Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt
The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learnin...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 22; p. 4224 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs16224224 |
Cover
| Abstract | The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R2 value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R2 value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Peeff, Tmax, Tmin, and SA), and scenario 5 (Peeff and Tmax). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble. |
|---|---|
| AbstractList | The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R2 value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R2 value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Peeff, Tmax, Tmin, and SA), and scenario 5 (Peeff and Tmax). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble. The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R[sup.2] value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R[sup.2] value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Pe[sub.eff], T[sub.max], T[sub.min], and SA), and scenario 5 (Pe[sub.eff] and T[sub.max]). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble. |
| Audience | Academic |
| Author | Abuarab, Mohamed E. Derardja, Bilal Mokhtar, Ali Lotfy, Ashrakat A. Abdelmoneim, Ahmed A. Farag, Eslam Khadra, Roula |
| Author_xml | – sequence: 1 givenname: Ashrakat A. orcidid: 0009-0005-6188-8415 surname: Lotfy fullname: Lotfy, Ashrakat A. – sequence: 2 givenname: Mohamed E. orcidid: 0000-0002-8799-8031 surname: Abuarab fullname: Abuarab, Mohamed E. – sequence: 3 givenname: Eslam orcidid: 0000-0002-6152-9325 surname: Farag fullname: Farag, Eslam – sequence: 4 givenname: Bilal orcidid: 0000-0002-6251-8601 surname: Derardja fullname: Derardja, Bilal – sequence: 5 givenname: Roula orcidid: 0000-0003-2117-1557 surname: Khadra fullname: Khadra, Roula – sequence: 6 givenname: Ahmed A. surname: Abdelmoneim fullname: Abdelmoneim, Ahmed A. – sequence: 7 givenname: Ali surname: Mokhtar fullname: Mokhtar, Ali |
| BookMark | eNp9ks9uEzEQxleoSJTSC09giRskxf9i7x7TtGkrBTiUqsfVxJ7dOGzs1HZAeTWeDqdBwAnbki37-34zHvt1deKDx6p6y-iFEA39GBNTnMsyXlSnnGo-lrzhJ_-sX1XnKa1paUKwhsrT6uc8RDSQsvM9uRx2SMBbchMRPXmEjJHMQ8jb6HwmoSOPK4RMLiGhJcGT--IacERu98vo7OjZe5_BfDvQrn3CzXJA8gnMynkkC4ToDyfToQ_R5dUmkQdvS4wr9x1jQjLtYxjPBreB7AyZBW9ddsEn4jz57ArqCocMI3Ld77f5TfWygyHh-e_5rHqYX3-d3Y4XX27uZtPF2IhJk8cToynXCqi2IAVfCo3KUgXaCqsmjKOsKa87xY0UlDWyrkUHmikGAoFpJc6quyPXBli3pRQbiPs2gGufN0LsW4gl3wFbsJZpoRhOllIqA43msqDohHVqWfO6sD4cWTu_hf0PGIY_QEbbwyu2f1-xqN8d1dsYnnaYcrsOu-jLZVvBhBC1LgGK6uKo6qGk4HwXcgRTusWNM-WLdKVy7bRmtVSNUqIY3h8NJoaUInb_y-EX-yu6CQ |
| Cites_doi | 10.1016/j.compag.2023.108339 10.1145/2939672.2939785 10.1016/j.physa.2019.122272 10.1111/jfpe.13374 10.1016/j.dss.2019.01.002 10.1371/journal.pone.0192830 10.1016/j.agwat.2019.105939 10.1016/j.apenergy.2023.120749 10.1016/j.eja.2023.126837 10.3390/rs12081232 10.1007/s10489-019-01426-3 10.1016/j.asoc.2021.107509 10.1016/j.watres.2023.120011 10.1016/j.agwat.2021.107052 10.1038/s41598-021-88223-6 10.3390/rs14235962 10.1016/j.jhydrol.2023.130171 10.1016/j.acags.2020.100051 10.1007/978-3-030-77622-0_16 10.3390/app112412164 10.1016/j.ecolecon.2008.06.021 10.1016/j.compag.2020.105728 10.1023/A:1007607513941 10.1007/s12665-010-0483-9 10.1021/acsbiomaterials.6b00101 10.1155/2017/6817627 10.1007/s00477-023-02594-y 10.3390/agriculture13010007 10.3390/s140405768 10.1016/j.compag.2021.106036 10.1007/s12010-019-03222-8 10.1186/1471-2105-9-307 10.5194/hessd-8-763-2011 10.1016/j.compag.2022.107403 10.1039/C9EW00883G 10.1016/j.asr.2023.07.006 10.1007/978-3-030-29635-3_2 10.1023/A:1019956318069 10.1016/j.rser.2014.07.117 10.1007/s13201-022-01756-7 10.3233/FI-2010-288 10.1088/1748-9326/ad78e9 10.1038/s41598-024-64269-0 10.1007/s00484-023-02486-4 10.1371/journal.pone.0204139 10.1016/j.agwat.2020.106080 10.2166/ws.2018.046 10.13031/2013.23153 10.3390/agronomy14030546 10.1016/j.neucom.2021.07.084 10.1023/A:1010933404324 10.1007/s13201-022-01835-9 10.1016/j.jclepro.2024.140691 10.1016/j.apm.2017.02.041 10.1016/j.asoc.2021.107989 10.1016/j.compstruct.2013.05.056 10.3390/rs13204112 10.1111/j.2517-6161.1996.tb02080.x 10.3390/w15081503 10.3390/w16081185 10.5194/isprs-archives-XLIII-B3-2021-539-2021 10.1016/j.ejrh.2024.101968 10.1016/j.enconman.2015.09.045 10.1080/19443994.2016.1170639 10.1117/12.3020989 10.3390/w13030256 10.1016/j.engappai.2021.104206 10.18637/jss.v036.i11 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.3390/rs16224224 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_add17361e5b446ca9724716051f6b828 10.3390/rs16224224 A818469663 10_3390_rs16224224 |
| GeographicLocations | Egypt Nile Delta Ukraine Russia |
| GeographicLocations_xml | – name: Egypt – name: Russia – name: Ukraine – name: Nile Delta |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c359t-5c70276a07da432b37e6d06a7d3d6512e48028f62c430194883fa7161a3ea1763 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:05:00 EDT 2025 Sun Sep 07 11:10:01 EDT 2025 Fri Jul 25 11:50:43 EDT 2025 Mon Oct 20 16:55:38 EDT 2025 Thu Oct 16 04:42:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-5c70276a07da432b37e6d06a7d3d6512e48028f62c430194883fa7161a3ea1763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8799-8031 0000-0002-6152-9325 0000-0003-2117-1557 0000-0002-6251-8601 0009-0005-6188-8415 |
| OpenAccessLink | https://doaj.org/article/add17361e5b446ca9724716051f6b828 |
| PQID | 3133387972 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_add17361e5b446ca9724716051f6b828 unpaywall_primary_10_3390_rs16224224 proquest_journals_3133387972 gale_infotracacademiconefile_A818469663 crossref_primary_10_3390_rs16224224 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Moriasi (ref_71) 2007; 50 Latif (ref_35) 2014; 2 Mokhtar (ref_42) 2024; 56 ref_58 Kouadri (ref_59) 2021; 20 Cui (ref_63) 2021; 113 Muratoglu (ref_40) 2023; 238 ref_52 ref_51 Hur (ref_47) 2017; 2017 ref_19 ref_18 Li (ref_34) 2008; 11 ref_17 Martin (ref_15) 2021; 108 Hoekstra (ref_5) 2009; 68 Rouse (ref_29) 2010; 60 Ma (ref_26) 2024; 437 Breiman (ref_41) 2001; 45 Li (ref_70) 2013; 106 Vidyarthi (ref_14) 2020; 43 ref_60 Burnett (ref_31) 2021; 43 Azzam (ref_66) 2022; 202 Dong (ref_64) 2021; 462 Gueymard (ref_68) 2014; 39 Hung (ref_13) 2016; 2 ref_25 ref_67 ref_22 Li (ref_49) 2017; 49 Li (ref_10) 2023; 625 ref_21 Tibshirani (ref_53) 1996; 58 Zhang (ref_55) 2021; 100 Rozenstein (ref_36) 2014; 14 ref_28 Abuarab (ref_24) 2024; 67 Kursa (ref_43) 2010; 101 Verma (ref_61) 2020; 191 Vilalta (ref_12) 2002; 18 Xu (ref_57) 2019; 49 Dietterich (ref_11) 2000; 40 Gabr (ref_4) 2023; 13 ref_72 Li (ref_39) 2020; 229 Papouskova (ref_65) 2019; 118 Mokhtar (ref_37) 2020; 6 Aly (ref_16) 2024; 38 Nasr (ref_20) 2016; 57 Allen (ref_38) 1998; 300 ref_79 ref_33 ref_77 Shafiee (ref_54) 2021; 183 ref_76 ref_30 Hachisuca (ref_23) 2023; 67 Ferreira (ref_44) 2020; 178 Jiang (ref_62) 2020; 541 Huang (ref_9) 2019; 19 Jhajharia (ref_56) 2023; 72 Elbeltagi (ref_73) 2021; 255 ref_80 Prokhorenkova (ref_50) 2018; 31 Li (ref_75) 2023; 335 ref_45 Alene (ref_2) 2022; 12 Mialyk (ref_27) 2024; 19 Taloor (ref_32) 2021; 9 Elbeltagi (ref_7) 2020; 235 Jiang (ref_78) 2023; 214 ref_1 Behar (ref_69) 2015; 106 Arshad (ref_74) 2023; 147 ref_3 ref_48 ref_8 ref_6 Kursa (ref_46) 2010; 36 |
| References_xml | – volume: 214 start-page: 108339 year: 2023 ident: ref_78 article-title: Quality classification of stored wheat based on evidence reasoning rule and stacking ensemble learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108339 – ident: ref_30 doi: 10.1145/2939672.2939785 – volume: 541 start-page: 122272 year: 2020 ident: ref_62 article-title: An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms publication-title: Phys. A: Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.122272 – volume: 43 start-page: e13374 year: 2020 ident: ref_14 article-title: Stack ensembled model to measure size and mass of almond kernels publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13374 – volume: 118 start-page: 33 year: 2019 ident: ref_65 article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.01.002 – ident: ref_17 doi: 10.1371/journal.pone.0192830 – volume: 229 start-page: 105939 year: 2020 ident: ref_39 article-title: Assessing the components of, and factors influencing, paddy rice water footprint in China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105939 – volume: 335 start-page: 120749 year: 2023 ident: ref_75 article-title: Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120749 – volume: 147 start-page: 126837 year: 2023 ident: ref_74 article-title: Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126837 – ident: ref_33 doi: 10.3390/rs12081232 – volume: 49 start-page: 3002 year: 2019 ident: ref_57 article-title: A hybrid modelling method for time series forecasting based on a linear regression model and deep learning publication-title: Appl. Intell. doi: 10.1007/s10489-019-01426-3 – volume: 108 start-page: 107509 year: 2021 ident: ref_15 article-title: On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107509 – volume: 238 start-page: 120011 year: 2023 ident: ref_40 article-title: Performance analyses of effective rainfall estimation methods for accurate quantification of agricultural water footprint publication-title: Water Res. doi: 10.1016/j.watres.2023.120011 – volume: 255 start-page: 107052 year: 2021 ident: ref_73 article-title: Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107052 – ident: ref_77 doi: 10.1038/s41598-021-88223-6 – ident: ref_19 doi: 10.3390/rs14235962 – volume: 625 start-page: 130171 year: 2023 ident: ref_10 article-title: Machine learning modeling of water footprint in crop production distinguishing water supply and irrigation method scenarios publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130171 – volume: 300 start-page: D05109 year: 1998 ident: ref_38 article-title: Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 publication-title: Fao Rome – volume: 9 start-page: 100051 year: 2021 ident: ref_32 article-title: Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2020.100051 – ident: ref_1 doi: 10.1007/978-3-030-77622-0_16 – ident: ref_79 doi: 10.3390/app112412164 – volume: 68 start-page: 1963 year: 2009 ident: ref_5 article-title: Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2008.06.021 – volume: 178 start-page: 105728 year: 2020 ident: ref_44 article-title: Multi-step ahead forecasting of daily reference evapotranspiration using deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105728 – volume: 20 start-page: 324 year: 2021 ident: ref_59 article-title: Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast) publication-title: J. Saudi Soc. Agric. Sci. – volume: 40 start-page: 139 year: 2000 ident: ref_11 article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization publication-title: Mach. Learn. doi: 10.1023/A:1007607513941 – volume: 60 start-page: 313 year: 2010 ident: ref_29 article-title: Multi-spectral imaging of vegetation for detecting CO2 leaking from underground publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0483-9 – ident: ref_52 – volume: 2 start-page: 1806 year: 2016 ident: ref_13 article-title: Three-dimensional printing of bone extracellular matrix for craniofacial regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00101 – volume: 2017 start-page: 6817627 year: 2017 ident: ref_47 article-title: A variable impacts measurement in random forest for mobile cloud computing publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2017/6817627 – volume: 38 start-page: 689 year: 2024 ident: ref_16 article-title: High performance machine learning approach for reference evapotranspiration estimation publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-023-02594-y – ident: ref_22 doi: 10.3390/agriculture13010007 – volume: 67 start-page: 1 year: 2024 ident: ref_24 article-title: Estimation of Potato Water Footprint Using Machine Learning Algorithm Models in Arid Regions publication-title: Potato Res. – volume: 14 start-page: 5768 year: 2014 ident: ref_36 article-title: Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm publication-title: Sensors doi: 10.3390/s140405768 – ident: ref_45 – volume: 183 start-page: 106036 year: 2021 ident: ref_54 article-title: Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106036 – volume: 191 start-page: 637 year: 2020 ident: ref_61 article-title: Prediction of skin disease with three different feature selection techniques using stacking ensemble method publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-019-03222-8 – ident: ref_72 – volume: 2 start-page: 2840 year: 2014 ident: ref_35 article-title: Land surface temperature retrival of Landsat-8 data using split window algorithm-A case study of Ranchi district publication-title: Int. J. Eng. Dev. Res. – ident: ref_48 doi: 10.1186/1471-2105-9-307 – ident: ref_8 doi: 10.5194/hessd-8-763-2011 – volume: 202 start-page: 107403 year: 2022 ident: ref_66 article-title: Estimation of green and blue water evapotranspiration using machine learning algorithms with limited meteorological data: A case study in Amu Darya River Basin, Central Asia publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107403 – volume: 11 start-page: 119 year: 2008 ident: ref_34 article-title: Applicability of Land surface Temperature (LST) estimates from AVHRR satellite image composites in northern Canada publication-title: Prairie Perspect. – volume: 6 start-page: 656 year: 2020 ident: ref_37 article-title: Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C9EW00883G – volume: 72 start-page: 3998 year: 2023 ident: ref_56 article-title: Prediction of crop yield using satellite vegetation indices combined with machine learning approaches publication-title: Adv. Space Res. doi: 10.1016/j.asr.2023.07.006 – ident: ref_76 – ident: ref_3 doi: 10.1007/978-3-030-29635-3_2 – volume: 18 start-page: 77 year: 2002 ident: ref_12 article-title: A perspective view and survey of meta-learning publication-title: Artif. Intell. Rev. doi: 10.1023/A:1019956318069 – volume: 39 start-page: 1024 year: 2014 ident: ref_68 article-title: A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.117 – volume: 12 start-page: 238 year: 2022 ident: ref_2 article-title: Identifying rainwater harvesting sites using integrated GIS and a multi-criteria evaluation approach in semi-arid areas of Ethiopia publication-title: Appl. Water Sci. doi: 10.1007/s13201-022-01756-7 – volume: 101 start-page: 271 year: 2010 ident: ref_43 article-title: Boruta–a system for feature selection publication-title: Fundam. Informaticae doi: 10.3233/FI-2010-288 – volume: 19 start-page: 114015 year: 2024 ident: ref_27 article-title: Evolution of global water footprints of crop production in 1990–2019 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ad78e9 – ident: ref_58 doi: 10.1038/s41598-024-64269-0 – volume: 67 start-page: 1169 year: 2023 ident: ref_23 article-title: Growing degree-hours and degree-days in two management zones for each phenological stage of wheat (Triticum aestivum L.) publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-023-02486-4 – ident: ref_67 doi: 10.1371/journal.pone.0204139 – volume: 235 start-page: 106080 year: 2020 ident: ref_7 article-title: Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106080 – volume: 19 start-page: 52 year: 2019 ident: ref_9 article-title: Impact of climate change on the blue water footprint of agriculture on a regional scale publication-title: Water Supply doi: 10.2166/ws.2018.046 – volume: 50 start-page: 885 year: 2007 ident: ref_71 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – ident: ref_28 doi: 10.3390/agronomy14030546 – volume: 462 start-page: 169 year: 2021 ident: ref_64 article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.084 – ident: ref_21 – volume: 45 start-page: 5 year: 2001 ident: ref_41 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 start-page: 19 year: 2023 ident: ref_4 article-title: Prospective of the utilization of rainfall in coastal regions in the context of climatic changes: Case study of egypt publication-title: Appl. Water Sci. doi: 10.1007/s13201-022-01835-9 – volume: 437 start-page: 140691 year: 2024 ident: ref_26 article-title: Spatio-temporal pattern and prediction of agricultural blue and green water footprint scarcity index in the lower reaches of the Yellow River Basin publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.140691 – volume: 49 start-page: 680 year: 2017 ident: ref_49 article-title: Eigenvalue analysis of structures with interval parameters using the second-order Taylor series expansion and the DCA for QB publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.02.041 – volume: 113 start-page: 107989 year: 2021 ident: ref_63 article-title: Two-stage stacking heterogeneous ensemble learning method for gasoline octane number loss prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107989 – ident: ref_6 – volume: 106 start-page: 175 year: 2013 ident: ref_70 article-title: Linear statics and free vibration sensitivity analysis of the composite sandwich plates based on a layerwise/solid-element method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2013.05.056 – ident: ref_18 doi: 10.3390/rs13204112 – volume: 31 start-page: 6639 year: 2018 ident: ref_50 article-title: CatBoost: Unbiased boosting with categorical features publication-title: Adv. Neural Inf. Process. Syst. – volume: 58 start-page: 267 year: 1996 ident: ref_53 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref_60 doi: 10.3390/w15081503 – ident: ref_25 doi: 10.3390/w16081185 – volume: 43 start-page: 539 year: 2021 ident: ref_31 article-title: Urban Heat Island Footprint Effects on Bio-Productive Rural Land Covers Surrounding A Low Density Urban Center publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B3-2021-539-2021 – volume: 56 start-page: 101968 year: 2024 ident: ref_42 article-title: Egypt’s water future: AI predicts evapotranspiration shifts across climate zones publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2024.101968 – volume: 106 start-page: 268 year: 2015 ident: ref_69 article-title: A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES) publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.09.045 – volume: 57 start-page: 26932 year: 2016 ident: ref_20 article-title: Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt publication-title: Desalination Water Treat. doi: 10.1080/19443994.2016.1170639 – ident: ref_80 doi: 10.1117/12.3020989 – ident: ref_51 doi: 10.3390/w13030256 – volume: 100 start-page: 104206 year: 2021 ident: ref_55 article-title: A temporal LASSO regression model for the emergency forecasting of the suspended sediment concentrations in coastal oceans: Accuracy and interpretability publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104206 – volume: 36 start-page: 1 year: 2010 ident: ref_46 article-title: Feature selection with the boruta package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 |
| SSID | ssj0000331904 |
| Score | 2.3957026 |
| Snippet | The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4224 |
| SubjectTerms | Agricultural production Algorithms Climate change Climate models Climate prediction Climatic conditions climatic parameters Data mining Egypt Food Footprint analysis Learning algorithms Machine learning machine learning models Parameters Population growth Remote sensing remote sensing indices Sea level single and hybrid models stacking ensemble Statistical models Vegetation Water Water consumption Water resources management Water use Wheat wheat BWFP and GWFP |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF1S55D2UPpJlKZloIFeLCJp1yv7UIrt2JhCTWkbmpsY7a6cgCK5kkzwX-uv6-xacloKuQpJLJrZN29Gs28YOxthKoQeKp9rLmzpRviIGPgZ2T9QxCCUcmqfS7m4FJ-vBlcHbNmdhbFtlR0mOqDWpbI18nNOyRQfxqM4-rT-5dupUfbvajdCA9vRCvqjkxh7xA4jq4zVY4eT2fLrt33VJeDkcoHY6ZRyyvfPqzqUFMaiSPwTmZyA__8w_YQdbYo1bu8wz_-KQ_Nn7GlLIGG8s_hzdmCKF-yonWV-vX3Jfttpmwpr288Mk3xjAAsNrr8GfhKzrGBelo2t5zVQZuDQGCYUzDSUBXynp3LTh8XWHuXqu2eJkCpbUYdZUZvbNDfwxbVgGmjVWVcwzlf0sZrr2xrcJCW4cP0eBsarqvSn-Y1ThoVpaf-QW0-HmwKWhEhwYfIG-zCz49Bescv57Md04bcTGnzFB6PGH6iY0lqJQaxR8CjlsZE6kBhrriVRCSOGxF8yGSlBQDIisOAZUoYWIjcYErS9Zr2iLMwxg3ggU6G5TIPYiEyLoRCKiyhOszAVmCmPve-sk6x3QhwJJTDWhsm9DT02sYbb32HFs92Fslol7V5MCNLDmMvQDMhPpULyKQrRlNeFmUwpA_XYB2v2xG7xpkKF7UkFWqgVy0rGRHKEpDyRe-y084yk3ft1cu-pHjvbe8sDiz55-C1v2OOImNTuAOQp6zXVxrwlJtSk71r3_gPKhQfc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669KHrw36PuevGsRX2Ene2JUvJY5ImhMHCYAvrnowsy2mYaxfbYWR_2v66nWyn6zooAz8Zyxzc6e476e47gJOhijlPBtplCeP26Ia7SinPTUn_niYEoXXD9rkQ8yX_cB6e78GbXS_Mjft7Run4-7LyBUUZeu7BvggJb_dgf7n4NPpmp8Z5MnDtvKWWd_TWgr8iTUPI_6_bPYSDTX6ltj9Ult2IK7OHMNlJ1JaTfD_d1PGp_nmLrPFukR_Bgw5W4qi1g8ewZ_IncNBNOL_YPoVfdganVpWtcsZxtjGo8gSbqhv8SnizxFlR1PaUr8YixcZH45hCXIJFjp9pVWb6ON_aBq9-s5Zgqrbn7DjNK3MZZwY_NoWZBjvO1hWOslVRruuLywqb-Up41lSBGBytysKdZOuGLxYnhb03t_aP6xwX5KfwzGS16uPUDkl7BsvZ9Mtk7nZzG1zNwmHthlpSsiuUJxPFWRAzaUTiCSUTlggCGIYPCNWkItCc3MuQXAhLFeVtvmJG-eTwnkMvL3LzAlCGIuYJE7EnDU8TPuBcMx7IOPVjrlLtwNudjqOrlp4jorTG6iH6owcHxlb9119YSu3mBakt6nZoRI7el0z4JiTrFVoNZUCBm7I9PxUx5aUOvLPGE9mNX5dKq65_gQS1FFrRiKAPF5Q9MgeOd_YVdR6hipjPGBtI-qsDJ9c2d4fQR__32Uu4HxDOatsjj6FXlxvzinBSHb_uNspvc-YNaQ priority: 102 providerName: Unpaywall |
| Title | Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt |
| URI | https://www.proquest.com/docview/3133387972 https://doi.org/10.3390/rs16224224 https://doaj.org/article/add17361e5b446ca9724716051f6b828 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtekh7KP0kbtJloIFe1tS2ZMl79H51Kc0Smi5NT0aW5c2CYwfbS9i_1l_XkeykWwrtpSdjYwnhGT29kUdvCDkdyZSxLFIuzSgzWzfMlVJ6bo729xQyCKWs2ueSL1bs02V4uVfqy-SEdfLA3YczaTW-oNzXIXbKlRyJAPEUSbif8xTDBYO-XjTaC6YsBlN0LY91eqQU4_oPdeNzXK6CgP22Almh_j_h-Ak53JY3cncri2JvvZk_I097oghxN8Dn5IEuX5DDvmb51e4l-WGqairZmLxlGBdbDbLMwObRwDdkkDXMq6o1-3YtVDlY1IUxLloZVCVcYKtCD2GxM0e2hrYtEk9lds5hVjb6Oi00nNlUSw29Cusa4mJd1Zv26roBWzEJpjavQ0O8rit3UmysAixMKvMn3Hg0bEpYIvLAVBetHMLMlD17RVbz2dfJwu0rMbiKhqPWDZXA8JVLT2SS0SClQvPM41JkNONIGTSLkKfkPFAMAWOEoEBziVbyJdXSRwh7TQ7KqtRHBETIU5ZRnnpCszxjEWOKskCkuZ8ymSuHvLuzTnLTCW4kGKgYGya_bOiQsTHc_RtGJNs-QNdJetdJ_uU6DnlvzJ6YqdzWUsn-RAIO1IhiJTGSGcYxHqQOObnzjKSf401CMbynkcBeHXJ67y1_GfSb_zHoY_I4QF7VHYc8IQdtvdVvkRe16YA8jOYfB-RRPD37fIHX8Wx5_mVgJwberZbn8fef6-0OkQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hA4IJ7CUGAkirjEqu3drONDhfJUStsIQSt6c9e767SSawfbUZW_xoHfxuzGSUFIvfVqeS1L8_xmZ-YjZC8SCWOqK12qKDOlG-YKITw3Rfl7EjMIKe22zymfnLEv553zLfJ7PQtj2irXPtE6alVIUyPfpwimaDeMwuDz_KdrWKPM7eqaQkM01ArqwK4YawY7jvTyBiFcdXA4RHl_DILx6HQwcRuWAVfSTlS7HRkiNOPCC5VgNEhoqLnyuAgVVRzDoWZdjMEpDyRDY4hQ4WkqEGX4gmrho3nidx-QHUZZhOBvpz-afv22qfJ4FFXcY6u9qJRG3n5Z-RzDZhCwfyKhJQz4Pyw8Iq1FPhfLG5Flf8W98RPyuElYobfSsKdkS-fPSKvhTr9cPie_DLunFJXpn4Z-ttAgcgW2nwd-YCZbwrgoalM_rKFIwXp_6GPwVFDk8B1PZboNk6UZHWvbs5gAS1PBh1Fe6esk03BiWz41NNtgZ9DLZiic-vK6AsvcBEPbX6KhNysLd5Bd2U20MCjMjbyxLLjKYYoeEIY6q0UbRoZ-7QU5uxdZvSTbeZHrVwTCDk-YojzxQs1SxbqMScqCMEn9hIlUOuTDWjrxfLX4I0bAZGQY38rQIX0juM0bZlm3fVCUs7ix_RhDiB9S7usO2gWXAnUYUwLEkX7KE0S8DvlkxB4bl1KXQopmMgJ_1CzninuYVDGOuJQ6ZHetGXHja6r41jIcsrfRljt--vXdX3lPWpPTk-P4-HB69IY8DDCLWw1f7pLtulzot5iF1cm7RtWBXNy3df0BNfxCSg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBg8IK6iMOBIDPHSqEnsOO0DQr2FjkGFBBN7yxzb6SZlSUlSTf1r-3UcO2kHQtrbXqM4ivR95-pzIeRgIBLGVF86VFFmUjfMEUK4Tor4uxI9CCnttM85nx2zLyfByQ652vTCmLLKjU60iloV0uTIexSDKdoPB6HfS9uyiO-T6NPyt2M2SJmb1s06jYYiR3p9ieFb9fFwgli_9_1o-nM8c9oNA46kwaB2AhliWMaFGyrBqJ_QUHPlchEqqjiaQs36aH9T7kuGgjBAstNUYIThCaqFh6KJ371D7oZmirvpUo8-b_M7LkVyu6yZiErpwO2VlcfRYPo--8cG2lUB_xuEB2RvlS_F-lJk2V8WL3pEHrauKgwbbj0mOzp_Qvbareln66fkyuz1lKIyldMwylYaRK7AVvLAL_RhS4iKojaZwxqKFKzehxGaTQVFDj_wVKa7MFubprGuPYuurzS5e5jmlb5IMg3fbLGnhnYO7AKG2QKhqM8uKrA7m2BiK0s0DBdl4YyzczuDFsaFuYs3MgXnOcxR98FEZ7XowtQsXntGjm8FqedkNy9y_YJAGPCEKcoTN9QsVazPmKTMD5PUS5hIZYe826ATL5uRHzGGSgbD-BrDDhkZ4LZvmDHd9kFRLuJW6mM0Hh6Sw9MBSgSXAtmLzgBGkF7KE4x1O-SDgT02yqQuhRRtTwT-qBnLFQ_RnWIcI1LaIfsbZsStlqnia5nokIMtW2746Zc3f-UtuYcyFX89nB-9Ivd9dN-arst9sluXK_0a3a86eWN5DuT0tgXrD1uEP-Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669KHrw36PuevGsRX2Ene2JUvJY5ImhMHCYAvrnowsy2mYaxfbYWR_2v66nWyn6zooAz8Zyxzc6e476e47gJOhijlPBtplCeP26Ia7SinPTUn_niYEoXXD9rkQ8yX_cB6e78GbXS_Mjft7Run4-7LyBUUZeu7BvggJb_dgf7n4NPpmp8Z5MnDtvKWWd_TWgr8iTUPI_6_bPYSDTX6ltj9Ult2IK7OHMNlJ1JaTfD_d1PGp_nmLrPFukR_Bgw5W4qi1g8ewZ_IncNBNOL_YPoVfdganVpWtcsZxtjGo8gSbqhv8SnizxFlR1PaUr8YixcZH45hCXIJFjp9pVWb6ON_aBq9-s5Zgqrbn7DjNK3MZZwY_NoWZBjvO1hWOslVRruuLywqb-Up41lSBGBytysKdZOuGLxYnhb03t_aP6xwX5KfwzGS16uPUDkl7BsvZ9Mtk7nZzG1zNwmHthlpSsiuUJxPFWRAzaUTiCSUTlggCGIYPCNWkItCc3MuQXAhLFeVtvmJG-eTwnkMvL3LzAlCGIuYJE7EnDU8TPuBcMx7IOPVjrlLtwNudjqOrlp4jorTG6iH6owcHxlb9119YSu3mBakt6nZoRI7el0z4JiTrFVoNZUCBm7I9PxUx5aUOvLPGE9mNX5dKq65_gQS1FFrRiKAPF5Q9MgeOd_YVdR6hipjPGBtI-qsDJ9c2d4fQR__32Uu4HxDOatsjj6FXlxvzinBSHb_uNspvc-YNaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Blue+and+Green+Water+Footprint+of+Wheat+Based+on+Single%2C+Hybrid%2C+and+Stacking+Ensemble+Machine+Learning+Algorithms+Under+Diverse+Agro-Climatic+Conditions+in+Nile+Delta%2C+Egypt&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ashrakat+A.+Lotfy&rft.au=Mohamed+E.+Abuarab&rft.au=Eslam+Farag&rft.au=Bilal+Derardja&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=22&rft.spage=4224&rft_id=info:doi/10.3390%2Frs16224224&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_add17361e5b446ca9724716051f6b828 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |