Nearly optimal robust secret sharing
We prove that a known general approach to improve Shamir’s celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size δ n , for any constant δ ∈ ( 0 , 1 / 2 ) . Shamir’s original scheme is r...
        Saved in:
      
    
          | Published in | Designs, codes, and cryptography Vol. 87; no. 8; pp. 1777 - 1796 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        15.08.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-1022 1573-7586 1573-7586  | 
| DOI | 10.1007/s10623-018-0578-y | 
Cover
| Abstract | We prove that a known general approach to improve Shamir’s celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for
n
parties against any collusion of size
δ
n
, for any constant
δ
∈
(
0
,
1
/
2
)
. Shamir’s original scheme is robust for all
δ
∈
(
0
,
1
/
3
)
. Beyond that, we employ the best known list decoding algorithms for Reed-Solomon codes and show that, with high probability, only the correct secret maintains the correct information-theoretic tag if an algebraic manipulation detection (AMD) code is used to tag secrets. This result holds in the so-called “non-rushing” model in which the
n
shares are submitted simultaneously for reconstruction. We thus obtain a fully explicit and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is
k
(
1
+
o
(
1
)
)
+
O
(
κ
)
, where
k
is the secret length and
κ
is the security parameter. Like Shamir’s scheme, in this modified scheme any set of more than
δ
n
honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on
δ
) while the number of shares
n
can grow independently. In this case, when
n
is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of
δ
n
(
1
+
ρ
)
honest parties, for arbitrarily small
ρ
>
0
, can efficiently reconstruct the secret. From a practical perspective, the main importance of our result is in showing that existing systems employing Shamir-type secret sharing schemes can be made much more robust than previously thought with minimal change, essentially only involving the addition of a short and simple checksum to the original data. | 
    
|---|---|
| AbstractList | We prove that a known general approach to improve Shamir’s celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size δn, for any constant δ∈(0,1/2). Shamir’s original scheme is robust for all δ∈(0,1/3). Beyond that, we employ the best known list decoding algorithms for Reed-Solomon codes and show that, with high probability, only the correct secret maintains the correct information-theoretic tag if an algebraic manipulation detection (AMD) code is used to tag secrets. This result holds in the so-called “non-rushing” model in which the n shares are submitted simultaneously for reconstruction. We thus obtain a fully explicit and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is k(1+o(1))+O(κ), where k is the secret length and κ is the security parameter. Like Shamir’s scheme, in this modified scheme any set of more than δn honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on δ) while the number of shares n can grow independently. In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of δn(1+ρ) honest parties, for arbitrarily small ρ>0, can efficiently reconstruct the secret. From a practical perspective, the main importance of our result is in showing that existing systems employing Shamir-type secret sharing schemes can be made much more robust than previously thought with minimal change, essentially only involving the addition of a short and simple checksum to the original data. We prove that a known general approach to improve Shamir’s celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size δ n , for any constant δ ∈ ( 0 , 1 / 2 ) . Shamir’s original scheme is robust for all δ ∈ ( 0 , 1 / 3 ) . Beyond that, we employ the best known list decoding algorithms for Reed-Solomon codes and show that, with high probability, only the correct secret maintains the correct information-theoretic tag if an algebraic manipulation detection (AMD) code is used to tag secrets. This result holds in the so-called “non-rushing” model in which the n shares are submitted simultaneously for reconstruction. We thus obtain a fully explicit and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is k ( 1 + o ( 1 ) ) + O ( κ ) , where k is the secret length and κ is the security parameter. Like Shamir’s scheme, in this modified scheme any set of more than δ n honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on δ ) while the number of shares n can grow independently. In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of δ n ( 1 + ρ ) honest parties, for arbitrarily small ρ > 0 , can efficiently reconstruct the secret. From a practical perspective, the main importance of our result is in showing that existing systems employing Shamir-type secret sharing schemes can be made much more robust than previously thought with minimal change, essentially only involving the addition of a short and simple checksum to the original data.  | 
    
| Author | Cheraghchi, Mahdi | 
    
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0001-8957-0306 surname: Cheraghchi fullname: Cheraghchi, Mahdi email: m.cheraghchi@imperial.ac.uk organization: Department of Computing, Imperial College London  | 
    
| BookMark | eNqNkMFKxDAURYOM4MzoB7gb0G305aVpkqUMOgqDbnQd0jbVDrWtSYr07-3QAUFQXL3NvZdz3oLMmrZxhJwzuGIA8jowSJFTYIqCkIoOR2TOhORUCpXOyBw0CsoA8YQsQtgBAOOAc3L56Kyvh1Xbxerd1ivfZn2Iq-By78bzZn3VvJ6S49LWwZ0d7pK83N0-r-_p9mnzsL7Z0pwLHWmKEmUpMp1jgY4rVRSJEgWHjIFVIi8LZrmWVkqR8RJ1qgqRaJUqh8jSJOdLgtNu33R2-LR1bTo_YvnBMDB7TzN5mtHT7D3NMJYuplLn24_ehWh2be-bkdMgJqnWetweU3JK5b4NwbvS5FW0sWqb6G1V_7nPfjT_w3QQCd3-f85_M_1e-gIPRYQK | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_022_12207_5 crossref_primary_10_1109_JSAIT_2021_3102956 crossref_primary_10_1109_ACCESS_2021_3056893 crossref_primary_10_1155_2022_7926057 crossref_primary_10_1016_j_sigpro_2024_109423 crossref_primary_10_1016_j_gep_2022_119267  | 
    
| Cites_doi | 10.1109/FOCS.2010.74 10.1017/CBO9780511808968 10.1561/0400000007 10.1137/1.9781611973402.134 10.1145/73007.73014 10.1017/CBO9781107337756 10.1145/359168.359176 10.1007/BF00125203 10.1109/TIT.1978.1055892 10.1109/TIT.2007.911222 10.1002/j.1538-7305.1975.tb02040.x 10.1007/978-3-662-49387-8_13 10.1109/TIT.1977.1055763 10.1109/18.61123 10.1007/978-3-662-49890-3_3 10.1007/978-3-540-76878-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2018 Copyright Springer Nature B.V. 2019  | 
    
| Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Nature B.V. 2019  | 
    
| DBID | C6C AAYXX CITATION JQ2 ADTOC UNPAY  | 
    
| DOI | 10.1007/s10623-018-0578-y | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics Computer Science  | 
    
| EISSN | 1573-7586 | 
    
| EndPage | 1796 | 
    
| ExternalDocumentID | 10.1007/s10623-018-0578-y 10_1007_s10623_018_0578_y  | 
    
| GrantInformation_xml | – fundername: Imperial College London | 
    
| GroupedDBID | -52 -5D -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW ZWQNP ZY4 JQ2 ABJCF ADTOC BGLVJ CCPQU K7- M7S PHGZM PHGZT PQGLB PTHSS UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-62727f5b9c2d2e388dd485d30b10a85cfd1a397a775b3f2968d549868e22164c3 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 0925-1022 1573-7586  | 
    
| IngestDate | Sun Oct 26 03:41:46 EDT 2025 Wed Sep 17 23:58:21 EDT 2025 Wed Oct 01 02:01:22 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 21 02:34:11 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Coding and information theory 68P30 Algebraic coding theory 94A60 11T71 Cryptography  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-62727f5b9c2d2e388dd485d30b10a85cfd1a397a775b3f2968d549868e22164c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8957-0306 | 
    
| OpenAccessLink | https://doi.org/10.1007/s10623-018-0578-y | 
    
| PQID | 2246999164 | 
    
| PQPubID | 2043752 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10623_018_0578_y proquest_journals_2246999164 crossref_citationtrail_10_1007_s10623_018_0578_y crossref_primary_10_1007_s10623_018_0578_y springer_journals_10_1007_s10623_018_0578_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20190815 | 
    
| PublicationDateYYYYMMDD | 2019-08-15 | 
    
| PublicationDate_xml | – month: 8 year: 2019 text: 20190815 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Designs, codes, and cryptography | 
    
| PublicationTitleAbbrev | Des. Codes Cryptogr | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | GuruswamiVAlgorithmic results in list decodingFound. Trends Theor. Comput. Sci.200722107195245314710.1561/04000000071203.94140 Bishop A., Pastro V., Rajaraman R., Wichs D.: Essentially optimal robust secret sharing with maximal corruptions. In: Proceedings of the 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2016), pp. 58–86 (2016). Guruswami, V., Xing, C.: Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets. In: SODA, pp. 1858–1866 (2014). ShamirAHow to share a secretCommun. ACM1979221161261354925210.1145/359168.3591760414.94021 Cramer R., Damgård I., Fehr S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Proceedings of Advances in Cryptology CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, pp. 503–523. Springer (2001). GuruswamiVRudraAExplicit codes achieving list decoding capacity: error-correction with optimal redundancyIEEE Trans. Inf. Theory2008541135150244674510.1109/TIT.2007.9112221205.94125 StinsonDRAn explication of secret sharing schemesDes. Codes Cryptogr.199224357390119477610.1007/BF001252030793.68111 Rabin T., Ben-Or M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing (STOC ’89), pp. 73–85 (1989). Chen H., Cramer R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Advances in Cryptology—CRYPTO 2006, Lecture Notes in Computer Science, vol. 4117, pp. 521–536. Springer (2006). Cramer R., Damgård I., Döttling N., Fehr S., Spini G.: Linear secret sharing schemes from error correcting codes and universal hash functions. In: Advances in Cryptology—EUROCRYPT 2015, Lecture Notes in Computer Science, vol. 9057, pp. 313–336. Springer (2015). WynerADThe wire-tap channelBell Syst. Tech. J.1975541355138740897910.1002/j.1538-7305.1975.tb02040.x0316.94017 Cevallos A., Fehr S., Ostrovsky R., Rabani Y.: Unconditionally-secure robust secret sharing with compact shares. In: Proceedings of Advances in Cryptology EUROCRYPT 2012, Lecture Notes in Computer Science, vol. 7237, pp. 195–208. Springer (2012). StichtenothHAlgebraic Function Fields and Codes20092BerlinSpringer1155.14022 CsiszárIKörnerJBroadcast channels with confidential messagesIEEE Trans. Inf. Theory197824333934849364610.1109/TIT.1978.10558920382.94017 Safavi-NainiRWangPA model for adversarial wiretap channels and its applicationsJ. Inf. Process.2015235554561 Guruswami V., Smith A.: Codes for computationally simple channels: explicit constructions with optimal rate. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 723–732 (2010). Cramer R., Dodis Y., Fehr S., Padró C., Wichs D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965, pp. 471–488. Springer (2008). Bellare M., Tessaro S., Vardy A.: Semantic security for the wiretap channel. In: Proceedings of Advances in Cryptology CRYPTO 2012, Lecture Notes in Computer Science, vol. 7417, pp. 294–311. Springer (2012). Bishop A., Pastro V.: Robust secret sharing schemes against local adversaries. In: Proceedings of Public-Key Cryptography (PKC), pp. 327–356 (2016). Blakley G.R.: Safeguarding cryptographic keys. In: National Computer Conference, vol. 48, pp. 313–317. Springer (1979). RothRMIntroduction to Coding Theory2006CambridgeCambridge University Press10.1017/CBO97805118089681092.94001 CramerRPadróCXingCOptimal Algebraic Manipulation Detection Codes in the Constant-Error Model2015BerlinSpringer4815011354.94056 EliasPError-correcting codes for list decodingIEEE Trans. Inf. Theory1991371512108788110.1109/18.611230712.94021 Leung-Yan-CheongSOn a special class of wiretap channels (corresp.)IEEE Trans. Inf. Theory197723562562752961710.1109/TIT.1977.10557630373.94018 Cabello S., Padró C., Sáez G.: Secret sharing schemes with detection of cheaters for a general access structure. In: Proceedings of Fundamentals of Computation Theory, Lecture Notes in Computer Science, vol. 1684, pp. 185–194. Springer (1999). CramerRDamgårdINielsenJBSecure Multiparty Computation and Secret Sharing2015CambridgeCambridge University Press10.1017/CBO97811073377561322.68003 Ishai Y., Ostrovsky R., Seyalioglu H.: Identifying cheaters without an honest majority. In: Proceedings of Theory of Cryptography (TCC 2012), Lecture Notes in Computer Science, vol. 7194, pp. 21–38. Springer (2012). V Guruswami (578_CR17) 2007; 2 578_CR8 AD Wyner (578_CR27) 1975; 54 P Elias (578_CR14) 1991; 37 578_CR21 R Cramer (578_CR13) 2015 S Leung-Yan-Cheong (578_CR20) 1977; 23 I Csiszár (578_CR11) 1978; 24 A Shamir (578_CR23) 1979; 22 R Safavi-Naini (578_CR24) 2015; 23 DR Stinson (578_CR25) 1992; 2 V Guruswami (578_CR15) 2008; 54 578_CR19 578_CR18 R Cramer (578_CR9) 2015 578_CR16 578_CR12 578_CR10 H Stichtenoth (578_CR26) 2009 RM Roth (578_CR22) 2006 578_CR6 578_CR7 578_CR4 578_CR5 578_CR2 578_CR3 578_CR1  | 
    
| References_xml | – reference: CramerRPadróCXingCOptimal Algebraic Manipulation Detection Codes in the Constant-Error Model2015BerlinSpringer4815011354.94056 – reference: Bishop A., Pastro V., Rajaraman R., Wichs D.: Essentially optimal robust secret sharing with maximal corruptions. In: Proceedings of the 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2016), pp. 58–86 (2016). – reference: Guruswami, V., Xing, C.: Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets. In: SODA, pp. 1858–1866 (2014). – reference: Bishop A., Pastro V.: Robust secret sharing schemes against local adversaries. In: Proceedings of Public-Key Cryptography (PKC), pp. 327–356 (2016). – reference: CramerRDamgårdINielsenJBSecure Multiparty Computation and Secret Sharing2015CambridgeCambridge University Press10.1017/CBO97811073377561322.68003 – reference: StichtenothHAlgebraic Function Fields and Codes20092BerlinSpringer1155.14022 – reference: Blakley G.R.: Safeguarding cryptographic keys. In: National Computer Conference, vol. 48, pp. 313–317. Springer (1979). – reference: GuruswamiVRudraAExplicit codes achieving list decoding capacity: error-correction with optimal redundancyIEEE Trans. Inf. Theory2008541135150244674510.1109/TIT.2007.9112221205.94125 – reference: Cabello S., Padró C., Sáez G.: Secret sharing schemes with detection of cheaters for a general access structure. In: Proceedings of Fundamentals of Computation Theory, Lecture Notes in Computer Science, vol. 1684, pp. 185–194. Springer (1999). – reference: WynerADThe wire-tap channelBell Syst. Tech. J.1975541355138740897910.1002/j.1538-7305.1975.tb02040.x0316.94017 – reference: Bellare M., Tessaro S., Vardy A.: Semantic security for the wiretap channel. In: Proceedings of Advances in Cryptology CRYPTO 2012, Lecture Notes in Computer Science, vol. 7417, pp. 294–311. Springer (2012). – reference: Cevallos A., Fehr S., Ostrovsky R., Rabani Y.: Unconditionally-secure robust secret sharing with compact shares. In: Proceedings of Advances in Cryptology EUROCRYPT 2012, Lecture Notes in Computer Science, vol. 7237, pp. 195–208. Springer (2012). – reference: Safavi-NainiRWangPA model for adversarial wiretap channels and its applicationsJ. Inf. Process.2015235554561 – reference: CsiszárIKörnerJBroadcast channels with confidential messagesIEEE Trans. Inf. Theory197824333934849364610.1109/TIT.1978.10558920382.94017 – reference: Rabin T., Ben-Or M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing (STOC ’89), pp. 73–85 (1989). – reference: Cramer R., Dodis Y., Fehr S., Padró C., Wichs D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965, pp. 471–488. Springer (2008). – reference: GuruswamiVAlgorithmic results in list decodingFound. Trends Theor. Comput. Sci.200722107195245314710.1561/04000000071203.94140 – reference: RothRMIntroduction to Coding Theory2006CambridgeCambridge University Press10.1017/CBO97805118089681092.94001 – reference: Leung-Yan-CheongSOn a special class of wiretap channels (corresp.)IEEE Trans. Inf. Theory197723562562752961710.1109/TIT.1977.10557630373.94018 – reference: StinsonDRAn explication of secret sharing schemesDes. Codes Cryptogr.199224357390119477610.1007/BF001252030793.68111 – reference: Chen H., Cramer R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Advances in Cryptology—CRYPTO 2006, Lecture Notes in Computer Science, vol. 4117, pp. 521–536. Springer (2006). – reference: Ishai Y., Ostrovsky R., Seyalioglu H.: Identifying cheaters without an honest majority. In: Proceedings of Theory of Cryptography (TCC 2012), Lecture Notes in Computer Science, vol. 7194, pp. 21–38. Springer (2012). – reference: Cramer R., Damgård I., Döttling N., Fehr S., Spini G.: Linear secret sharing schemes from error correcting codes and universal hash functions. In: Advances in Cryptology—EUROCRYPT 2015, Lecture Notes in Computer Science, vol. 9057, pp. 313–336. Springer (2015). – reference: ShamirAHow to share a secretCommun. ACM1979221161261354925210.1145/359168.3591760414.94021 – reference: EliasPError-correcting codes for list decodingIEEE Trans. Inf. Theory1991371512108788110.1109/18.611230712.94021 – reference: Guruswami V., Smith A.: Codes for computationally simple channels: explicit constructions with optimal rate. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 723–732 (2010). – reference: Cramer R., Damgård I., Fehr S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Proceedings of Advances in Cryptology CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, pp. 503–523. Springer (2001). – ident: 578_CR16 doi: 10.1109/FOCS.2010.74 – volume-title: Introduction to Coding Theory year: 2006 ident: 578_CR22 doi: 10.1017/CBO9780511808968 – ident: 578_CR8 – volume: 2 start-page: 107 issue: 2 year: 2007 ident: 578_CR17 publication-title: Found. Trends Theor. Comput. Sci. doi: 10.1561/0400000007 – ident: 578_CR6 – ident: 578_CR18 doi: 10.1137/1.9781611973402.134 – ident: 578_CR21 doi: 10.1145/73007.73014 – ident: 578_CR4 – volume-title: Secure Multiparty Computation and Secret Sharing year: 2015 ident: 578_CR9 doi: 10.1017/CBO9781107337756 – volume: 22 start-page: 612 issue: 11 year: 1979 ident: 578_CR23 publication-title: Commun. ACM doi: 10.1145/359168.359176 – volume: 2 start-page: 357 issue: 4 year: 1992 ident: 578_CR25 publication-title: Des. Codes Cryptogr. doi: 10.1007/BF00125203 – volume: 24 start-page: 339 issue: 3 year: 1978 ident: 578_CR11 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1978.1055892 – volume: 54 start-page: 135 issue: 1 year: 2008 ident: 578_CR15 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.911222 – volume: 54 start-page: 1355 year: 1975 ident: 578_CR27 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1975.tb02040.x – ident: 578_CR10 – start-page: 481 volume-title: Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model year: 2015 ident: 578_CR13 – ident: 578_CR12 – ident: 578_CR19 – ident: 578_CR2 doi: 10.1007/978-3-662-49387-8_13 – volume: 23 start-page: 554 issue: 5 year: 2015 ident: 578_CR24 publication-title: J. Inf. Process. – ident: 578_CR7 – ident: 578_CR5 – volume: 23 start-page: 625 issue: 5 year: 1977 ident: 578_CR20 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1977.1055763 – volume: 37 start-page: 5 issue: 1 year: 1991 ident: 578_CR14 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.61123 – ident: 578_CR1 – ident: 578_CR3 doi: 10.1007/978-3-662-49890-3_3 – volume-title: Algebraic Function Fields and Codes year: 2009 ident: 578_CR26 doi: 10.1007/978-3-540-76878-4  | 
    
| SSID | ssj0001302 | 
    
| Score | 2.280265 | 
    
| Snippet | We prove that a known general approach to improve Shamir’s celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1777 | 
    
| SubjectTerms | Algebra Algorithms Circuits Codes Coding and Information Theory Computer Science Cryptology Data Structures and Information Theory Decoding Discrete Mathematics in Computer Science Information and Communication Information theory Mathematical models Parameter modification Reed-Solomon codes Robustness  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PagH32J90YMnJXW72aTZo4giQosHC3pa8kSwbku7Reqvd7LdbauIIp6WJZksmWQz32QyXwBOA8Msd4EiNNSWRMrERGqhiIuMN1Bau8DnDrc7_LYb3T2yxyW4KnNh8tPuZUhymtPgWZrS7GJg3MVC4huabXSDBUG8IcikgaXLUOUMAXkFqt3O_eVTzrIXep7NPJbQZC1KEB3zMrb5XTufrdMccs6ipGuwMk4HcvIme70FQ3SzAabswvT8yUtjnKmGfv_C7vjPPm7CegFU65fTmbUFSzbdhrUF-kJ8a884X0c7cNqxniy53sdF6BUlh301HmX1kcel-HiWXmgXujfXD1e3pLiDgWjK4ozwEAGOYyrWoQktFcKYSDBDA9UMpGDamaZESCNbLaaoC2MuDHqcggsbhuiJaboHlbSf2n2oc4e-C88p91qRZVJwJxWuAVEUU8OorkFQ6j7RBUG5vyejl8yplb1KElRJ4lWSTGpwNhMZTNk5fqp8VA5oUvyoo8Tz6eUYOarBeTkm8-IfGjufzYPfP33wp9qHsIqwLPY71012BJVsOLbHCH0ydVJM7Q9fn_hQ priority: 102 providerName: Unpaywall  | 
    
| Title | Nearly optimal robust secret sharing | 
    
| URI | https://link.springer.com/article/10.1007/s10623-018-0578-y https://www.proquest.com/docview/2246999164 https://link.springer.com/content/pdf/10.1007/s10623-018-0578-y.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 87 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001302 issn: 1573-7586 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7586 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001302 issn: 1573-7586 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PWgPvsX6KDn0pCykm-x2cyzFKkqLBwt6CvsKHmpa-kD6751Nk7SKKF4S8tgJzGR3vtlhvgFo-oZZnviKBFRbEioTEamFIklonIPSOvFd7XB_wO-H4cMLe8nJol0tzLf8vStxQweNAa8giCwEWW5DFX0Uz_KyvFsuui7_ltHqUUesSWmRwPxJxFcXtMaVZSq0BjuLdCKXH3I02vA2vQPYy2Gi11nZ9RC2bHoE-0ULBi-fkUdQ2-ATxKt-ScI6O4bmwDr2Ym-Mq8I7CpuO1WI292YOKOLpTbpBJzDs3T5370neFIHogEVzwikijoSpSFNDbSCEMaFgJvBVy5eC6cS0JGIM2W4zFSQ04sJgCCi4sJRiaKSDU6ik49SegccTDCZ4xoHXDi2TgidS4aQMwygwLNB18As9xTpnDHeNK0bxmuvYqTZG1cZOtfGyDtflkMmKLuO3ly8L5cf5zJnFjuAuA61hHW4Kg6wf_yLsprTZ358-_5fsC9hFnBS5reQWu4TKfLqwV4hF5qoB1c7d6-NtI_sb8TikHbw3HDx1Xj8BCJTWCw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHpCDD9SIovbASbJJ2XbL9kiMBhU4QcJts6_GAxZCSwz_3t3SFkwMxlPTtDtNZjoz33Q63wK0XEV0ELkCeVhq5AsVIi6pQJGvbIKSMnLt7PBwFPQn_tuUTPM57qT4271oSWaRemfYzaRqU_pSZDAGRetDOLL8VZYwf4J7Zfi1nbiMYA9bik2Mi1bmbyJ-JqMtwiybojWoruIFX3_x2Wwn77ycwUkOGJ3exsLncKDjOpwWmzE4uW_WobbDLGjOhiUda3IBrZG2PMbO3MSHTyNsORerJHUSCxnN4YPbRZcweXkeP_VRvj0Ckh4JUxRggz0iIkKJFdYepUr5lCjPFR2XUyIj1eEGbfBulwgvwmFAlSkGaUA1xqZIkt4VVOJ5rK_BCSJTVgQZG17X14TTIOLCuKfvh54inmyAW-iJyZw73G5hMWNb1mOrWmZUy6xq2boBj-WSxYY4Y9_NzUL5LPehhFmquwy--g1oFwbZXt4jrF3a7O9H3_xL9gNU--PhgA1eR--3cGzQU2g_MHdIEyrpcqXvDEJJxX32Rn4DzYvY7g | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-NADLZYkFg48EbbBZYcOIFGpJOZ6eSIChUsUHEAiVs0T3EoaUVSrfrv19MmaZEQiFMUJeNIdjz-HMefAU5iy53wsSYJNY4wbVOijNTEMxsClDE-Dr3D931x_cT-PvPnas5pUf_tXpckZz0NgaUpL89H1p8vNL5h2MY0WBLEG5JMfsAKw-AWRhh0RbfZikNVbkq2RwPdJqV1WfMjEe8D0xxtNgXSdfg5zkdq8k8NBgsxqLcFGxV4jC5m1t6GJZfvwGY9mCGq_HQH1hdYBvHsvqFmLXbhpO8Cp3E0xL3iFYW9DfW4KKMiwEc8vKiwaA-eeleP3WtSjUogJuFpSQRFHOK5Tg211CVSWsskt0ms27GS3HjbVog8VKfDdeJpKqTFxFAK6SjFhMkk-7CcD3P3CyLhMcUQU2a8DnNcSeGVRldlLE0sT0wL4lpPmal4xMM4i0E2Z0AOqs1QtVlQbTZpwWmzZDQj0fjs5sNa-VnlT0UWaO-mUJa14Kw2yPzyJ8LOGpt9_ejf35J9DKsPl73s7qZ_ewBrCKTS8K25zQ9huXwbuyMEK6X-M30h_wOL990U | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PagH32J90YMnJXW72aTZo4giQosHC3pa8kSwbku7Reqvd7LdbauIIp6WJZksmWQz32QyXwBOA8Msd4EiNNSWRMrERGqhiIuMN1Bau8DnDrc7_LYb3T2yxyW4KnNh8tPuZUhymtPgWZrS7GJg3MVC4huabXSDBUG8IcikgaXLUOUMAXkFqt3O_eVTzrIXep7NPJbQZC1KEB3zMrb5XTufrdMccs6ipGuwMk4HcvIme70FQ3SzAabswvT8yUtjnKmGfv_C7vjPPm7CegFU65fTmbUFSzbdhrUF-kJ8a884X0c7cNqxniy53sdF6BUlh301HmX1kcel-HiWXmgXujfXD1e3pLiDgWjK4ozwEAGOYyrWoQktFcKYSDBDA9UMpGDamaZESCNbLaaoC2MuDHqcggsbhuiJaboHlbSf2n2oc4e-C88p91qRZVJwJxWuAVEUU8OorkFQ6j7RBUG5vyejl8yplb1KElRJ4lWSTGpwNhMZTNk5fqp8VA5oUvyoo8Tz6eUYOarBeTkm8-IfGjufzYPfP33wp9qHsIqwLPY71012BJVsOLbHCH0ydVJM7Q9fn_hQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearly+optimal+robust+secret+sharing&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Cheraghchi%2C+Mahdi&rft.date=2019-08-15&rft.pub=Springer+US&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=87&rft.issue=8&rft.spage=1777&rft.epage=1796&rft_id=info:doi/10.1007%2Fs10623-018-0578-y&rft.externalDocID=10_1007_s10623_018_0578_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon |