Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt

The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learnin...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 22; p. 4224
Main Authors Lotfy, Ashrakat A., Abuarab, Mohamed E., Farag, Eslam, Derardja, Bilal, Khadra, Roula, Abdelmoneim, Ahmed A., Mokhtar, Ali
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16224224

Cover

Abstract The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R2 value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R2 value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Peeff, Tmax, Tmin, and SA), and scenario 5 (Peeff and Tmax). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble.
AbstractList The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R2 value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R2 value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Peeff, Tmax, Tmin, and SA), and scenario 5 (Peeff and Tmax). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble.
The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R[sup.2] value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R[sup.2] value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Pe[sub.eff], T[sub.max], T[sub.min], and SA), and scenario 5 (Pe[sub.eff] and T[sub.max]). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble.
Audience Academic
Author Abuarab, Mohamed E.
Derardja, Bilal
Mokhtar, Ali
Lotfy, Ashrakat A.
Abdelmoneim, Ahmed A.
Farag, Eslam
Khadra, Roula
Author_xml – sequence: 1
  givenname: Ashrakat A.
  orcidid: 0009-0005-6188-8415
  surname: Lotfy
  fullname: Lotfy, Ashrakat A.
– sequence: 2
  givenname: Mohamed E.
  orcidid: 0000-0002-8799-8031
  surname: Abuarab
  fullname: Abuarab, Mohamed E.
– sequence: 3
  givenname: Eslam
  orcidid: 0000-0002-6152-9325
  surname: Farag
  fullname: Farag, Eslam
– sequence: 4
  givenname: Bilal
  orcidid: 0000-0002-6251-8601
  surname: Derardja
  fullname: Derardja, Bilal
– sequence: 5
  givenname: Roula
  orcidid: 0000-0003-2117-1557
  surname: Khadra
  fullname: Khadra, Roula
– sequence: 6
  givenname: Ahmed A.
  surname: Abdelmoneim
  fullname: Abdelmoneim, Ahmed A.
– sequence: 7
  givenname: Ali
  surname: Mokhtar
  fullname: Mokhtar, Ali
BookMark eNp9ks9uEzEQxleoSJTSC09giRskxf9i7x7TtGkrBTiUqsfVxJ7dOGzs1HZAeTWeDqdBwAnbki37-34zHvt1deKDx6p6y-iFEA39GBNTnMsyXlSnnGo-lrzhJ_-sX1XnKa1paUKwhsrT6uc8RDSQsvM9uRx2SMBbchMRPXmEjJHMQ8jb6HwmoSOPK4RMLiGhJcGT--IacERu98vo7OjZe5_BfDvQrn3CzXJA8gnMynkkC4ToDyfToQ_R5dUmkQdvS4wr9x1jQjLtYxjPBreB7AyZBW9ddsEn4jz57ArqCocMI3Ld77f5TfWygyHh-e_5rHqYX3-d3Y4XX27uZtPF2IhJk8cToynXCqi2IAVfCo3KUgXaCqsmjKOsKa87xY0UlDWyrkUHmikGAoFpJc6quyPXBli3pRQbiPs2gGufN0LsW4gl3wFbsJZpoRhOllIqA43msqDohHVqWfO6sD4cWTu_hf0PGIY_QEbbwyu2f1-xqN8d1dsYnnaYcrsOu-jLZVvBhBC1LgGK6uKo6qGk4HwXcgRTusWNM-WLdKVy7bRmtVSNUqIY3h8NJoaUInb_y-EX-yu6CQ
Cites_doi 10.1016/j.compag.2023.108339
10.1145/2939672.2939785
10.1016/j.physa.2019.122272
10.1111/jfpe.13374
10.1016/j.dss.2019.01.002
10.1371/journal.pone.0192830
10.1016/j.agwat.2019.105939
10.1016/j.apenergy.2023.120749
10.1016/j.eja.2023.126837
10.3390/rs12081232
10.1007/s10489-019-01426-3
10.1016/j.asoc.2021.107509
10.1016/j.watres.2023.120011
10.1016/j.agwat.2021.107052
10.1038/s41598-021-88223-6
10.3390/rs14235962
10.1016/j.jhydrol.2023.130171
10.1016/j.acags.2020.100051
10.1007/978-3-030-77622-0_16
10.3390/app112412164
10.1016/j.ecolecon.2008.06.021
10.1016/j.compag.2020.105728
10.1023/A:1007607513941
10.1007/s12665-010-0483-9
10.1021/acsbiomaterials.6b00101
10.1155/2017/6817627
10.1007/s00477-023-02594-y
10.3390/agriculture13010007
10.3390/s140405768
10.1016/j.compag.2021.106036
10.1007/s12010-019-03222-8
10.1186/1471-2105-9-307
10.5194/hessd-8-763-2011
10.1016/j.compag.2022.107403
10.1039/C9EW00883G
10.1016/j.asr.2023.07.006
10.1007/978-3-030-29635-3_2
10.1023/A:1019956318069
10.1016/j.rser.2014.07.117
10.1007/s13201-022-01756-7
10.3233/FI-2010-288
10.1088/1748-9326/ad78e9
10.1038/s41598-024-64269-0
10.1007/s00484-023-02486-4
10.1371/journal.pone.0204139
10.1016/j.agwat.2020.106080
10.2166/ws.2018.046
10.13031/2013.23153
10.3390/agronomy14030546
10.1016/j.neucom.2021.07.084
10.1023/A:1010933404324
10.1007/s13201-022-01835-9
10.1016/j.jclepro.2024.140691
10.1016/j.apm.2017.02.041
10.1016/j.asoc.2021.107989
10.1016/j.compstruct.2013.05.056
10.3390/rs13204112
10.1111/j.2517-6161.1996.tb02080.x
10.3390/w15081503
10.3390/w16081185
10.5194/isprs-archives-XLIII-B3-2021-539-2021
10.1016/j.ejrh.2024.101968
10.1016/j.enconman.2015.09.045
10.1080/19443994.2016.1170639
10.1117/12.3020989
10.3390/w13030256
10.1016/j.engappai.2021.104206
10.18637/jss.v036.i11
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs16224224
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_add17361e5b446ca9724716051f6b828
10.3390/rs16224224
A818469663
10_3390_rs16224224
GeographicLocations Egypt
Nile Delta
Ukraine
Russia
GeographicLocations_xml – name: Egypt
– name: Russia
– name: Ukraine
– name: Nile Delta
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c359t-5c70276a07da432b37e6d06a7d3d6512e48028f62c430194883fa7161a3ea1763
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 14 19:05:00 EDT 2025
Sun Sep 07 11:10:01 EDT 2025
Fri Jul 25 11:50:43 EDT 2025
Mon Oct 20 16:55:38 EDT 2025
Thu Oct 16 04:42:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5c70276a07da432b37e6d06a7d3d6512e48028f62c430194883fa7161a3ea1763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8799-8031
0000-0002-6152-9325
0000-0003-2117-1557
0000-0002-6251-8601
0009-0005-6188-8415
OpenAccessLink https://doaj.org/article/add17361e5b446ca9724716051f6b828
PQID 3133387972
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_add17361e5b446ca9724716051f6b828
unpaywall_primary_10_3390_rs16224224
proquest_journals_3133387972
gale_infotracacademiconefile_A818469663
crossref_primary_10_3390_rs16224224
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Moriasi (ref_71) 2007; 50
Latif (ref_35) 2014; 2
Mokhtar (ref_42) 2024; 56
ref_58
Kouadri (ref_59) 2021; 20
Cui (ref_63) 2021; 113
Muratoglu (ref_40) 2023; 238
ref_52
ref_51
Hur (ref_47) 2017; 2017
ref_19
ref_18
Li (ref_34) 2008; 11
ref_17
Martin (ref_15) 2021; 108
Hoekstra (ref_5) 2009; 68
Rouse (ref_29) 2010; 60
Ma (ref_26) 2024; 437
Breiman (ref_41) 2001; 45
Li (ref_70) 2013; 106
Vidyarthi (ref_14) 2020; 43
ref_60
Burnett (ref_31) 2021; 43
Azzam (ref_66) 2022; 202
Dong (ref_64) 2021; 462
Gueymard (ref_68) 2014; 39
Hung (ref_13) 2016; 2
ref_25
ref_67
ref_22
Li (ref_49) 2017; 49
Li (ref_10) 2023; 625
ref_21
Tibshirani (ref_53) 1996; 58
Zhang (ref_55) 2021; 100
Rozenstein (ref_36) 2014; 14
ref_28
Abuarab (ref_24) 2024; 67
Kursa (ref_43) 2010; 101
Verma (ref_61) 2020; 191
Vilalta (ref_12) 2002; 18
Xu (ref_57) 2019; 49
Dietterich (ref_11) 2000; 40
Gabr (ref_4) 2023; 13
ref_72
Li (ref_39) 2020; 229
Papouskova (ref_65) 2019; 118
Mokhtar (ref_37) 2020; 6
Aly (ref_16) 2024; 38
Nasr (ref_20) 2016; 57
Allen (ref_38) 1998; 300
ref_79
ref_33
ref_77
Shafiee (ref_54) 2021; 183
ref_76
ref_30
Hachisuca (ref_23) 2023; 67
Ferreira (ref_44) 2020; 178
Jiang (ref_62) 2020; 541
Huang (ref_9) 2019; 19
Jhajharia (ref_56) 2023; 72
Elbeltagi (ref_73) 2021; 255
ref_80
Prokhorenkova (ref_50) 2018; 31
Li (ref_75) 2023; 335
ref_45
Alene (ref_2) 2022; 12
Mialyk (ref_27) 2024; 19
Taloor (ref_32) 2021; 9
Elbeltagi (ref_7) 2020; 235
Jiang (ref_78) 2023; 214
ref_1
Behar (ref_69) 2015; 106
Arshad (ref_74) 2023; 147
ref_3
ref_48
ref_8
ref_6
Kursa (ref_46) 2010; 36
References_xml – volume: 214
  start-page: 108339
  year: 2023
  ident: ref_78
  article-title: Quality classification of stored wheat based on evidence reasoning rule and stacking ensemble learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108339
– ident: ref_30
  doi: 10.1145/2939672.2939785
– volume: 541
  start-page: 122272
  year: 2020
  ident: ref_62
  article-title: An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms
  publication-title: Phys. A: Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.122272
– volume: 43
  start-page: e13374
  year: 2020
  ident: ref_14
  article-title: Stack ensembled model to measure size and mass of almond kernels
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13374
– volume: 118
  start-page: 33
  year: 2019
  ident: ref_65
  article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.01.002
– ident: ref_17
  doi: 10.1371/journal.pone.0192830
– volume: 229
  start-page: 105939
  year: 2020
  ident: ref_39
  article-title: Assessing the components of, and factors influencing, paddy rice water footprint in China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105939
– volume: 335
  start-page: 120749
  year: 2023
  ident: ref_75
  article-title: Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120749
– volume: 147
  start-page: 126837
  year: 2023
  ident: ref_74
  article-title: Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126837
– ident: ref_33
  doi: 10.3390/rs12081232
– volume: 49
  start-page: 3002
  year: 2019
  ident: ref_57
  article-title: A hybrid modelling method for time series forecasting based on a linear regression model and deep learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01426-3
– volume: 108
  start-page: 107509
  year: 2021
  ident: ref_15
  article-title: On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107509
– volume: 238
  start-page: 120011
  year: 2023
  ident: ref_40
  article-title: Performance analyses of effective rainfall estimation methods for accurate quantification of agricultural water footprint
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120011
– volume: 255
  start-page: 107052
  year: 2021
  ident: ref_73
  article-title: Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107052
– ident: ref_77
  doi: 10.1038/s41598-021-88223-6
– ident: ref_19
  doi: 10.3390/rs14235962
– volume: 625
  start-page: 130171
  year: 2023
  ident: ref_10
  article-title: Machine learning modeling of water footprint in crop production distinguishing water supply and irrigation method scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130171
– volume: 300
  start-page: D05109
  year: 1998
  ident: ref_38
  article-title: Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56
  publication-title: Fao Rome
– volume: 9
  start-page: 100051
  year: 2021
  ident: ref_32
  article-title: Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100051
– ident: ref_1
  doi: 10.1007/978-3-030-77622-0_16
– ident: ref_79
  doi: 10.3390/app112412164
– volume: 68
  start-page: 1963
  year: 2009
  ident: ref_5
  article-title: Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2008.06.021
– volume: 178
  start-page: 105728
  year: 2020
  ident: ref_44
  article-title: Multi-step ahead forecasting of daily reference evapotranspiration using deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105728
– volume: 20
  start-page: 324
  year: 2021
  ident: ref_59
  article-title: Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast)
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 40
  start-page: 139
  year: 2000
  ident: ref_11
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– volume: 60
  start-page: 313
  year: 2010
  ident: ref_29
  article-title: Multi-spectral imaging of vegetation for detecting CO2 leaking from underground
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0483-9
– ident: ref_52
– volume: 2
  start-page: 1806
  year: 2016
  ident: ref_13
  article-title: Three-dimensional printing of bone extracellular matrix for craniofacial regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00101
– volume: 2017
  start-page: 6817627
  year: 2017
  ident: ref_47
  article-title: A variable impacts measurement in random forest for mobile cloud computing
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2017/6817627
– volume: 38
  start-page: 689
  year: 2024
  ident: ref_16
  article-title: High performance machine learning approach for reference evapotranspiration estimation
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-023-02594-y
– ident: ref_22
  doi: 10.3390/agriculture13010007
– volume: 67
  start-page: 1
  year: 2024
  ident: ref_24
  article-title: Estimation of Potato Water Footprint Using Machine Learning Algorithm Models in Arid Regions
  publication-title: Potato Res.
– volume: 14
  start-page: 5768
  year: 2014
  ident: ref_36
  article-title: Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm
  publication-title: Sensors
  doi: 10.3390/s140405768
– ident: ref_45
– volume: 183
  start-page: 106036
  year: 2021
  ident: ref_54
  article-title: Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106036
– volume: 191
  start-page: 637
  year: 2020
  ident: ref_61
  article-title: Prediction of skin disease with three different feature selection techniques using stacking ensemble method
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-019-03222-8
– ident: ref_72
– volume: 2
  start-page: 2840
  year: 2014
  ident: ref_35
  article-title: Land surface temperature retrival of Landsat-8 data using split window algorithm-A case study of Ranchi district
  publication-title: Int. J. Eng. Dev. Res.
– ident: ref_48
  doi: 10.1186/1471-2105-9-307
– ident: ref_8
  doi: 10.5194/hessd-8-763-2011
– volume: 202
  start-page: 107403
  year: 2022
  ident: ref_66
  article-title: Estimation of green and blue water evapotranspiration using machine learning algorithms with limited meteorological data: A case study in Amu Darya River Basin, Central Asia
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107403
– volume: 11
  start-page: 119
  year: 2008
  ident: ref_34
  article-title: Applicability of Land surface Temperature (LST) estimates from AVHRR satellite image composites in northern Canada
  publication-title: Prairie Perspect.
– volume: 6
  start-page: 656
  year: 2020
  ident: ref_37
  article-title: Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C9EW00883G
– volume: 72
  start-page: 3998
  year: 2023
  ident: ref_56
  article-title: Prediction of crop yield using satellite vegetation indices combined with machine learning approaches
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2023.07.006
– ident: ref_76
– ident: ref_3
  doi: 10.1007/978-3-030-29635-3_2
– volume: 18
  start-page: 77
  year: 2002
  ident: ref_12
  article-title: A perspective view and survey of meta-learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1019956318069
– volume: 39
  start-page: 1024
  year: 2014
  ident: ref_68
  article-title: A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.07.117
– volume: 12
  start-page: 238
  year: 2022
  ident: ref_2
  article-title: Identifying rainwater harvesting sites using integrated GIS and a multi-criteria evaluation approach in semi-arid areas of Ethiopia
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-022-01756-7
– volume: 101
  start-page: 271
  year: 2010
  ident: ref_43
  article-title: Boruta–a system for feature selection
  publication-title: Fundam. Informaticae
  doi: 10.3233/FI-2010-288
– volume: 19
  start-page: 114015
  year: 2024
  ident: ref_27
  article-title: Evolution of global water footprints of crop production in 1990–2019
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ad78e9
– ident: ref_58
  doi: 10.1038/s41598-024-64269-0
– volume: 67
  start-page: 1169
  year: 2023
  ident: ref_23
  article-title: Growing degree-hours and degree-days in two management zones for each phenological stage of wheat (Triticum aestivum L.)
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-023-02486-4
– ident: ref_67
  doi: 10.1371/journal.pone.0204139
– volume: 235
  start-page: 106080
  year: 2020
  ident: ref_7
  article-title: Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106080
– volume: 19
  start-page: 52
  year: 2019
  ident: ref_9
  article-title: Impact of climate change on the blue water footprint of agriculture on a regional scale
  publication-title: Water Supply
  doi: 10.2166/ws.2018.046
– volume: 50
  start-page: 885
  year: 2007
  ident: ref_71
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– ident: ref_28
  doi: 10.3390/agronomy14030546
– volume: 462
  start-page: 169
  year: 2021
  ident: ref_64
  article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.084
– ident: ref_21
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_41
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 19
  year: 2023
  ident: ref_4
  article-title: Prospective of the utilization of rainfall in coastal regions in the context of climatic changes: Case study of egypt
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-022-01835-9
– volume: 437
  start-page: 140691
  year: 2024
  ident: ref_26
  article-title: Spatio-temporal pattern and prediction of agricultural blue and green water footprint scarcity index in the lower reaches of the Yellow River Basin
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.140691
– volume: 49
  start-page: 680
  year: 2017
  ident: ref_49
  article-title: Eigenvalue analysis of structures with interval parameters using the second-order Taylor series expansion and the DCA for QB
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.02.041
– volume: 113
  start-page: 107989
  year: 2021
  ident: ref_63
  article-title: Two-stage stacking heterogeneous ensemble learning method for gasoline octane number loss prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107989
– ident: ref_6
– volume: 106
  start-page: 175
  year: 2013
  ident: ref_70
  article-title: Linear statics and free vibration sensitivity analysis of the composite sandwich plates based on a layerwise/solid-element method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2013.05.056
– ident: ref_18
  doi: 10.3390/rs13204112
– volume: 31
  start-page: 6639
  year: 2018
  ident: ref_50
  article-title: CatBoost: Unbiased boosting with categorical features
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_53
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_60
  doi: 10.3390/w15081503
– ident: ref_25
  doi: 10.3390/w16081185
– volume: 43
  start-page: 539
  year: 2021
  ident: ref_31
  article-title: Urban Heat Island Footprint Effects on Bio-Productive Rural Land Covers Surrounding A Low Density Urban Center
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B3-2021-539-2021
– volume: 56
  start-page: 101968
  year: 2024
  ident: ref_42
  article-title: Egypt’s water future: AI predicts evapotranspiration shifts across climate zones
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2024.101968
– volume: 106
  start-page: 268
  year: 2015
  ident: ref_69
  article-title: A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES)
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.09.045
– volume: 57
  start-page: 26932
  year: 2016
  ident: ref_20
  article-title: Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2016.1170639
– ident: ref_80
  doi: 10.1117/12.3020989
– ident: ref_51
  doi: 10.3390/w13030256
– volume: 100
  start-page: 104206
  year: 2021
  ident: ref_55
  article-title: A temporal LASSO regression model for the emergency forecasting of the suspended sediment concentrations in coastal oceans: Accuracy and interpretability
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104206
– volume: 36
  start-page: 1
  year: 2010
  ident: ref_46
  article-title: Feature selection with the boruta package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
SSID ssj0000331904
Score 2.3957026
Snippet The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4224
SubjectTerms Agricultural production
Algorithms
Climate change
Climate models
Climate prediction
Climatic conditions
climatic parameters
Data mining
Egypt
Food
Footprint analysis
Learning algorithms
Machine learning
machine learning models
Parameters
Population growth
Remote sensing
remote sensing indices
Sea level
single and hybrid models
stacking ensemble
Statistical models
Vegetation
Water
Water consumption
Water resources management
Water use
Wheat
wheat BWFP and GWFP
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF1S55D2UPpJlKZloIFeLCJp1yv7UIrt2JhCTWkbmpsY7a6cgCK5kkzwX-uv6-xacloKuQpJLJrZN29Gs28YOxthKoQeKp9rLmzpRviIGPgZ2T9QxCCUcmqfS7m4FJ-vBlcHbNmdhbFtlR0mOqDWpbI18nNOyRQfxqM4-rT-5dupUfbvajdCA9vRCvqjkxh7xA4jq4zVY4eT2fLrt33VJeDkcoHY6ZRyyvfPqzqUFMaiSPwTmZyA__8w_YQdbYo1bu8wz_-KQ_Nn7GlLIGG8s_hzdmCKF-yonWV-vX3Jfttpmwpr288Mk3xjAAsNrr8GfhKzrGBelo2t5zVQZuDQGCYUzDSUBXynp3LTh8XWHuXqu2eJkCpbUYdZUZvbNDfwxbVgGmjVWVcwzlf0sZrr2xrcJCW4cP0eBsarqvSn-Y1ThoVpaf-QW0-HmwKWhEhwYfIG-zCz49Bescv57Md04bcTGnzFB6PGH6iY0lqJQaxR8CjlsZE6kBhrriVRCSOGxF8yGSlBQDIisOAZUoYWIjcYErS9Zr2iLMwxg3ggU6G5TIPYiEyLoRCKiyhOszAVmCmPve-sk6x3QhwJJTDWhsm9DT02sYbb32HFs92Fslol7V5MCNLDmMvQDMhPpULyKQrRlNeFmUwpA_XYB2v2xG7xpkKF7UkFWqgVy0rGRHKEpDyRe-y084yk3ft1cu-pHjvbe8sDiz55-C1v2OOImNTuAOQp6zXVxrwlJtSk71r3_gPKhQfc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669KHrw36PuevGsRX2Ene2JUvJY5ImhMHCYAvrnowsy2mYaxfbYWR_2v66nWyn6zooAz8Zyxzc6e476e47gJOhijlPBtplCeP26Ia7SinPTUn_niYEoXXD9rkQ8yX_cB6e78GbXS_Mjft7Run4-7LyBUUZeu7BvggJb_dgf7n4NPpmp8Z5MnDtvKWWd_TWgr8iTUPI_6_bPYSDTX6ltj9Ult2IK7OHMNlJ1JaTfD_d1PGp_nmLrPFukR_Bgw5W4qi1g8ewZ_IncNBNOL_YPoVfdganVpWtcsZxtjGo8gSbqhv8SnizxFlR1PaUr8YixcZH45hCXIJFjp9pVWb6ON_aBq9-s5Zgqrbn7DjNK3MZZwY_NoWZBjvO1hWOslVRruuLywqb-Up41lSBGBytysKdZOuGLxYnhb03t_aP6xwX5KfwzGS16uPUDkl7BsvZ9Mtk7nZzG1zNwmHthlpSsiuUJxPFWRAzaUTiCSUTlggCGIYPCNWkItCc3MuQXAhLFeVtvmJG-eTwnkMvL3LzAlCGIuYJE7EnDU8TPuBcMx7IOPVjrlLtwNudjqOrlp4jorTG6iH6owcHxlb9119YSu3mBakt6nZoRI7el0z4JiTrFVoNZUCBm7I9PxUx5aUOvLPGE9mNX5dKq65_gQS1FFrRiKAPF5Q9MgeOd_YVdR6hipjPGBtI-qsDJ9c2d4fQR__32Uu4HxDOatsjj6FXlxvzinBSHb_uNspvc-YNaQ
  priority: 102
  providerName: Unpaywall
Title Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt
URI https://www.proquest.com/docview/3133387972
https://doi.org/10.3390/rs16224224
https://doaj.org/article/add17361e5b446ca9724716051f6b828
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtekh7KP0kbtJloIFe1tS2ZMl79H51Kc0Smi5NT0aW5c2CYwfbS9i_1l_XkeykWwrtpSdjYwnhGT29kUdvCDkdyZSxLFIuzSgzWzfMlVJ6bo729xQyCKWs2ueSL1bs02V4uVfqy-SEdfLA3YczaTW-oNzXIXbKlRyJAPEUSbif8xTDBYO-XjTaC6YsBlN0LY91eqQU4_oPdeNzXK6CgP22Almh_j_h-Ak53JY3cncri2JvvZk_I097oghxN8Dn5IEuX5DDvmb51e4l-WGqairZmLxlGBdbDbLMwObRwDdkkDXMq6o1-3YtVDlY1IUxLloZVCVcYKtCD2GxM0e2hrYtEk9lds5hVjb6Oi00nNlUSw29Cusa4mJd1Zv26roBWzEJpjavQ0O8rit3UmysAixMKvMn3Hg0bEpYIvLAVBetHMLMlD17RVbz2dfJwu0rMbiKhqPWDZXA8JVLT2SS0SClQvPM41JkNONIGTSLkKfkPFAMAWOEoEBziVbyJdXSRwh7TQ7KqtRHBETIU5ZRnnpCszxjEWOKskCkuZ8ymSuHvLuzTnLTCW4kGKgYGya_bOiQsTHc_RtGJNs-QNdJetdJ_uU6DnlvzJ6YqdzWUsn-RAIO1IhiJTGSGcYxHqQOObnzjKSf401CMbynkcBeHXJ67y1_GfSb_zHoY_I4QF7VHYc8IQdtvdVvkRe16YA8jOYfB-RRPD37fIHX8Wx5_mVgJwberZbn8fef6-0OkQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hA4IJ7CUGAkirjEqu3drONDhfJUStsIQSt6c9e767SSawfbUZW_xoHfxuzGSUFIvfVqeS1L8_xmZ-YjZC8SCWOqK12qKDOlG-YKITw3Rfl7EjMIKe22zymfnLEv553zLfJ7PQtj2irXPtE6alVIUyPfpwimaDeMwuDz_KdrWKPM7eqaQkM01ArqwK4YawY7jvTyBiFcdXA4RHl_DILx6HQwcRuWAVfSTlS7HRkiNOPCC5VgNEhoqLnyuAgVVRzDoWZdjMEpDyRDY4hQ4WkqEGX4gmrho3nidx-QHUZZhOBvpz-afv22qfJ4FFXcY6u9qJRG3n5Z-RzDZhCwfyKhJQz4Pyw8Iq1FPhfLG5Flf8W98RPyuElYobfSsKdkS-fPSKvhTr9cPie_DLunFJXpn4Z-ttAgcgW2nwd-YCZbwrgoalM_rKFIwXp_6GPwVFDk8B1PZboNk6UZHWvbs5gAS1PBh1Fe6esk03BiWz41NNtgZ9DLZiic-vK6AsvcBEPbX6KhNysLd5Bd2U20MCjMjbyxLLjKYYoeEIY6q0UbRoZ-7QU5uxdZvSTbeZHrVwTCDk-YojzxQs1SxbqMScqCMEn9hIlUOuTDWjrxfLX4I0bAZGQY38rQIX0juM0bZlm3fVCUs7ix_RhDiB9S7usO2gWXAnUYUwLEkX7KE0S8DvlkxB4bl1KXQopmMgJ_1CzninuYVDGOuJQ6ZHetGXHja6r41jIcsrfRljt--vXdX3lPWpPTk-P4-HB69IY8DDCLWw1f7pLtulzot5iF1cm7RtWBXNy3df0BNfxCSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBg8IK6iMOBIDPHSqEnsOO0DQr2FjkGFBBN7yxzb6SZlSUlSTf1r-3UcO2kHQtrbXqM4ivR95-pzIeRgIBLGVF86VFFmUjfMEUK4Tor4uxI9CCnttM85nx2zLyfByQ652vTCmLLKjU60iloV0uTIexSDKdoPB6HfS9uyiO-T6NPyt2M2SJmb1s06jYYiR3p9ieFb9fFwgli_9_1o-nM8c9oNA46kwaB2AhliWMaFGyrBqJ_QUHPlchEqqjiaQs36aH9T7kuGgjBAstNUYIThCaqFh6KJ371D7oZmirvpUo8-b_M7LkVyu6yZiErpwO2VlcfRYPo--8cG2lUB_xuEB2RvlS_F-lJk2V8WL3pEHrauKgwbbj0mOzp_Qvbareln66fkyuz1lKIyldMwylYaRK7AVvLAL_RhS4iKojaZwxqKFKzehxGaTQVFDj_wVKa7MFubprGuPYuurzS5e5jmlb5IMg3fbLGnhnYO7AKG2QKhqM8uKrA7m2BiK0s0DBdl4YyzczuDFsaFuYs3MgXnOcxR98FEZ7XowtQsXntGjm8FqedkNy9y_YJAGPCEKcoTN9QsVazPmKTMD5PUS5hIZYe826ATL5uRHzGGSgbD-BrDDhkZ4LZvmDHd9kFRLuJW6mM0Hh6Sw9MBSgSXAtmLzgBGkF7KE4x1O-SDgT02yqQuhRRtTwT-qBnLFQ_RnWIcI1LaIfsbZsStlqnia5nokIMtW2746Zc3f-UtuYcyFX89nB-9Ivd9dN-arst9sluXK_0a3a86eWN5DuT0tgXrD1uEP-Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669KHrw36PuevGsRX2Ene2JUvJY5ImhMHCYAvrnowsy2mYaxfbYWR_2v66nWyn6zooAz8Zyxzc6e476e47gJOhijlPBtplCeP26Ia7SinPTUn_niYEoXXD9rkQ8yX_cB6e78GbXS_Mjft7Run4-7LyBUUZeu7BvggJb_dgf7n4NPpmp8Z5MnDtvKWWd_TWgr8iTUPI_6_bPYSDTX6ltj9Ult2IK7OHMNlJ1JaTfD_d1PGp_nmLrPFukR_Bgw5W4qi1g8ewZ_IncNBNOL_YPoVfdganVpWtcsZxtjGo8gSbqhv8SnizxFlR1PaUr8YixcZH45hCXIJFjp9pVWb6ON_aBq9-s5Zgqrbn7DjNK3MZZwY_NoWZBjvO1hWOslVRruuLywqb-Up41lSBGBytysKdZOuGLxYnhb03t_aP6xwX5KfwzGS16uPUDkl7BsvZ9Mtk7nZzG1zNwmHthlpSsiuUJxPFWRAzaUTiCSUTlggCGIYPCNWkItCc3MuQXAhLFeVtvmJG-eTwnkMvL3LzAlCGIuYJE7EnDU8TPuBcMx7IOPVjrlLtwNudjqOrlp4jorTG6iH6owcHxlb9119YSu3mBakt6nZoRI7el0z4JiTrFVoNZUCBm7I9PxUx5aUOvLPGE9mNX5dKq65_gQS1FFrRiKAPF5Q9MgeOd_YVdR6hipjPGBtI-qsDJ9c2d4fQR__32Uu4HxDOatsjj6FXlxvzinBSHb_uNspvc-YNaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Blue+and+Green+Water+Footprint+of+Wheat+Based+on+Single%2C+Hybrid%2C+and+Stacking+Ensemble+Machine+Learning+Algorithms+Under+Diverse+Agro-Climatic+Conditions+in+Nile+Delta%2C+Egypt&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ashrakat+A.+Lotfy&rft.au=Mohamed+E.+Abuarab&rft.au=Eslam+Farag&rft.au=Bilal+Derardja&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=22&rft.spage=4224&rft_id=info:doi/10.3390%2Frs16224224&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_add17361e5b446ca9724716051f6b828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon