Introducing Synaptic Delays in the NEAT Algorithm to Improve Modelling in Cognitive Robotics

This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 43; no. 2; pp. 479 - 504
Main Authors Caamaño, P., Salgado, R., Bellas, F., Duro, R. J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
1573-773X
DOI10.1007/s11063-015-9426-5

Cover

Abstract This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called τ -NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly CO 2 concentrations. In these examples, τ -NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes.
AbstractList This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called τ -NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly CO 2 concentrations. In these examples, τ -NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes.
This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called τ-NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly CO2 concentrations. In these examples, τ-NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes.
Author Salgado, R.
Duro, R. J.
Caamaño, P.
Bellas, F.
Author_xml – sequence: 1
  givenname: P.
  surname: Caamaño
  fullname: Caamaño, P.
  organization: Integrated Group for Engineering Research, Universidade da Coruña
– sequence: 2
  givenname: R.
  surname: Salgado
  fullname: Salgado, R.
  organization: Integrated Group for Engineering Research, Universidade da Coruña
– sequence: 3
  givenname: F.
  surname: Bellas
  fullname: Bellas, F.
  organization: Integrated Group for Engineering Research, Universidade da Coruña
– sequence: 4
  givenname: R. J.
  surname: Duro
  fullname: Duro, R. J.
  email: richard@udc.es
  organization: Integrated Group for Engineering Research, Universidade da Coruña, Escuela Politécnica Superior, Universidade da Coruña
BookMark eNqNkFFLwzAUhYNMcJv-AN8CPleTpk3axzGnDqaCTvBBCGmabhldMpNM2b83owNBUHzKJZzv3HPPAPSMNQqAc4wuMULsymOMKEkQzpMyS2mSH4E-zhlJGCOvvTgThpKMpvgEDLxfIRSpFPXB29QEZ-ut1GYBn3dGbIKW8Fq1YuehNjAsFXyYjOZw1C6s02G5hsHC6Xrj7IeC97ZWbbtHo3RsF0YHHb-fbGWjjT8Fx41ovTo7vEPwcjOZj--S2ePtdDyaJZLkZUhyTGtKGsmIwE0uatxkrJJUVqqpVS0pqdOyqpBgRKIqBm8oLkhRCFqnecVUSYYg7Xy3ZiN2n6Jt-cbptXA7jhHf98O7fnjsh-_74XmELjoonvK-VT7wld06E3PytIwLSEGzIqpYp5LOeu9Uw6UOImgbaxO6_dMf_yD_k-lwiI9as1DuO9Pv0BdN0phU
CitedBy_id crossref_primary_10_1162_evco_a_00282
crossref_primary_10_1016_j_asoc_2024_111262
crossref_primary_10_1109_ACCESS_2019_2944545
Cites_doi 10.1007/s12065-007-0002-4
10.1016/j.neucom.2006.07.017
10.1109/72.774220
10.1109/IJCNN.2014.6889488
10.1613/jair.1338
10.1016/j.neucom.2014.04.077
10.1016/S0020-0255(01)00081-0
10.1109/5.784219
10.1109/CEC.2002.1004508
10.1016/S0925-2312(98)00018-6
10.1007/978-3-662-03315-9
10.1038/nn.3441
10.1016/S0893-6080(96)00072-X
10.1145/1389095.1389142
10.1109/CEC.2013.6557633
10.1145/1143997.1144273
10.1007/BFb0075637
10.1109/TEVC.2005.856210
10.1109/TAMD.2009.2021702
10.1029/JD094iD06p08549
10.1109/TAMD.2010.2086453
10.1007/s12530-013-9079-4
10.1109/ICINFA.2006.374100
10.1016/j.neucom.2008.10.022
10.1145/1569901.1570060
10.1016/j.cageo.2013.01.022
10.1109/29.21701
10.1162/106365602320169811
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright Springer Nature B.V. Apr 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Copyright Springer Nature B.V. Apr 2016
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
ADTOC
UNPAY
DOI 10.1007/s11063-015-9426-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
PROQUEST
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 504
ExternalDocumentID oai:zenodo.org:3448105
10_1007_s11063_015_9426_5
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-516d63fc73a1f5ad1f47bc6cbefdedc63d29bb0a73c0b010f618388a6d25b7e93
IEDL.DBID U2A
ISSN 1370-4621
1573-773X
IngestDate Sun Oct 26 03:07:24 EDT 2025
Sat Oct 18 23:07:53 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Wed Oct 01 01:56:21 EDT 2025
Fri Feb 21 02:36:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Temporal modeling
Cognitive robotics
Neuroevolution
Time-delay neural networks
NEAT
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-516d63fc73a1f5ad1f47bc6cbefdedc63d29bb0a73c0b010f618388a6d25b7e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://zenodo.org/record/3448105
PQID 2918338648
PQPubID 2043838
PageCount 26
ParticipantIDs unpaywall_primary_10_1007_s11063_015_9426_5
proquest_journals_2918338648
crossref_citationtrail_10_1007_s11063_015_9426_5
crossref_primary_10_1007_s11063_015_9426_5
springer_journals_10_1007_s11063_015_9426_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160400
2016-4-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 4
  year: 2016
  text: 20160400
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cardamone L, Loiacono D, Lanzi PL (2009) Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th annual genetic and evolutionary computation conference, GECCO-2009, pp 1179–1186
WaibelAHanazawaTHintonGShikanoKLangKJPhoneme recognition using time-delay neural networksIEEE Trans Acoust Speech Signal Process198937332833910.1109/29.21701
StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvol Comput20021029912710.1162/106365602320169811
GersFASchraudolphNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2003311514319660561088.68717
MaromESaadDCohenBEfficient training of recurrent neural network with time delaysNeural Netw1997101515910.1016/S0893-6080(96)00072-X
RenartARecurrent networks learn to tell timeNat Neurosci20131677277410.1038/nn.3441
Byrne MD (2003) Cognitive architecture. The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, pp 97–117
MañéROn the dimension of the compact invariant sets of certain non-linear mapsDyn Syst Turbul19818982302420544.58014
Home A (2005–2010) ANJI: another NEAT java implementation. http://anji.sourceforge.net
StanleyKOBryantBDMiikkulainenRReal-time neuroevolution in the NERO video gameIEEE Trans Evol Comput20059665366810.1109/TEVC.2005.856210
MichalewiczZGenetic algorithms+ data structures= evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047
AsadaMHosodaKKuniyoshiYIshiguroHInuiTYoshikawaYOginoMYoshidaCCognitive developmental robotics: a surveyIEEE Trans Auton Ment Dev200911123410.1109/TAMD.2009.2021702
FloreanoDDürrPMattiussiCNeuroevolution: from architectures to learningEvol Intell200811476210.1007/s12065-007-0002-4
BellasFBecerraJADuroRJUsing promoters and functional introns in genetic algorithms for neuroevolutionary learning in non-stationary problemsNeurocomputing2009722134214510.1016/j.neucom.2008.10.022
BonéRde CrucianuMBeauvilleJPLearning long-term dependencies by the selective addition of time-delayed connections to recurrent neural networkNeurocomputing2002481–42292501006.68801
Stanley KO, Miikkulainen R (2002) Efficient evolution of neural networks topologies. In: Proceedings of the 2002 congress on evolutionary computation (CEC’02), pp 569–577
KimS-STime-delay recurrent neural network for temporal correlations and predictionNeurocomputing1998201–325326310.1016/S0925-2312(98)00018-60908.68136
WangGChengGCarrTRThe application of improved NeuroEvolution of augmenting topologies neural network in Marcellus Shale lithofacies predictionComput Geosci201354506510.1016/j.cageo.2013.01.022
BellasFCaamañoPFaiñaADuroRJDynamic learning in cognitive robotics through a procedural long term memoryEvol Syst201451496310.1007/s12530-013-9079-4
ThoningKWTansPPKomhyrWDAtmospheric carbon dioxide at Mauna Loa Observatory: 2, analysis of the NOAA GMCC dataJ Geophys Res Atmos198994D68549856510.1029/JD094iD06p08549
Wang Y, Kim S-P, Principe JC (2005) Comparison of TDNN training algorithms in brain machine interfaces. In: 2005 IEEE international joint conference on neural networks. IJCNN ’05. Proceedings, vol 4, pp 2459–2462
Krčah P (2008) Towards efficient evolution of morphology and control. In: GECCO’08: proceedings of the 10th annual conference on genetic and evolutionary computation 2008, pp 287–288
BoxGEPJenkinsGMTime series analysis, forecasting and control1976San FranciscoHolden-Day0363.62069
TakensFOn the numerical determination of the dimension of an attractorDyn Syst Bifurc198511259910679808410.1007/BFb00756370561.58027
StanleyKOMiikkulainenRCompetitive coevolution through evolutionary complexification J Artif Intell Res20042163100
Kohl N, Stanley K, Miikkulainen R, Samples M, Sherony R (2006) Evolving a real-world vehicle warning system. In: GECCO 2006—genetic and evolutionary computation conference, vol 2, pp 1681–1688
CaamañoPBellasFDuroRJτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uptau $$\end{document}-Neat: initial experiments in precise temporal processing through neuroevolutionNeurocomputing2015150434910.1016/j.neucom.2014.04.077
SantosJDuroRJBecerraJACrespoJLBellasFConsiderations in the application of evolution to the generation of robot controllersInf Sci200113312714810.1016/S0020-0255(01)00081-00981.68742
Caamano P, Bellas F, Duro RJ (2014) Augmenting the NEAT algorithm to improve its temporal processing capabilities. In: 2014 international joint conference on neural networks (IJCNN), pp 1467–1473
YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219
Raffe WL, Zambetta F, Li X (2013) Neuroevolution of content layout in the PCG: angry bots video game. In: 2013 IEEE congress on evolutionary computation CEC, pp 673–680
DuroRJReyesJSDiscrete-time backpropagation for training synaptic delay-based artificial neural networksIEEE Trans Neural Netw199910477978910.1109/72.774220
BellasFDuroRJFainaASoutoDMultilevel darwinist brain (MDB): artifcial evolution in a cognitive architecture for real robotsIEEE Trans Auton Ment Dev20102434035410.1109/TAMD.2010.2086453
WengJOn developmental mental architecturesNeurocomputing20077013–152303232310.1016/j.neucom.2006.07.017
Chen L, Alahakoon D (2006) NeuroEvolution of augmenting topologies with learning for data classification. In: Information and automation, 2006. ICIA 2006. International conference on. IEEE, pp 367–371
9426_CR13
9426_CR15
9426_CR14
F Bellas (9426_CR35) 2014; 5
D Floreano (9426_CR4) 2008; 1
KW Thoning (9426_CR32) 1989; 94
KO Stanley (9426_CR7) 2002; 10
KO Stanley (9426_CR12) 2005; 9
R Boné (9426_CR23) 2002; 48
F Bellas (9426_CR34) 2010; 2
GEP Box (9426_CR33) 1976
E Marom (9426_CR21) 1997; 10
9426_CR8
M Asada (9426_CR2) 2009; 1
Z Michalewicz (9426_CR30) 1996
9426_CR1
9426_CR31
X Yao (9426_CR5) 1999; 87
9426_CR11
S-S Kim (9426_CR22) 1998; 20
9426_CR10
G Wang (9426_CR9) 2013; 54
KO Stanley (9426_CR16) 2004; 21
A Renart (9426_CR18) 2013; 16
J Weng (9426_CR3) 2007; 70
9426_CR26
R Mañé (9426_CR24) 1981; 898
9426_CR29
FA Gers (9426_CR17) 2003; 3
P Caamaño (9426_CR28) 2015; 150
F Takens (9426_CR25) 1985; 1125
J Santos (9426_CR27) 2001; 133
F Bellas (9426_CR6) 2009; 72
A Waibel (9426_CR19) 1989; 37
RJ Duro (9426_CR20) 1999; 10
References_xml – reference: MichalewiczZGenetic algorithms+ data structures= evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047
– reference: StanleyKOBryantBDMiikkulainenRReal-time neuroevolution in the NERO video gameIEEE Trans Evol Comput20059665366810.1109/TEVC.2005.856210
– reference: BellasFCaamañoPFaiñaADuroRJDynamic learning in cognitive robotics through a procedural long term memoryEvol Syst201451496310.1007/s12530-013-9079-4
– reference: MaromESaadDCohenBEfficient training of recurrent neural network with time delaysNeural Netw1997101515910.1016/S0893-6080(96)00072-X
– reference: Wang Y, Kim S-P, Principe JC (2005) Comparison of TDNN training algorithms in brain machine interfaces. In: 2005 IEEE international joint conference on neural networks. IJCNN ’05. Proceedings, vol 4, pp 2459–2462
– reference: BellasFDuroRJFainaASoutoDMultilevel darwinist brain (MDB): artifcial evolution in a cognitive architecture for real robotsIEEE Trans Auton Ment Dev20102434035410.1109/TAMD.2010.2086453
– reference: MañéROn the dimension of the compact invariant sets of certain non-linear mapsDyn Syst Turbul19818982302420544.58014
– reference: StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvol Comput20021029912710.1162/106365602320169811
– reference: Stanley KO, Miikkulainen R (2002) Efficient evolution of neural networks topologies. In: Proceedings of the 2002 congress on evolutionary computation (CEC’02), pp 569–577
– reference: BellasFBecerraJADuroRJUsing promoters and functional introns in genetic algorithms for neuroevolutionary learning in non-stationary problemsNeurocomputing2009722134214510.1016/j.neucom.2008.10.022
– reference: Chen L, Alahakoon D (2006) NeuroEvolution of augmenting topologies with learning for data classification. In: Information and automation, 2006. ICIA 2006. International conference on. IEEE, pp 367–371
– reference: DuroRJReyesJSDiscrete-time backpropagation for training synaptic delay-based artificial neural networksIEEE Trans Neural Netw199910477978910.1109/72.774220
– reference: Kohl N, Stanley K, Miikkulainen R, Samples M, Sherony R (2006) Evolving a real-world vehicle warning system. In: GECCO 2006—genetic and evolutionary computation conference, vol 2, pp 1681–1688
– reference: BoxGEPJenkinsGMTime series analysis, forecasting and control1976San FranciscoHolden-Day0363.62069
– reference: WangGChengGCarrTRThe application of improved NeuroEvolution of augmenting topologies neural network in Marcellus Shale lithofacies predictionComput Geosci201354506510.1016/j.cageo.2013.01.022
– reference: ThoningKWTansPPKomhyrWDAtmospheric carbon dioxide at Mauna Loa Observatory: 2, analysis of the NOAA GMCC dataJ Geophys Res Atmos198994D68549856510.1029/JD094iD06p08549
– reference: RenartARecurrent networks learn to tell timeNat Neurosci20131677277410.1038/nn.3441
– reference: CaamañoPBellasFDuroRJτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uptau $$\end{document}-Neat: initial experiments in precise temporal processing through neuroevolutionNeurocomputing2015150434910.1016/j.neucom.2014.04.077
– reference: Cardamone L, Loiacono D, Lanzi PL (2009) Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th annual genetic and evolutionary computation conference, GECCO-2009, pp 1179–1186
– reference: FloreanoDDürrPMattiussiCNeuroevolution: from architectures to learningEvol Intell200811476210.1007/s12065-007-0002-4
– reference: Byrne MD (2003) Cognitive architecture. The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, pp 97–117
– reference: Home A (2005–2010) ANJI: another NEAT java implementation. http://anji.sourceforge.net/
– reference: Krčah P (2008) Towards efficient evolution of morphology and control. In: GECCO’08: proceedings of the 10th annual conference on genetic and evolutionary computation 2008, pp 287–288
– reference: KimS-STime-delay recurrent neural network for temporal correlations and predictionNeurocomputing1998201–325326310.1016/S0925-2312(98)00018-60908.68136
– reference: WengJOn developmental mental architecturesNeurocomputing20077013–152303232310.1016/j.neucom.2006.07.017
– reference: YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219
– reference: Raffe WL, Zambetta F, Li X (2013) Neuroevolution of content layout in the PCG: angry bots video game. In: 2013 IEEE congress on evolutionary computation CEC, pp 673–680
– reference: BonéRde CrucianuMBeauvilleJPLearning long-term dependencies by the selective addition of time-delayed connections to recurrent neural networkNeurocomputing2002481–42292501006.68801
– reference: GersFASchraudolphNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2003311514319660561088.68717
– reference: TakensFOn the numerical determination of the dimension of an attractorDyn Syst Bifurc198511259910679808410.1007/BFb00756370561.58027
– reference: Caamano P, Bellas F, Duro RJ (2014) Augmenting the NEAT algorithm to improve its temporal processing capabilities. In: 2014 international joint conference on neural networks (IJCNN), pp 1467–1473
– reference: StanleyKOMiikkulainenRCompetitive coevolution through evolutionary complexification J Artif Intell Res20042163100
– reference: AsadaMHosodaKKuniyoshiYIshiguroHInuiTYoshikawaYOginoMYoshidaCCognitive developmental robotics: a surveyIEEE Trans Auton Ment Dev200911123410.1109/TAMD.2009.2021702
– reference: WaibelAHanazawaTHintonGShikanoKLangKJPhoneme recognition using time-delay neural networksIEEE Trans Acoust Speech Signal Process198937332833910.1109/29.21701
– reference: SantosJDuroRJBecerraJACrespoJLBellasFConsiderations in the application of evolution to the generation of robot controllersInf Sci200113312714810.1016/S0020-0255(01)00081-00981.68742
– volume: 1
  start-page: 47
  issue: 1
  year: 2008
  ident: 9426_CR4
  publication-title: Evol Intell
  doi: 10.1007/s12065-007-0002-4
– volume: 70
  start-page: 2303
  issue: 13–15
  year: 2007
  ident: 9426_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.07.017
– volume: 10
  start-page: 779
  issue: 4
  year: 1999
  ident: 9426_CR20
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.774220
– ident: 9426_CR29
  doi: 10.1109/IJCNN.2014.6889488
– volume: 21
  start-page: 63
  year: 2004
  ident: 9426_CR16
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1338
– volume: 150
  start-page: 43
  year: 2015
  ident: 9426_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.077
– volume: 133
  start-page: 127
  year: 2001
  ident: 9426_CR27
  publication-title: Inf Sci
  doi: 10.1016/S0020-0255(01)00081-0
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  ident: 9426_CR5
  publication-title: Proc IEEE
  doi: 10.1109/5.784219
– ident: 9426_CR8
  doi: 10.1109/CEC.2002.1004508
– volume: 20
  start-page: 253
  issue: 1–3
  year: 1998
  ident: 9426_CR22
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00018-6
– volume: 48
  start-page: 229
  issue: 1–4
  year: 2002
  ident: 9426_CR23
  publication-title: Neurocomputing
– volume-title: Genetic algorithms+ data structures= evolution programs
  year: 1996
  ident: 9426_CR30
  doi: 10.1007/978-3-662-03315-9
– volume: 16
  start-page: 772
  year: 2013
  ident: 9426_CR18
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3441
– volume: 3
  start-page: 115
  year: 2003
  ident: 9426_CR17
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 51
  issue: 1
  year: 1997
  ident: 9426_CR21
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(96)00072-X
– ident: 9426_CR11
  doi: 10.1145/1389095.1389142
– ident: 9426_CR13
  doi: 10.1109/CEC.2013.6557633
– ident: 9426_CR15
  doi: 10.1145/1143997.1144273
– ident: 9426_CR31
– volume: 1125
  start-page: 99
  year: 1985
  ident: 9426_CR25
  publication-title: Dyn Syst Bifurc
  doi: 10.1007/BFb0075637
– volume: 9
  start-page: 653
  issue: 6
  year: 2005
  ident: 9426_CR12
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.856210
– volume: 1
  start-page: 12
  issue: 1
  year: 2009
  ident: 9426_CR2
  publication-title: IEEE Trans Auton Ment Dev
  doi: 10.1109/TAMD.2009.2021702
– volume: 94
  start-page: 8549
  issue: D6
  year: 1989
  ident: 9426_CR32
  publication-title: J Geophys Res Atmos
  doi: 10.1029/JD094iD06p08549
– ident: 9426_CR26
– volume-title: Time series analysis, forecasting and control
  year: 1976
  ident: 9426_CR33
– volume: 2
  start-page: 340
  issue: 4
  year: 2010
  ident: 9426_CR34
  publication-title: IEEE Trans Auton Ment Dev
  doi: 10.1109/TAMD.2010.2086453
– volume: 5
  start-page: 49
  issue: 1
  year: 2014
  ident: 9426_CR35
  publication-title: Evol Syst
  doi: 10.1007/s12530-013-9079-4
– ident: 9426_CR10
  doi: 10.1109/ICINFA.2006.374100
– volume: 898
  start-page: 230
  year: 1981
  ident: 9426_CR24
  publication-title: Dyn Syst Turbul
– volume: 72
  start-page: 2134
  year: 2009
  ident: 9426_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.022
– ident: 9426_CR14
  doi: 10.1145/1569901.1570060
– ident: 9426_CR1
– volume: 54
  start-page: 50
  year: 2013
  ident: 9426_CR9
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.01.022
– volume: 37
  start-page: 328
  issue: 3
  year: 1989
  ident: 9426_CR19
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/29.21701
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 9426_CR7
  publication-title: Evol Comput
  doi: 10.1162/106365602320169811
SSID ssj0010020
Score 2.0999641
Snippet This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm....
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Carbon dioxide
Carbon dioxide concentration
Complex Systems
Computational Intelligence
Computer Science
Design
Experiments
Mutation
Neural networks
Neurons
Robotics
Signal processing
Synapses
Time dependence
Time series
Topology
SummonAdditionalLinks – databaseName: PROQUEST
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dByAPoSy6Pyoaciq4kdO8mhqhZYBJW6qihIHCpFfoVWSpMFsqr239eTjXfLZXuOY8sz9vgbz_gbgPdMRaV1TFGTa--gqJxT5f0dKlTONNcp5xYfJ3-dyIub5MutuN2ASXgLg2mVwSZ2hto2Bu_IP7LcLz6eyST7PL2nWDUKo6uhhIbqSyvYTx3F2DPYZMiMNYDNk_Hk29UyroDoqHPB0ogmksUhztk9pvPeEeYWCZr7Y4uKpyfVCn4uI6Zb8HxWT9X8j6qqfw6l813Y7tEkGS3U_xI2XP0KdkKlBtJv3Nfw4xIT0u3M-B7J93mtvKEw5MxVav5IftXEo0AyGY-uyai685Nuf_4mbUMWFw6OYL20jrobm56GfCNy1egGSZ7fwM35-Pr0gvZ1FajhIm-piKWVvDQpV3EplI3LJNVGGu282qyR3LJc60il3OA1aVRKL_osU9IyoVOX87cwqJva7QGRqebGZdrDrDhhsVIeL6GdMMYji4zrIURBhoXpScex9kVVrOiSUeyFF3uBYi_EED4sf5kuGDfWNT4Miin6zfdYrJbKEI6Dslaf13R2vNTn_4feXz_0Abzw2EouknwOYdA-zNyRxy-tftcvyr89yuoD
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jexAfnJ84UYngk5LRNk3aPo45UcEh6mCCUJI01WFtZXbI_PXerO2mPkx8bpqmnHycm3vvuQgdO8KKI-0IogIJBooIKBFg7xAmAkdS6VEameTk6z6_GLhXQzasoaMqF-ZTp2COzVz4ZU00CgaEbVRKG5wB3a6jxqB_03mYGVKeRVxe5FYxjwJTpMPKczlLjwN7x0QLMRLAQUTYz7NnQSjnPtBVtDJJ38T0QyTJt2PmvLlI1imiS17ak1y21ecv7calf7CO1kqSiTvFrNhANZ1uomZVwAGX63kLPV6aOPVoomBY-G6aCtg_FD7TiZi-41GKgRzifq9zjzvJUzYe5c-vOM9wcQ-hsSmjNlP0Nk27VRgSvs1kZrSft9HgvHffvSBluQWiKAtywmwecRorjwo7ZiKyY9eTiiupAc1IcRo5gZSW8Kgyt6dWzGE78H3BI4dJTwd0B9XTLNW7CHNPUqV9CezLdh1bCKBRZvtQCgiHT2ULWRUQoSq1yE1JjCRcqCgb7ELALjTYhayFTuavvBVCHMsa71fohuWafA-dAMZLfe76LXRaIb54vKSz0_mk-PvTe_9qvY_q-XiiD4DY5PKwnNpfdrnytw
  priority: 102
  providerName: Unpaywall
Title Introducing Synaptic Delays in the NEAT Algorithm to Improve Modelling in Cognitive Robotics
URI https://link.springer.com/article/10.1007/s11063-015-9426-5
https://www.proquest.com/docview/2918338648
https://zenodo.org/record/3448105
UnpaywallVersion submittedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NeBg8jDFAdIPKDzwNWUrs2EkeM2iBTVSIUQkkpMh2HFYpSxBNNfXf79wmLUgIxFMUxblEd_bdd77zHcAhU16eWaaoiTU6KCrmVKG_Q4WKmeY65Dxzh5MvBvJsGPy8ETfNOe5xm-3ehiRnmnp52A29F5f7I2iMZoWKFVgTrpoXTuIhSxahAweAZl5W6NFAMr8NZb5E4rkxWiLMRVB0Az5Oygc1_aeK4ond6X-GTw1gJMlcwlvwwZZfYLNtxkCatbkNd-cu5zybGKRIfk9LhbrAkBNbqOmYjEqCQI8Mesk1SYr76nFU__lL6orM9xQscS3RZtW53dDjNqWIXFW6cnWcd2DY710fn9GmdQI1XMQ1Fb7MJM9NyJWfC5X5eRBqI422KJnMSJ6xWGtPhdy4nVAvl7i0o0jJjAkd2pjvwmpZlXYPiAw1NzbSiKT8gPlKISRyqsAYBA8R1x3wWh6mpqkr7tpbFOmyIrJje4psTx3bU9GB74tXHuZFNV4bvN8KJm3W1zhlMf4vj2QQdeCoFdby8SvEjhbyfPvTX99F-xusI5qS87SefVitHyf2ABFLrbuwEvVPu7CWnN7-6uH1R29wedWdzVu8Gw4uk9v_vIHlsQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7aFw4I0IFNgDXKhW2Lv22j5UKLSpEtpGqKRSD0hmX6aVjB2Ioyp_jt_GrONN4BJOPXu9a8_Mzn6z8wJ4w2RQGMsk1ZlCA0VmnEq0d2gsM6a4Sjg3Ljn5bCyGF9Gny_hyC377XBgXVul1YquoTa3dHfl7lqHw8VRE6YfpT-q6Rjnvqm-hIbvWCuagLTHWJXac2MUNmnCzg9ER8vstY8eDyeGQdl0GqOZx1tA4FEbwQidchkUsTVhEidJCK4s_YbTghmVKBTLh2l0aBoXAD0lTKQyLVWJdMSY8AnYiHmVo_O18HIw_n6_8GA6NtSZfEtBIsND7VdvkPbTGXCxTTDM8Jmn878m4hrsrD-1d2J1XU7m4kWX51yF4_ADudeiV9Jfi9hC2bPUI7vvOEKRTFI_h68gFwJu5xhnJl0UlUTFpcmRLuZiR64og6iTjQX9C-uV3JHJz9YM0NVlecFji-rO1pcLd0EMf30TOa1W7otJP4OJWKPwUtqu6ss-AiERxbVOFsC6MWCgl4jOnl7RGJJNy1YPA0zDXXZFz12ujzNflmR3ZcyR77siexz14t3pluqzwsWnwnmdM3m32Wb4WzR7se2atH2-YbH_Fz_8v_Xzz0q9hdzg5O81PR-OTF3AHcZ1YBhjtwXbza25fInZq1KtOQAl8u-098Qf8qyii
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6aFJLm0DaPUrdpuoeeEpZIu9qVdDRJTF41pYkhh4DYl1qDKplYJvjfd9aS7AZKSs9ajcTMPr7ZmfkG4AtTQW4dU9SkGh0UlXKq0N-hQqVMcx1zbn1x8tehPB9Fl3firu1zOu2y3buQZFPT4Fmayvp4YvPjVeEbejI-D0jQFI8YKtbgZeR5EnBCj1h_GUbwYGjhccUBjSQLu7Dm30Q8PZhWaHMZIN2CzVk5UfNHVRR_nEGDt_C6BY-k31h7G164cgfedI0ZSLtOd-H-wuef25lBieRmXircFww5dYWaT8m4JAj6yPCsf0v6xY_qYVz__EXqijT3C4749mgLpm4_9KRLLyLfK115Tuc9GA3Obk_OadtGgRou0pqKUFrJcxNzFeZC2TCPYm2k0Q6tZI3klqVaByrmxt-KBrnEZZ4kSlomdOxS_g7Wy6p074HIWHPjEo2oKoxYqBTCI78tGINAIuG6B0Gnw8y0HOO-1UWRrdiRvdozVHvm1Z6JHhwuX5k0BBvPDd7vDJO1a22asRT_lycySnpw1Blr9fgZYUdLe_770x_-S_Zn2Ph2OsiuL4ZXH-EVgizZZPvsw3r9MHOfEMjU-mAxWX8DGZHnFQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jexAfnJ84UYngk5LRNk3aPo45UcEh6mCCUJI01WFtZXbI_PXerO2mPkx8bpqmnHycm3vvuQgdO8KKI-0IogIJBooIKBFg7xAmAkdS6VEameTk6z6_GLhXQzasoaMqF-ZTp2COzVz4ZU00CgaEbVRKG5wB3a6jxqB_03mYGVKeRVxe5FYxjwJTpMPKczlLjwN7x0QLMRLAQUTYz7NnQSjnPtBVtDJJ38T0QyTJt2PmvLlI1imiS17ak1y21ecv7calf7CO1kqSiTvFrNhANZ1uomZVwAGX63kLPV6aOPVoomBY-G6aCtg_FD7TiZi-41GKgRzifq9zjzvJUzYe5c-vOM9wcQ-hsSmjNlP0Nk27VRgSvs1kZrSft9HgvHffvSBluQWiKAtywmwecRorjwo7ZiKyY9eTiiupAc1IcRo5gZSW8Kgyt6dWzGE78H3BI4dJTwd0B9XTLNW7CHNPUqV9CezLdh1bCKBRZvtQCgiHT2ULWRUQoSq1yE1JjCRcqCgb7ELALjTYhayFTuavvBVCHMsa71fohuWafA-dAMZLfe76LXRaIb54vKSz0_mk-PvTe_9qvY_q-XiiD4DY5PKwnNpfdrnytw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+Synaptic+Delays+in+the+NEAT+Algorithm+to+Improve+Modelling+in+Cognitive+Robotics&rft.jtitle=Neural+processing+letters&rft.au=Caama%C3%B1o%2C+P.&rft.au=Salgado%2C+R.&rft.au=Bellas%2C+F.&rft.au=Duro%2C+R.+J.&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=43&rft.issue=2&rft.spage=479&rft.epage=504&rft_id=info:doi/10.1007%2Fs11063-015-9426-5&rft.externalDocID=10_1007_s11063_015_9426_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon