqLJt06vLv1IczPz67HF3nfOiE3hIlNHn-_CYpN0H_McBItWzivnNZUhwRYoyvnCk0KX1pW6yAJiaLU2sAVKqutVuQD7LbL1n0EZH1ReqwMFj5IOay1oN5rKoyO-1Irl8HxE4py1TlkyKQssJAd6DKCLnvQMziNSD-fGu2t04GQdNknXf4r6RkcxjwN7ldzQWiVwdFT4mT_Lq4lKXjEgjGWQf6czL9iValB5YtYP_2PWD_Dfrxm99nmCHY3D1v3JRCZjR6lMTtKew5H8Go-vWpu_wCXs-9z
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBg88DlEYIAfeCRdPuyk5i1rmQqsFVI3aW_GH2c00aXVmgiNvx7bSasOhMRbZCWK7Tv7fmff_Q7gnbMxSieZjTNTJD4lR8dDrm3MC1PkDkIrE5iYprNick4_X7CLPlk95MIgYgg-w4F_DHf5Zqlbf1R25KsC8ZyWd-Eeo5SyLl1re6Tia0hwVvbcQmnCj6rRyA3DeYEZG-SeuMRTZu7Yn0DT39dVuQUx99t6JW9-ysVix9qcPILZpp9dkMmPQduogf71B4Xjfw_kMTzscSepOkV5AnewfgoPdtgIn8G3uXNpl9fj4_momn0gc7y6jOftym8mazSkCjsj6QlZv5Ovvr6aa5-GGtTEgV9S1csrubghY2xChFdNZG3IuIvmu1wfwPnJx7PRJO4LMMQ6Z7yJ_SUep4l2XiTTRe6JX4qiRKWocgMwWpWIqcpTmxk2VM6xzCWlxjjEURpllMyfw169rPEFEGPTzCZSJ9w6hzBRilNrFeVa-ezWEiN4vxGLWHU8GyL4JwkXnRSFl6LopRjBsRfd9lVPkh0a3DSLfs2JEqUDkJlBpJKmZjhkBjPrtjCLzkarJIIDL5qd_3VSieBwowmiX9FrkaeFnwvGWATxVjv-6qsMZS5v9fXlP37zFvYnZ9NTcfpp9uUV3PefdGc7h7DXXLf42qGdRr0JOv4bPrz5qg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPSAOUKCIhRb5wBGH3fVj171tE6oKqVGlEKmcjJ9VRbqJmo2q9tfX9rpVAhKCq-WVvTNjzzfyzDcAfPI-Rum8dKg0LA8lORrVXDvEmWHYQ2hlIhPT6YSdzMi3c3qeeLZDLczm-32R8y8ytg30cVxJhzhQjxD-FOww6oH3AOzMJmfNj9A-rmAc4fgQ-eEvX275nkjRn3qqbMHLZ-t2KW9v5Hy-4WmOX_Yl3KtIUBgSTH4N150a6rvf6Bv_8Sd2wYuEOGHTm8gr8MS2r8HzDR7CN-Dn1Aezi-vx0XTUTA7h1F5doul6Ga6RlTWwiXciTFSsF_AsdFbz46ex-zT0sBc27eJKzm_h2HYxt6uFsjVw3OfxXa72wOz46_fRCUqtF5DGlHcoPN9xkmsfP1LNcKB8YayyShHlFWi0qqwtFC5caWitfEiJJSHGeKxRGWWUxG_BoF209h2AxhWly6XOufOhYK4UJ84pwrUKda2VzcDnB6WIZc-wIWJkknPRjEbeDEUQnEiCy8BRUNzj1ECPHQe8wEU6baKy0kPH0lhLJClMXVNjS-cvL2e9d1Z5BvaC2jfWqxnHpMrA_oMdiHSWVwIXLMiCUpoB9Ggbf-y1V_LWXt__5_x9MOiu1_bAw5xOfUzmfQ_NAvam
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SensorDBSCAN%3A+Semi-Supervised+Active+Learning+Powered+Method+for+Anomaly+Detection+and+Diagnosis&rft.jtitle=IEEE+access&rft.au=Ivanov%2C+Petr&rft.au=Shtark%2C+Maria&rft.au=Kozhevnikov%2C+Alexander&rft.au=Golyadkin%2C+Maksim&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=25186&rft.epage=25197&rft_id=info:doi/10.1109%2FACCESS.2025.3537649&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3537649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon