Multi-UAV Oxyrrhis Marina-Inspired Search and Dynamic Formation Control for Forest Firefighting
This paper presents an Oxyrrhis Marina-inspired search and dynamic formation control (OMS-DFC) framework for multi-unmanned aerial vehicle (UAV) systems to efficiently search and neutralize a dynamic target (forest fire) in an unknown/uncertain environment. The OMS-DFC framework consists of two stag...
Saved in:
| Published in | IEEE transactions on automation science and engineering Vol. 16; no. 2; pp. 863 - 873 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-5955 1558-3783 |
| DOI | 10.1109/TASE.2018.2867614 |
Cover
| Abstract | This paper presents an Oxyrrhis Marina-inspired search and dynamic formation control (OMS-DFC) framework for multi-unmanned aerial vehicle (UAV) systems to efficiently search and neutralize a dynamic target (forest fire) in an unknown/uncertain environment. The OMS-DFC framework consists of two stages, viz., the target identification stage without communication between UAVs and the mitigation stage with restricted communication. In the first stage, each UAV adapts proposed OMS with three levels to select between Levy flight, Brownian search, and directionally driven Brownian (DDB) search for accurate target identification ("fire location"). The selection of each level is based on the available sensor information about the possible fire location. In the second stage, the UAVs that identified a fire location fly in a dynamic formation to quench the fire using water. The proposed formation is achieved through decentralized control, where a UAV computes the control action based on the fire profile and also the angular position and angular separation with its succeeding neighbor. The proposed formation control law guarantees asymptotic convergence to the desired time-varying angular position profile of UAVs based on the nature of fire spread (circular/elliptical). To evaluate the performance of the proposed OMS-DFC for the multi-UAV system, a search and fire quenching mission in a typical pine forest is simulated. A Monte Carlo simulation study is conducted to evaluate the average performance of the proposed OMS-DFC-based multi-UAV mission, and the results clearly highlight the advantages of the proposed OMS-DFC in forest firefighting. Note to Practitioners -Searching and mitigating dynamic targets like the forest fire is a challenging task due to the large area involved and also the time-varying nature of fire spread. The use of a cooperative multi-unmanned aerial vehicle (UAV) system for searching targets in large area poses difficulties in maintaining persistent long distance communication between them. Moreover, the elliptical fire profile demands a time-varying angular displacement formation control of UAVs for effective fire mitigation. In this paper, we present a two-stage framework for search and mitigation of forest fire. The first stage provides a decentralized, noniterative stochastic search algorithm that requires no information sharing between the UAVs. The proposed search algorithm can be implemented without much computational efforts using a temperature measuring sensor and a thermal imaging sensor. The second stage provides a decentralized time-varying angular displacement formation control law efficient for tracking elliptical targets. The formation control law only assumes the availability of restricted UAV communication. The proposed formation control law can handle any targets that demand time-varying angular displacement formation for UAVs. The proposed algorithm is suitable for multi-UAV missions involving search and mitigation of dynamic targets distributed over a large area. |
|---|---|
| AbstractList | This paper presents an Oxyrrhis Marina-inspired search and dynamic formation control (OMS-DFC) framework for multi-unmanned aerial vehicle (UAV) systems to efficiently search and neutralize a dynamic target (forest fire) in an unknown/uncertain environment. The OMS-DFC framework consists of two stages, viz., the target identification stage without communication between UAVs and the mitigation stage with restricted communication. In the first stage, each UAV adapts proposed OMS with three levels to select between Levy flight, Brownian search, and directionally driven Brownian (DDB) search for accurate target identification ("fire location"). The selection of each level is based on the available sensor information about the possible fire location. In the second stage, the UAVs that identified a fire location fly in a dynamic formation to quench the fire using water. The proposed formation is achieved through decentralized control, where a UAV computes the control action based on the fire profile and also the angular position and angular separation with its succeeding neighbor. The proposed formation control law guarantees asymptotic convergence to the desired time-varying angular position profile of UAVs based on the nature of fire spread (circular/elliptical). To evaluate the performance of the proposed OMS-DFC for the multi-UAV system, a search and fire quenching mission in a typical pine forest is simulated. A Monte Carlo simulation study is conducted to evaluate the average performance of the proposed OMS-DFC-based multi-UAV mission, and the results clearly highlight the advantages of the proposed OMS-DFC in forest firefighting. Note to Practitioners -Searching and mitigating dynamic targets like the forest fire is a challenging task due to the large area involved and also the time-varying nature of fire spread. The use of a cooperative multi-unmanned aerial vehicle (UAV) system for searching targets in large area poses difficulties in maintaining persistent long distance communication between them. Moreover, the elliptical fire profile demands a time-varying angular displacement formation control of UAVs for effective fire mitigation. In this paper, we present a two-stage framework for search and mitigation of forest fire. The first stage provides a decentralized, noniterative stochastic search algorithm that requires no information sharing between the UAVs. The proposed search algorithm can be implemented without much computational efforts using a temperature measuring sensor and a thermal imaging sensor. The second stage provides a decentralized time-varying angular displacement formation control law efficient for tracking elliptical targets. The formation control law only assumes the availability of restricted UAV communication. The proposed formation control law can handle any targets that demand time-varying angular displacement formation for UAVs. The proposed algorithm is suitable for multi-UAV missions involving search and mitigation of dynamic targets distributed over a large area. |
| Author | Sundaram, Suresh Senthilnath, J. Harikumar, K. |
| Author_xml | – sequence: 1 givenname: K. surname: Harikumar fullname: Harikumar, K. email: kharikumar@ntu.edu.sg organization: ST Engineering-NTU Corporate Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: J. orcidid: 0000-0002-1737-7985 surname: Senthilnath fullname: Senthilnath, J. email: sjayavelu@ntu.edu.sg organization: ST Engineering-NTU Corporate Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Suresh orcidid: 0000-0001-6275-0921 surname: Sundaram fullname: Sundaram, Suresh email: ssundaram@ntu.edu.sg organization: ST Engineering-NTU Corporate Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
| BookMark | eNp9kEFPAjEQhRuDiYD-AOOliefFdttu2yNBUBIIB8Br0-12oQRa7C6J_Ht3hXjw4Gkmk_fNvHk90PHBWwAeMRpgjOTLargcD1KExSAVGc8wvQFdzJhICBek0_aUJUwydgd6VbVDKKVCoi5Q89O-dsl6-AEXX-cYt66Ccx2d18nUV0cXbQGXVkezhdoX8PXs9cEZOAnxoGsXPBwFX8ewh2WI7dRWNZw0VOk229r5zT24LfW-sg_X2gfryXg1ek9mi7fpaDhLDGGybpxlhTVEFlymWDBMMp1zkrNCYKs1zzNOkRCU5QxblBZCI0ZLk5nCaEqZzEkfPF_2HmP4PDUu1C6com9OqjRFhEghJWlU_KIyMVRV41IZV__8UUft9goj1aap2jRVm6a6ptmQ-A95jO6g4_lf5unCOGvtr15QTgkn5BuryIIS |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1002_rnc_6904 crossref_primary_10_3390_drones8120776 crossref_primary_10_3390_drones9010017 crossref_primary_10_1109_TGCN_2022_3157591 crossref_primary_10_3390_drones8040138 crossref_primary_10_1002_int_22392 crossref_primary_10_1016_j_mechatronics_2024_103206 crossref_primary_10_20965_jaciii_2024_p1195 crossref_primary_10_1155_2021_7353697 crossref_primary_10_1016_j_robot_2021_103848 crossref_primary_10_3390_s20092566 crossref_primary_10_1002_oca_2918 crossref_primary_10_1109_TASE_2022_3182057 crossref_primary_10_1109_TIV_2023_3316196 crossref_primary_10_1007_s40313_021_00809_7 crossref_primary_10_1109_LRA_2021_3057294 crossref_primary_10_1109_TFUZZ_2023_3327114 crossref_primary_10_1109_JIOT_2022_3172936 crossref_primary_10_1109_TII_2022_3226529 crossref_primary_10_1016_j_ins_2024_120808 crossref_primary_10_1155_2022_2701359 crossref_primary_10_1109_JIOT_2023_3277850 crossref_primary_10_1109_TSMC_2024_3358060 crossref_primary_10_1007_s11227_024_06574_z crossref_primary_10_1049_itr2_12446 crossref_primary_10_3390_electronics9020260 crossref_primary_10_1016_j_cja_2019_07_016 crossref_primary_10_1016_j_ifacol_2023_03_047 crossref_primary_10_1016_j_isatra_2020_12_055 crossref_primary_10_3390_su14105927 crossref_primary_10_1007_s10458_022_09566_6 crossref_primary_10_1016_j_robot_2022_104244 crossref_primary_10_1080_23335777_2019_1590460 crossref_primary_10_1109_TIE_2023_3239870 crossref_primary_10_1109_ACCESS_2023_3279416 crossref_primary_10_1177_01423312221134326 crossref_primary_10_1109_ACCESS_2019_2932998 crossref_primary_10_3390_drones8110637 crossref_primary_10_1109_TNNLS_2023_3274667 crossref_primary_10_3390_drones8010017 crossref_primary_10_1109_TSMC_2024_3352660 crossref_primary_10_3390_drones3030066 crossref_primary_10_1109_TII_2022_3149912 crossref_primary_10_1177_01423312231155953 crossref_primary_10_1145_3604933 crossref_primary_10_1109_TASE_2024_3395409 crossref_primary_10_1109_TCYB_2025_3535958 crossref_primary_10_1109_JIOT_2024_3370152 crossref_primary_10_2514_1_I011330 crossref_primary_10_1109_TASE_2023_3279827 crossref_primary_10_1109_TVT_2023_3235498 crossref_primary_10_1162_artl_a_00375 crossref_primary_10_1109_TSMC_2021_3095850 crossref_primary_10_1016_j_cja_2020_04_028 crossref_primary_10_3390_drones7030162 crossref_primary_10_3390_electronics11172667 crossref_primary_10_1109_TASE_2023_3283095 crossref_primary_10_1109_TASE_2021_3061757 crossref_primary_10_1109_LRA_2021_3091170 crossref_primary_10_1007_s11704_023_3208_4 crossref_primary_10_1007_s12293_021_00334_9 crossref_primary_10_1080_01431161_2023_2249604 crossref_primary_10_1109_JIOT_2020_2999083 crossref_primary_10_1016_j_neucom_2020_06_040 crossref_primary_10_1109_ACCESS_2021_3132650 crossref_primary_10_1109_TCYB_2023_3324752 crossref_primary_10_1109_TAES_2021_3053115 crossref_primary_10_1109_LCOMM_2022_3182657 crossref_primary_10_1109_TETCI_2021_3107488 crossref_primary_10_1109_TIE_2024_3370939 crossref_primary_10_3390_f13050811 crossref_primary_10_1109_LRA_2022_3188904 crossref_primary_10_1016_j_csi_2024_103844 crossref_primary_10_1109_TWC_2022_3227933 crossref_primary_10_1109_TAES_2022_3147742 crossref_primary_10_1109_TVT_2023_3266817 crossref_primary_10_3389_frobt_2021_771520 crossref_primary_10_1109_TCYB_2021_3080044 crossref_primary_10_29298_rmcf_v14i77_1349 crossref_primary_10_1109_TAES_2021_3103583 crossref_primary_10_1109_JIOT_2020_3030240 crossref_primary_10_3390_app13031965 crossref_primary_10_1109_ACCESS_2021_3073420 crossref_primary_10_1016_j_ast_2020_106332 crossref_primary_10_1109_TMECH_2023_3273395 crossref_primary_10_1007_s11721_021_00193_7 crossref_primary_10_1109_TNNLS_2020_3023711 crossref_primary_10_3390_drones8050201 crossref_primary_10_1109_ACCESS_2020_3031326 crossref_primary_10_1109_JSYST_2023_3268160 crossref_primary_10_1109_TASE_2021_3139590 crossref_primary_10_1142_S2301385024500341 crossref_primary_10_1109_JIOT_2022_3178089 crossref_primary_10_3390_fire5030060 crossref_primary_10_1109_TASE_2020_3010887 crossref_primary_10_1109_TMECH_2024_3427692 crossref_primary_10_4995_riai_2020_11806 crossref_primary_10_1007_s11432_022_3735_5 crossref_primary_10_1109_TITS_2024_3370250 |
| Cites_doi | 10.1007/s11768-015-4092-8 10.1145/3055004.3055030 10.1109/JAS.2016.7510022 10.1007/s10846-010-9486-8 10.1016/j.automatica.2014.10.022 10.1109/SSCI.2015.17 10.1137/1.9780898718584 10.1038/srep27602 10.1007/978-3-319-63537-8_14 10.1109/IROS.2017.8206579 10.1109/ACC.2002.1023916 10.1007/978-1-4471-5574-4 10.1016/j.cor.2011.09.026 10.1016/j.neucom.2016.03.073 10.1109/SSRR.2010.5981560 10.1109/CDC.2003.1273004 10.1371/journal.pone.0016168 10.1109/TAC.2004.837589 10.1109/ACC.2003.1244069 10.1109/CISDA.2013.6595426 10.1109/TASE.2011.2155058 10.1142/S2301385013500064 10.1016/S0378-4371(00)00071-6 10.5772/60414 10.1109/TII.2017.2682900 10.1117/12.918719 10.23919/ACC.2004.1384741 10.1109/TASE.2016.2635979 10.1071/WF11022 10.1016/j.adhoc.2017.09.001 10.1016/j.robot.2014.07.004 10.1109/TII.2017.2776316 10.1115/DSCC2017-5229 10.1109/TASE.2015.2441746 10.1109/CDC.2005.1582370 10.2514/1.48403 10.1109/TAC.2013.2263653 10.1016/j.cor.2005.02.039 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2018.2867614 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Forestry |
| EISSN | 1558-3783 |
| EndPage | 873 |
| ExternalDocumentID | 10_1109_TASE_2018_2867614 8474373 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ST-Engineering NTU Corporate Laboratory grantid: CRP3-P2P |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c359t-596dec39d792185136ab73b5d81eaa7b67408845b51e02d8a054fc6cdca4459b3 |
| IEDL.DBID | RIE |
| ISSN | 1545-5955 |
| IngestDate | Mon Jun 30 06:22:22 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Wed Oct 01 03:35:40 EDT 2025 Wed Aug 27 02:47:25 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-596dec39d792185136ab73b5d81eaa7b67408845b51e02d8a054fc6cdca4459b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6275-0921 0000-0002-1737-7985 |
| PQID | 2203398993 |
| PQPubID | 27623 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TASE_2018_2867614 proquest_journals_2203398993 crossref_primary_10_1109_TASE_2018_2867614 ieee_primary_8474373 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 senthilnath (ref37) 2013 koorehdavoudi (ref5) 2016; 6 lewis (ref33) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref26 doi: 10.1007/s11768-015-4092-8 – ident: ref13 doi: 10.1145/3055004.3055030 – ident: ref29 doi: 10.1109/JAS.2016.7510022 – ident: ref4 doi: 10.1007/s10846-010-9486-8 – ident: ref30 doi: 10.1016/j.automatica.2014.10.022 – ident: ref7 doi: 10.1109/SSCI.2015.17 – ident: ref1 doi: 10.1137/1.9780898718584 – volume: 6 year: 2016 ident: ref5 article-title: A statistical physics characterization of the complex systems dynamics: Quantifying complexity from spatio-temporal interactions publication-title: Sci Rep doi: 10.1038/srep27602 – ident: ref20 doi: 10.1007/978-3-319-63537-8_14 – ident: ref15 doi: 10.1109/IROS.2017.8206579 – ident: ref16 doi: 10.1109/ACC.2002.1023916 – year: 2014 ident: ref33 publication-title: Cooperative Control of Multi-Agent Systems Optimal and Adaptive Design Approaches doi: 10.1007/978-1-4471-5574-4 – ident: ref39 doi: 10.1016/j.cor.2011.09.026 – ident: ref23 doi: 10.1016/j.neucom.2016.03.073 – ident: ref36 doi: 10.1109/SSRR.2010.5981560 – ident: ref14 doi: 10.1109/CDC.2003.1273004 – ident: ref38 doi: 10.1371/journal.pone.0016168 – ident: ref27 doi: 10.1109/TAC.2004.837589 – ident: ref8 doi: 10.1109/ACC.2003.1244069 – ident: ref3 doi: 10.1109/CISDA.2013.6595426 – ident: ref9 doi: 10.1109/TASE.2011.2155058 – ident: ref10 doi: 10.1142/S2301385013500064 – start-page: 65 year: 2013 ident: ref37 article-title: Clustering using Lévy flight cuckoo search publication-title: Proc 7th Int Conf Bio-Inspired Comput Theories Appl – ident: ref21 doi: 10.1016/S0378-4371(00)00071-6 – ident: ref19 doi: 10.5772/60414 – ident: ref35 doi: 10.1109/TII.2017.2682900 – ident: ref17 doi: 10.1117/12.918719 – ident: ref18 doi: 10.23919/ACC.2004.1384741 – ident: ref24 doi: 10.1109/TASE.2016.2635979 – ident: ref32 doi: 10.1071/WF11022 – ident: ref12 doi: 10.1016/j.adhoc.2017.09.001 – ident: ref34 doi: 10.1016/j.robot.2014.07.004 – ident: ref25 doi: 10.1109/TII.2017.2776316 – ident: ref22 doi: 10.1115/DSCC2017-5229 – ident: ref11 doi: 10.1109/TASE.2015.2441746 – ident: ref6 doi: 10.1109/CDC.2005.1582370 – ident: ref31 doi: 10.2514/1.48403 – ident: ref28 doi: 10.1109/TAC.2013.2263653 – ident: ref2 doi: 10.1016/j.cor.2005.02.039 |
| SSID | ssj0024890 |
| Score | 2.5470312 |
| Snippet | This paper presents an Oxyrrhis Marina-inspired search and dynamic formation control (OMS-DFC) framework for multi-unmanned aerial vehicle (UAV) systems to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 863 |
| SubjectTerms | Algorithms Angular position Communication Computer simulation Control theory Decentralized control Decentralized search Displacement Fire fighting forest firefighting Forestry Forests formation control Fuels Heuristic algorithms Monte Carlo simulation multi-unmanned aerial vehicle (UAV) system Oxyrrhis Marina-inspired search (OMS) Performance evaluation Search algorithms Search and rescue missions Sensors Target recognition Target tracking Task analysis Temperature measurement Thermal imaging Tracking Tracking control Unmanned aerial vehicles Vehicle dynamics |
| Title | Multi-UAV Oxyrrhis Marina-Inspired Search and Dynamic Formation Control for Forest Firefighting |
| URI | https://ieeexplore.ieee.org/document/8474373 https://www.proquest.com/docview/2203398993 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BB9QeeLYiPCofekI4bNaPtY8REAFS6KEEcVv5qSLQgkIiAb8ePzah0KrqbQ8er7WfdzzjmfkG4LsgnGuvJS6U5ZjakmLBqMHCFVWlgqrUiUppeMFPR_T8ml0vwMG8FsY5l5LPXDc-pli-vTfTeFV2GDRpZOJZhMVK8Fyr9carJ9J9SrQIMJOMtRHMXiEPL_s_T2ISl-iWgge3nb47g1JTlT80cTpeBqswnC0sZ5XcdqcT3TUvHzgb_3fla7DS2pmonzfGOiy4ZgM-_8Y-uAHLsS1n7PW2CXWqw8Wj_hX68fQ8Hv-6eUTD4EU3Cp81MRbvLMqJyUg1Fh3nNvZoMKt8REc54x0FExjladEgSPno-oeXfYHR4OTy6BS3rRewIUxOwhfk1hkibSWDDcB6hCtdEc2s6DmlKs0rGtQTZZr1XFFaoYLl5w031ihKmdTkKyw1943bAuSpUgWR3ngfi1itkkZ450vjgvNNJelAMQOjNi0veWyPcVcn_6SQdcSvjvjVLX4d2J-LPGRSjn8N3ox4zAe2UHRgd4Z43f62j3VZFoTI4IKS7b9L7cCnMLfMqTu7sDQZT91esEom-lvajq88wd2k |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIvE40BeI9EF96AnhdLN-rH2MSqMUmnIgQb1ZfgoE2qI0kYBfjx-b8BTitgfP2trPO57xzHwDcCII5yYYiSvtOKauplgwarHwVdPoqCpNplKaXPHxjL66Ztcb8GJdC-O9z8lnvp8ecyzf3dhluio7jZo0MfHcgbuMUspKtdYPZj2Rb1SSTYCZZKyLYQ4qeTodvj1PaVyiXwseHXf6yymU26r8oYvzATPagslqaSWv5GN_uTB9--031sb_Xfs2POosTTQsW2MHNny7Cw9_4h_chXupMWfq9rYHKlfi4tnwHXrz5et8_v7DLZpEP7rV-KJN0XjvUElNRrp16GVpZI9Gq9pHdFZy3lE0glF5LRpFqZCc_zjZY5iNzqdnY9w1X8CWMLmIX5A7b4l0jYxWABsQrk1DDHNi4LVuDG9oVFCUGTbwVe2EjrZfsNw6qyM00pAnsNnetP4poEC1rogMNoRUxuq0tCL4UFsf3W8qSQ-qFRjKdszkqUHGJ5U9lEqqhJ9K-KkOvx48X4t8LrQc_xq8l_BYD-yg6MHhCnHV_bi3qq4rQmR0Qsn-36WO4f54OrlUlxdXrw_gQZxHlkSeQ9hczJf-KNooC_Msb83v_yzg8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-UAV+Oxyrrhis+Marina-Inspired+Search+and+Dynamic+Formation+Control+for+Forest+Firefighting&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Harikumar%2C+K&rft.au=Senthilnath%2C+J&rft.au=Sundaram%2C+Suresh&rft.date=2019-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=16&rft.issue=2&rft.spage=863&rft_id=info:doi/10.1109%2FTASE.2018.2867614&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |