Underwater Fish Tracking for Moving Cameras Based on Deformable Multiple Kernels

Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 47; no. 9; pp. 2467 - 2477
Main Authors Meng-Che Chuang, Jenq-Neng Hwang, Jian-Hui Ye, Shih-Chia Huang, Williams, Kresimir
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2016.2523943

Cover

Abstract Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle tracking in surveillance applications. In many rough habitats, fish are monitored by cameras installed on moving platforms, where tracking is even more challenging due to inapplicability of background models. In this paper, a novel tracking algorithm based on the deformable multiple kernels is proposed to address these challenges. Inspired by the deformable part model technique, a set of kernels is defined to represent the holistic object and several parts that are arranged in a deformable configuration. Color histogram, texture histogram, and the histogram of oriented gradients (HOGs) are extracted and serve as object features. Kernel motion is efficiently estimated by the mean-shift algorithm on color and texture features to realize tracking. Furthermore, the HOG-feature deformation costs are adopted as soft constraints on kernel positions to maintain the part configuration. Experimental results on practical video set from underwater moving cameras show the reliable performance of the proposed method with much less computational cost comparing with state-of-the-art techniques.
AbstractList Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the abundance of fish stocks. Tracking live fish in an open aquatic environment posts challenges that are different from general pedestrian or vehicle tracking in surveillance applications. In many rough habitats, fish are monitored by cameras installed on moving platforms, where tracking is even more challenging due to inapplicability of background models. In this paper, a novel tracking algorithm based on the deformable multiple kernels is proposed to address these challenges. Inspired by the deformable part model technique, a set of kernels is defined to represent the holistic object and several parts that are arranged in a deformable configuration. Color histogram, texture histogram, and the histogram of oriented gradients (HOGs) are extracted and serve as object features. Kernel motion is efficiently estimated by the mean-shift algorithm on color and texture features to realize tracking. Furthermore, the HOG-feature deformation costs are adopted as soft constraints on kernel positions to maintain the part configuration. Experimental results on practical video set from underwater moving cameras show the reliable performance of the proposed method with much less computational cost comparing with state-of-the-art techniques.
Author Jian-Hui Ye
Williams, Kresimir
Shih-Chia Huang
Jenq-Neng Hwang
Meng-Che Chuang
Author_xml – sequence: 1
  surname: Meng-Che Chuang
  fullname: Meng-Che Chuang
  email: mengche@uw.edu
  organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 2
  surname: Jenq-Neng Hwang
  fullname: Jenq-Neng Hwang
  email: hwang@uw.edu
  organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 3
  surname: Jian-Hui Ye
  fullname: Jian-Hui Ye
  email: t102419017@ntut.edu.tw
  organization: Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan
– sequence: 4
  surname: Shih-Chia Huang
  fullname: Shih-Chia Huang
  email: schuang@ntut.edu.tw
  organization: Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan
– sequence: 5
  givenname: Kresimir
  surname: Williams
  fullname: Williams, Kresimir
  email: kresimir.williams@noaa.gov
  organization: Alaska Fisheries Sci. Center, Nat. Oceanic & Atmos. Adm., Seattle, WA, USA
BookMark eNp9kLFOwzAQhi1UJErpAyAWS8wpPjtx4hECBUQrkGhny0kukJI6xU5BvD2JWnVgYLpfuv-7k75TMrCNRULOgU0AmLpavM7TCWcgJzziQoXiiAw5yCTgXPDBIYM8IWPvV4wx4IkUTA7Jy9IW6L5Ni45OK_9OF87kH5V9o2Xj6Lz56mNq1uiMpzfGY0EbS2-x265NViOdb-u22nThCZ3F2p-R49LUHsf7OSLL6d0ifQhmz_eP6fUsyEWk2kDmJUsQFGaxkCZnWYSFjEFkRiQlV8hYEYeYdSsleBhHkAtUmWGqSGQZSiVG5HJ3d-Oazy36Vq-arbPdS80hDsMwBg5dK961ctd477DUedWatmps60xVa2C6N6h7g7o3qPcGOxL-kBtXrY37-Ze52DEVIh76cQiSCyl-AfmdfTU
CODEN ITSMFE
CitedBy_id crossref_primary_10_1016_j_micpro_2020_103541
crossref_primary_10_1109_JSYST_2018_2817191
crossref_primary_10_1109_TSMC_2022_3225252
crossref_primary_10_1007_s11831_020_09486_2
crossref_primary_10_1016_j_cag_2017_12_004
crossref_primary_10_1109_COMST_2021_3053118
crossref_primary_10_1002_ece3_7656
crossref_primary_10_3390_s17040870
crossref_primary_10_1109_TII_2019_2937902
crossref_primary_10_1109_TSMC_2017_2757462
crossref_primary_10_1109_TSMC_2019_2902508
crossref_primary_10_3389_fmars_2024_1429459
crossref_primary_10_1109_TRO_2025_3543303
crossref_primary_10_1109_TIM_2021_3109731
crossref_primary_10_1111_are_15828
crossref_primary_10_3390_electronics9071142
crossref_primary_10_1109_ACCESS_2023_3247143
crossref_primary_10_1109_TMM_2022_3140919
crossref_primary_10_1007_s11276_019_01953_4
crossref_primary_10_1109_TCE_2023_3338263
crossref_primary_10_1016_j_knosys_2019_04_026
Cites_doi 10.1109/IVS.2010.5548007
10.1109/ICCV.2013.10
10.1109/TPAMI.2012.145
10.1109/ICPR.2004.1333992
10.1109/CVPR.2005.177
10.1109/TPAMI.2011.21
10.1109/TPAMI.2013.221
10.1139/f88-101
10.1109/CVPR.2004.1315079
10.1109/CVPR.2004.1315112
10.1109/CVPR.2014.81
10.1145/1177352.1177355
10.1109/TPAMI.2012.248
10.1109/TIP.2013.2270111
10.1109/ICCV.2013.308
10.1109/TPAMI.2002.1017623
10.1109/CVPR.2013.306
10.1109/TCSVT.2014.2357093
10.1016/j.cviu.2012.11.005
10.1109/ICPR.2014.220
10.1145/1877868.1877881
10.1109/CVPR.2006.236
10.1109/ICCV.2011.6126251
10.1109/TMM.2013.2266634
10.1109/CVPR.2008.4587584
10.1109/TPAMI.2009.167
10.1007/s11263-007-0095-3
10.1109/TPAMI.2003.1195991
10.1109/34.1000236
10.1109/TPAMI.2013.32
10.1139/F10-088
10.1109/TPAMI.2010.232
10.1109/TPAMI.2013.210
10.1007/978-3-642-37431-9_7
10.1007/s11263-007-0086-4
10.1109/T-C.1973.223602
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2016.2523943
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 2477
ExternalDocumentID 10_1109_TSMC_2016_2523943
7416236
Genre orig-research
GrantInformation_xml – fundername: National Marine Fisheries Services’ Advanced Sampling Technology Working Group, National Oceanic and Atmospheric Administration, Seattle,WA, USA
  funderid: 10.13039/100000192
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c359t-6cf08e19eb736ac0b5ed6713ba38f29e00d74eb6ac9324751c3e9ba09d86f4693
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Mon Jun 30 06:24:57 EDT 2025
Wed Oct 01 03:10:10 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6cf08e19eb736ac0b5ed6713ba38f29e00d74eb6ac9324751c3e9ba09d86f4693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2174447121
PQPubID 75739
PageCount 11
ParticipantIDs ieee_primary_7416236
crossref_citationtrail_10_1109_TSMC_2016_2523943
crossref_primary_10_1109_TSMC_2016_2523943
proquest_journals_2174447121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref31
szegedy (ref25) 2013
ref30
wu (ref22) 2013; 22
ref33
ref10
ref1
ref39
ref17
williams (ref2) 2010; 51
ref38
ref16
ref19
ref18
lee (ref11) 2014
ref24
ref23
ref26
ref20
ref42
ref41
gualdi (ref12) 0
ref21
ref28
ref27
ref29
girshick (ref43) 2012
ref7
ref9
ref4
rooper (ref8) 2010; 67
ref3
ref6
spampinato (ref5) 2008; 2
fan (ref32) 2005
ref40
References_xml – ident: ref41
  doi: 10.1109/IVS.2010.5548007
– ident: ref23
  doi: 10.1109/ICCV.2013.10
– ident: ref35
  doi: 10.1109/TPAMI.2012.145
– ident: ref9
  doi: 10.1109/ICPR.2004.1333992
– ident: ref27
  doi: 10.1109/CVPR.2005.177
– ident: ref16
  doi: 10.1109/TPAMI.2011.21
– volume: 2
  start-page: 514
  year: 2008
  ident: ref5
  article-title: Detecting, tracking and counting fish in low quality unconstrained underwater videos
  publication-title: Proc VISAPP
– volume: 51
  start-page: 45
  year: 2010
  ident: ref2
  article-title: Cam-Trawl: A combination trawl and stereo-camera system
  publication-title: Sea Technol
– ident: ref20
  doi: 10.1109/TPAMI.2013.221
– ident: ref1
  doi: 10.1139/f88-101
– year: 2012
  ident: ref43
  publication-title: Discriminatively trained deformable part models release 5
– ident: ref6
  doi: 10.1109/CVPR.2004.1315079
– ident: ref33
  doi: 10.1109/CVPR.2004.1315112
– ident: ref26
  doi: 10.1109/CVPR.2014.81
– ident: ref7
  doi: 10.1145/1177352.1177355
– ident: ref10
  doi: 10.1109/TPAMI.2012.248
– volume: 22
  start-page: 4096
  year: 2013
  ident: ref22
  article-title: C4: A real-time object detection framework
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2270111
– year: 0
  ident: ref12
  article-title: Using dominant sets for object tracking with freely moving camera
  publication-title: Proc 8th Int Workshop Vis Surveill (VS)
– ident: ref36
  doi: 10.1109/ICCV.2013.308
– ident: ref42
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref40
  doi: 10.1109/CVPR.2013.306
– ident: ref3
  doi: 10.1109/TCSVT.2014.2357093
– ident: ref37
  doi: 10.1016/j.cviu.2012.11.005
– ident: ref18
  doi: 10.1109/ICPR.2014.220
– ident: ref4
  doi: 10.1145/1877868.1877881
– ident: ref13
  doi: 10.1109/CVPR.2006.236
– ident: ref38
  doi: 10.1109/ICCV.2011.6126251
– start-page: 2553
  year: 2013
  ident: ref25
  article-title: Deep neural networks for object detection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/TMM.2013.2266634
– ident: ref19
  doi: 10.1109/CVPR.2008.4587584
– ident: ref24
  doi: 10.1109/TPAMI.2009.167
– start-page: 2629
  year: 2014
  ident: ref11
  article-title: Driving recorder based on-road pedestrian tracking using visual SLAM and constrained multiple-kernel
  publication-title: Proc IEEE 17th Int Conf Intell Transp Syst (ITSC)
– ident: ref21
  doi: 10.1007/s11263-007-0095-3
– start-page: 502
  year: 2005
  ident: ref32
  article-title: Multiple collaborative kernel tracking
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref30
  doi: 10.1109/TPAMI.2003.1195991
– ident: ref29
  doi: 10.1109/34.1000236
– ident: ref39
  doi: 10.1109/TPAMI.2013.32
– volume: 67
  start-page: 1658
  year: 2010
  ident: ref8
  article-title: Assessing habitat utilization and rockfish (sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/F10-088
– ident: ref17
  doi: 10.1109/TPAMI.2010.232
– ident: ref15
  doi: 10.1109/TPAMI.2013.210
– ident: ref34
  doi: 10.1007/978-3-642-37431-9_7
– ident: ref14
  doi: 10.1007/s11263-007-0086-4
– ident: ref28
  doi: 10.1109/T-C.1973.223602
SSID ssj0001286306
Score 2.3401916
Snippet Fishery surveys that call for the use of single or multiple underwater cameras have been an emerging technology as a nonextractive mean to estimate the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2467
SubjectTerms Algorithms
Aquatic environment
Automotive parts
Cameras
Color
Configurations
Deformable models
Deformable part model (DPM)
Deformation
Ecological monitoring
Feature extraction
Fish
Fisheries
fisheries application
Formability
Histograms
Kernel
Kernels
mean-shift (MS) algorithm
moving cameras
Object tracking
State of the art
Target tracking
Texture
Traffic surveillance
Underwater
Title Underwater Fish Tracking for Moving Cameras Based on Deformable Multiple Kernels
URI https://ieeexplore.ieee.org/document/7416236
https://www.proquest.com/docview/2174447121
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwLa6ukoMnsWvaNGl61NVlUSqCCt5Kk85elK7sA8Ff7yTtLr4QL6WQCYR8ab8vk8kMwLGRoRoSMQXUbINYCQy0NCqwJkGhdSFU4aMtbtXgMb5-kk9LcLq4C4OIPvgMu-7Vn-WXIztzrrIzpx4ioZZhOdGqvqv1yZ-ilfClNKNQEfj0bA4xQ56ePdxnPRfHpbqRdMXAxRca8nVVfvyMPcP01yGbj60OLHnuzqama9-_pW387-A3YK2Rmuy8XhubsITVFqx-SkC4DXe-7NEb6c0xc0XQGVGXdc5zRlqWZd7bwHqFc1xN2AURXslGFbtEr3TNC7KsiUdkNziuiGZ34LF_9dAbBE2NhcAKmU4DZYdcY5iiSQgWy43EUtHG1RRCD6MUOS-TGA01kdCLExlagakpeFpqwlilYhda1ajCPWBDLFE6j1JkRZwkXBeKxJwQisyF5KYNfD7luW0SkLs6GC-534jwNHco5Q6lvEGpDSeLLq919o2_jLfdrC8MmwlvQ2eOa958n5PcbcRi4uUo3P-91wGsRI7AfTRZB1rT8QwPSX5MzZFfdx-KPtSM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F95uBJ7Jo2j7ZHXZX1URFcwVtp0tmL0pV1F8Ff7yTbXXwhXkohEwj50n5fJpMZgAOjQt0lYgqo2QZSCwwSZXRgTYwiSQqhCx9tcavbD_LqUT1OwdHkLgwi-uAzbLpXf5Zf9uzQucqOnXqIhJ6GWSWlVKPbWp88KokWvphmFGqCn571MWbI0-POfdZykVy6GSlXDlx8ISJfWeXH79hzzMUSZOPRjUJLnprDgWna92-JG_87_GVYrMUmOxmtjhWYwmoVFj6lIFyDO1_46I0UZ5-5MuiMyMs69zkjNcsy729grcK5rl7ZKVFeyXoVO0Ovdc0zsqyOSGTX2K-IaNfh4eK802oHdZWFwAqVDgJtuzzBMEUTEzCWG4Wlpq2rKUTSjVLkvIwlGmoiqSdjFVqBqSl4WiaEsk7FBsxUvQo3gXWxROV8SpEVMo55UmiSc0JoMheKmwbw8ZTntk5B7iphPOd-K8LT3KGUO5TyGqUGHE66vIzyb_xlvOZmfWJYT3gDdsa45vUX-pq7rZgkZo7Crd977cNcu5Pd5DeXt9fbMB85OvexZTswM-gPcZfEyMDs-TX4AdeO19k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Fish+Tracking+for+Moving+Cameras+Based+on+Deformable+Multiple+Kernels&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Meng-Che+Chuang&rft.au=Jenq-Neng+Hwang&rft.au=Jian-Hui+Ye&rft.au=Shih-Chia+Huang&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=47&rft.issue=9&rft.spage=2467&rft.epage=2477&rft_id=info:doi/10.1109%2FTSMC.2016.2523943&rft.externalDocID=7416236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon