Underwater Fish Tracking for Moving Cameras Based on Deformable Multiple Kernels
Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle t...
Saved in:
| Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 47; no. 9; pp. 2467 - 2477 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2216 2168-2232 |
| DOI | 10.1109/TSMC.2016.2523943 |
Cover
| Abstract | Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle tracking in surveillance applications. In many rough habitats, fish are monitored by cameras installed on moving platforms, where tracking is even more challenging due to inapplicability of background models. In this paper, a novel tracking algorithm based on the deformable multiple kernels is proposed to address these challenges. Inspired by the deformable part model technique, a set of kernels is defined to represent the holistic object and several parts that are arranged in a deformable configuration. Color histogram, texture histogram, and the histogram of oriented gradients (HOGs) are extracted and serve as object features. Kernel motion is efficiently estimated by the mean-shift algorithm on color and texture features to realize tracking. Furthermore, the HOG-feature deformation costs are adopted as soft constraints on kernel positions to maintain the part configuration. Experimental results on practical video set from underwater moving cameras show the reliable performance of the proposed method with much less computational cost comparing with state-of-the-art techniques. |
|---|---|
| AbstractList | Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle tracking in surveillance applications. In many rough habitats, fish are monitored by cameras installed on moving platforms, where tracking is even more challenging due to inapplicability of background models. In this paper, a novel tracking algorithm based on the deformable multiple kernels is proposed to address these challenges. Inspired by the deformable part model technique, a set of kernels is defined to represent the holistic object and several parts that are arranged in a deformable configuration. Color histogram, texture histogram, and the histogram of oriented gradients (HOGs) are extracted and serve as object features. Kernel motion is efficiently estimated by the mean-shift algorithm on color and texture features to realize tracking. Furthermore, the HOG-feature deformation costs are adopted as soft constraints on kernel positions to maintain the part configuration. Experimental results on practical video set from underwater moving cameras show the reliable performance of the proposed method with much less computational cost comparing with state-of-the-art techniques. |
| Author | Jian-Hui Ye Williams, Kresimir Shih-Chia Huang Jenq-Neng Hwang Meng-Che Chuang |
| Author_xml | – sequence: 1 surname: Meng-Che Chuang fullname: Meng-Che Chuang email: mengche@uw.edu organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA – sequence: 2 surname: Jenq-Neng Hwang fullname: Jenq-Neng Hwang email: hwang@uw.edu organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA – sequence: 3 surname: Jian-Hui Ye fullname: Jian-Hui Ye email: t102419017@ntut.edu.tw organization: Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan – sequence: 4 surname: Shih-Chia Huang fullname: Shih-Chia Huang email: schuang@ntut.edu.tw organization: Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan – sequence: 5 givenname: Kresimir surname: Williams fullname: Williams, Kresimir email: kresimir.williams@noaa.gov organization: Alaska Fisheries Sci. Center, Nat. Oceanic & Atmos. Adm., Seattle, WA, USA |
| BookMark | eNp9kLFOwzAQhi1UJErpAyAWS8wpPjtx4hECBUQrkGhny0kukJI6xU5BvD2JWnVgYLpfuv-7k75TMrCNRULOgU0AmLpavM7TCWcgJzziQoXiiAw5yCTgXPDBIYM8IWPvV4wx4IkUTA7Jy9IW6L5Ni45OK_9OF87kH5V9o2Xj6Lz56mNq1uiMpzfGY0EbS2-x265NViOdb-u22nThCZ3F2p-R49LUHsf7OSLL6d0ifQhmz_eP6fUsyEWk2kDmJUsQFGaxkCZnWYSFjEFkRiQlV8hYEYeYdSsleBhHkAtUmWGqSGQZSiVG5HJ3d-Oazy36Vq-arbPdS80hDsMwBg5dK961ctd477DUedWatmps60xVa2C6N6h7g7o3qPcGOxL-kBtXrY37-Ze52DEVIh76cQiSCyl-AfmdfTU |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1016_j_micpro_2020_103541 crossref_primary_10_1109_JSYST_2018_2817191 crossref_primary_10_1109_TSMC_2022_3225252 crossref_primary_10_1007_s11831_020_09486_2 crossref_primary_10_1016_j_cag_2017_12_004 crossref_primary_10_1109_COMST_2021_3053118 crossref_primary_10_1002_ece3_7656 crossref_primary_10_3390_s17040870 crossref_primary_10_1109_TII_2019_2937902 crossref_primary_10_1109_TSMC_2017_2757462 crossref_primary_10_1109_TSMC_2019_2902508 crossref_primary_10_3389_fmars_2024_1429459 crossref_primary_10_1109_TRO_2025_3543303 crossref_primary_10_1109_TIM_2021_3109731 crossref_primary_10_1111_are_15828 crossref_primary_10_3390_electronics9071142 crossref_primary_10_1109_ACCESS_2023_3247143 crossref_primary_10_1109_TMM_2022_3140919 crossref_primary_10_1007_s11276_019_01953_4 crossref_primary_10_1109_TCE_2023_3338263 crossref_primary_10_1016_j_knosys_2019_04_026 |
| Cites_doi | 10.1109/IVS.2010.5548007 10.1109/ICCV.2013.10 10.1109/TPAMI.2012.145 10.1109/ICPR.2004.1333992 10.1109/CVPR.2005.177 10.1109/TPAMI.2011.21 10.1109/TPAMI.2013.221 10.1139/f88-101 10.1109/CVPR.2004.1315079 10.1109/CVPR.2004.1315112 10.1109/CVPR.2014.81 10.1145/1177352.1177355 10.1109/TPAMI.2012.248 10.1109/TIP.2013.2270111 10.1109/ICCV.2013.308 10.1109/TPAMI.2002.1017623 10.1109/CVPR.2013.306 10.1109/TCSVT.2014.2357093 10.1016/j.cviu.2012.11.005 10.1109/ICPR.2014.220 10.1145/1877868.1877881 10.1109/CVPR.2006.236 10.1109/ICCV.2011.6126251 10.1109/TMM.2013.2266634 10.1109/CVPR.2008.4587584 10.1109/TPAMI.2009.167 10.1007/s11263-007-0095-3 10.1109/TPAMI.2003.1195991 10.1109/34.1000236 10.1109/TPAMI.2013.32 10.1139/F10-088 10.1109/TPAMI.2010.232 10.1109/TPAMI.2013.210 10.1007/978-3-642-37431-9_7 10.1007/s11263-007-0086-4 10.1109/T-C.1973.223602 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2016.2523943 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 2477 |
| ExternalDocumentID | 10_1109_TSMC_2016_2523943 7416236 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Marine Fisheries Services’ Advanced Sampling Technology Working Group, National Oceanic and Atmospheric Administration, Seattle,WA, USA funderid: 10.13039/100000192 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c359t-6cf08e19eb736ac0b5ed6713ba38f29e00d74eb6ac9324751c3e9ba09d86f4693 |
| IEDL.DBID | RIE |
| ISSN | 2168-2216 |
| IngestDate | Mon Jun 30 06:24:57 EDT 2025 Wed Oct 01 03:10:10 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Aug 26 16:38:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-6cf08e19eb736ac0b5ed6713ba38f29e00d74eb6ac9324751c3e9ba09d86f4693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2174447121 |
| PQPubID | 75739 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_7416236 crossref_citationtrail_10_1109_TSMC_2016_2523943 crossref_primary_10_1109_TSMC_2016_2523943 proquest_journals_2174447121 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref31 szegedy (ref25) 2013 ref30 wu (ref22) 2013; 22 ref33 ref10 ref1 ref39 ref17 williams (ref2) 2010; 51 ref38 ref16 ref19 ref18 lee (ref11) 2014 ref24 ref23 ref26 ref20 ref42 ref41 gualdi (ref12) 0 ref21 ref28 ref27 ref29 girshick (ref43) 2012 ref7 ref9 ref4 rooper (ref8) 2010; 67 ref3 ref6 spampinato (ref5) 2008; 2 fan (ref32) 2005 ref40 |
| References_xml | – ident: ref41 doi: 10.1109/IVS.2010.5548007 – ident: ref23 doi: 10.1109/ICCV.2013.10 – ident: ref35 doi: 10.1109/TPAMI.2012.145 – ident: ref9 doi: 10.1109/ICPR.2004.1333992 – ident: ref27 doi: 10.1109/CVPR.2005.177 – ident: ref16 doi: 10.1109/TPAMI.2011.21 – volume: 2 start-page: 514 year: 2008 ident: ref5 article-title: Detecting, tracking and counting fish in low quality unconstrained underwater videos publication-title: Proc VISAPP – volume: 51 start-page: 45 year: 2010 ident: ref2 article-title: Cam-Trawl: A combination trawl and stereo-camera system publication-title: Sea Technol – ident: ref20 doi: 10.1109/TPAMI.2013.221 – ident: ref1 doi: 10.1139/f88-101 – year: 2012 ident: ref43 publication-title: Discriminatively trained deformable part models release 5 – ident: ref6 doi: 10.1109/CVPR.2004.1315079 – ident: ref33 doi: 10.1109/CVPR.2004.1315112 – ident: ref26 doi: 10.1109/CVPR.2014.81 – ident: ref7 doi: 10.1145/1177352.1177355 – ident: ref10 doi: 10.1109/TPAMI.2012.248 – volume: 22 start-page: 4096 year: 2013 ident: ref22 article-title: C4: A real-time object detection framework publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2270111 – year: 0 ident: ref12 article-title: Using dominant sets for object tracking with freely moving camera publication-title: Proc 8th Int Workshop Vis Surveill (VS) – ident: ref36 doi: 10.1109/ICCV.2013.308 – ident: ref42 doi: 10.1109/TPAMI.2002.1017623 – ident: ref40 doi: 10.1109/CVPR.2013.306 – ident: ref3 doi: 10.1109/TCSVT.2014.2357093 – ident: ref37 doi: 10.1016/j.cviu.2012.11.005 – ident: ref18 doi: 10.1109/ICPR.2014.220 – ident: ref4 doi: 10.1145/1877868.1877881 – ident: ref13 doi: 10.1109/CVPR.2006.236 – ident: ref38 doi: 10.1109/ICCV.2011.6126251 – start-page: 2553 year: 2013 ident: ref25 article-title: Deep neural networks for object detection publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/TMM.2013.2266634 – ident: ref19 doi: 10.1109/CVPR.2008.4587584 – ident: ref24 doi: 10.1109/TPAMI.2009.167 – start-page: 2629 year: 2014 ident: ref11 article-title: Driving recorder based on-road pedestrian tracking using visual SLAM and constrained multiple-kernel publication-title: Proc IEEE 17th Int Conf Intell Transp Syst (ITSC) – ident: ref21 doi: 10.1007/s11263-007-0095-3 – start-page: 502 year: 2005 ident: ref32 article-title: Multiple collaborative kernel tracking publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR) – ident: ref30 doi: 10.1109/TPAMI.2003.1195991 – ident: ref29 doi: 10.1109/34.1000236 – ident: ref39 doi: 10.1109/TPAMI.2013.32 – volume: 67 start-page: 1658 year: 2010 ident: ref8 article-title: Assessing habitat utilization and rockfish (sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis publication-title: Can J Fish Aquat Sci doi: 10.1139/F10-088 – ident: ref17 doi: 10.1109/TPAMI.2010.232 – ident: ref15 doi: 10.1109/TPAMI.2013.210 – ident: ref34 doi: 10.1007/978-3-642-37431-9_7 – ident: ref14 doi: 10.1007/s11263-007-0086-4 – ident: ref28 doi: 10.1109/T-C.1973.223602 |
| SSID | ssj0001286306 |
| Score | 2.3401916 |
| Snippet | Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2467 |
| SubjectTerms | Algorithms Aquatic environment Automotive parts Cameras Color Configurations Deformable models Deformable part model (DPM) Deformation Ecological monitoring Feature extraction Fish Fisheries fisheries application Formability Histograms Kernel Kernels mean-shift (MS) algorithm moving cameras Object tracking State of the art Target tracking Texture Traffic surveillance Underwater |
| Title | Underwater Fish Tracking for Moving Cameras Based on Deformable Multiple Kernels |
| URI | https://ieeexplore.ieee.org/document/7416236 https://www.proquest.com/docview/2174447121 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwLa6ukoMnsWvaNGl61NVlUSqCCt5Kk85elK7sA8Ff7yTtLr4QL6WQCYR8ab8vk8kMwLGRoRoSMQXUbINYCQy0NCqwJkGhdSFU4aMtbtXgMb5-kk9LcLq4C4OIPvgMu-7Vn-WXIztzrrIzpx4ioZZhOdGqvqv1yZ-ilfClNKNQEfj0bA4xQ56ePdxnPRfHpbqRdMXAxRca8nVVfvyMPcP01yGbj60OLHnuzqama9-_pW387-A3YK2Rmuy8XhubsITVFqx-SkC4DXe-7NEb6c0xc0XQGVGXdc5zRlqWZd7bwHqFc1xN2AURXslGFbtEr3TNC7KsiUdkNziuiGZ34LF_9dAbBE2NhcAKmU4DZYdcY5iiSQgWy43EUtHG1RRCD6MUOS-TGA01kdCLExlagakpeFpqwlilYhda1ajCPWBDLFE6j1JkRZwkXBeKxJwQisyF5KYNfD7luW0SkLs6GC-534jwNHco5Q6lvEGpDSeLLq919o2_jLfdrC8MmwlvQ2eOa958n5PcbcRi4uUo3P-91wGsRI7AfTRZB1rT8QwPSX5MzZFfdx-KPtSM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F95uBJ7Jo2j7ZHXZX1URFcwVtp0tmL0pV1F8Ff7yTbXXwhXkohEwj50n5fJpMZgAOjQt0lYgqo2QZSCwwSZXRgTYwiSQqhCx9tcavbD_LqUT1OwdHkLgwi-uAzbLpXf5Zf9uzQucqOnXqIhJ6GWSWlVKPbWp88KokWvphmFGqCn571MWbI0-POfdZykVy6GSlXDlx8ISJfWeXH79hzzMUSZOPRjUJLnprDgWna92-JG_87_GVYrMUmOxmtjhWYwmoVFj6lIFyDO1_46I0UZ5-5MuiMyMs69zkjNcsy729grcK5rl7ZKVFeyXoVO0Ovdc0zsqyOSGTX2K-IaNfh4eK802oHdZWFwAqVDgJtuzzBMEUTEzCWG4Wlpq2rKUTSjVLkvIwlGmoiqSdjFVqBqSl4WiaEsk7FBsxUvQo3gXWxROV8SpEVMo55UmiSc0JoMheKmwbw8ZTntk5B7iphPOd-K8LT3KGUO5TyGqUGHE66vIzyb_xlvOZmfWJYT3gDdsa45vUX-pq7rZgkZo7Crd977cNcu5Pd5DeXt9fbMB85OvexZTswM-gPcZfEyMDs-TX4AdeO19k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Fish+Tracking+for+Moving+Cameras+Based+on+Deformable+Multiple+Kernels&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Meng-Che+Chuang&rft.au=Jenq-Neng+Hwang&rft.au=Jian-Hui+Ye&rft.au=Shih-Chia+Huang&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=47&rft.issue=9&rft.spage=2467&rft.epage=2477&rft_id=info:doi/10.1109%2FTSMC.2016.2523943&rft.externalDocID=7416236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |