Introducing Synaptic Delays in the NEAT Algorithm to Improve Modelling in Cognitive Robotics
This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori...
Saved in:
| Published in | Neural processing letters Vol. 43; no. 2; pp. 479 - 504 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1370-4621 1573-773X 1573-773X |
| DOI | 10.1007/s11063-015-9426-5 |
Cover
| Abstract | This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called
τ
-NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly
CO
2
concentrations. In these examples,
τ
-NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes. |
|---|---|
| AbstractList | This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called
τ
-NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly
CO
2
concentrations. In these examples,
τ
-NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes. This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm. This algorithm is quite popular within the robotics community for the production of trained neural networks without having to determine a priori their size and topology. The main drawback of the traditional NEAT algorithm is that, even though it can implement recurrent synaptic connections, which allow it to perform some time related processing tasks, its capabilities are rather limited, especially when dealing with precise time dependent phenomena. NEAT’s ability to capture the underlying dynamics that correspond to complex time series still has a lot of room for improvement. To address this issue, the paper describes a new implementation of the NEAT algorithm that is able to generate artificial neural networks (ANNs) with trainable time delayed synapses in addition to its previous capacities. We show that this approach, called τ-NEAT improves the behavior of the neural networks obtained when dealing with complex time related processes. Several examples are presented, both dealing with the generation of ANNs that are able to produce complex theoretical signals such as chaotic signals or real data series, as in the case of the monthly number of international airline passengers or monthly CO2 concentrations. In these examples, τ-NEAT clearly improves over the traditional NEAT algorithm in these tasks. A final example of the integration of this approach within a robot cognitive mechanism is also presented, showing the clear improvements it could provide in the modeling required for many cognitive processes. |
| Author | Salgado, R. Duro, R. J. Caamaño, P. Bellas, F. |
| Author_xml | – sequence: 1 givenname: P. surname: Caamaño fullname: Caamaño, P. organization: Integrated Group for Engineering Research, Universidade da Coruña – sequence: 2 givenname: R. surname: Salgado fullname: Salgado, R. organization: Integrated Group for Engineering Research, Universidade da Coruña – sequence: 3 givenname: F. surname: Bellas fullname: Bellas, F. organization: Integrated Group for Engineering Research, Universidade da Coruña – sequence: 4 givenname: R. J. surname: Duro fullname: Duro, R. J. email: richard@udc.es organization: Integrated Group for Engineering Research, Universidade da Coruña, Escuela Politécnica Superior, Universidade da Coruña |
| BookMark | eNqNkFFLwzAUhYNMcJv-AN8CPleTpk3axzGnDqaCTvBBCGmabhldMpNM2b83owNBUHzKJZzv3HPPAPSMNQqAc4wuMULsymOMKEkQzpMyS2mSH4E-zhlJGCOvvTgThpKMpvgEDLxfIRSpFPXB29QEZ-ut1GYBn3dGbIKW8Fq1YuehNjAsFXyYjOZw1C6s02G5hsHC6Xrj7IeC97ZWbbtHo3RsF0YHHb-fbGWjjT8Fx41ovTo7vEPwcjOZj--S2ePtdDyaJZLkZUhyTGtKGsmIwE0uatxkrJJUVqqpVS0pqdOyqpBgRKIqBm8oLkhRCFqnecVUSYYg7Xy3ZiN2n6Jt-cbptXA7jhHf98O7fnjsh-_74XmELjoonvK-VT7wld06E3PytIwLSEGzIqpYp5LOeu9Uw6UOImgbaxO6_dMf_yD_k-lwiI9as1DuO9Pv0BdN0phU |
| CitedBy_id | crossref_primary_10_1162_evco_a_00282 crossref_primary_10_1016_j_asoc_2024_111262 crossref_primary_10_1109_ACCESS_2019_2944545 |
| Cites_doi | 10.1007/s12065-007-0002-4 10.1016/j.neucom.2006.07.017 10.1109/72.774220 10.1109/IJCNN.2014.6889488 10.1613/jair.1338 10.1016/j.neucom.2014.04.077 10.1016/S0020-0255(01)00081-0 10.1109/5.784219 10.1109/CEC.2002.1004508 10.1016/S0925-2312(98)00018-6 10.1007/978-3-662-03315-9 10.1038/nn.3441 10.1016/S0893-6080(96)00072-X 10.1145/1389095.1389142 10.1109/CEC.2013.6557633 10.1145/1143997.1144273 10.1007/BFb0075637 10.1109/TEVC.2005.856210 10.1109/TAMD.2009.2021702 10.1029/JD094iD06p08549 10.1109/TAMD.2010.2086453 10.1007/s12530-013-9079-4 10.1109/ICINFA.2006.374100 10.1016/j.neucom.2008.10.022 10.1145/1569901.1570060 10.1016/j.cageo.2013.01.022 10.1109/29.21701 10.1162/106365602320169811 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Copyright Springer Nature B.V. Apr 2016 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Copyright Springer Nature B.V. Apr 2016 |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ ADTOC UNPAY |
| DOI | 10.1007/s11063-015-9426-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials PROQUEST Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-773X |
| EndPage | 504 |
| ExternalDocumentID | oai:zenodo.org:3448105 10_1007_s11063_015_9426_5 |
| GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-516d63fc73a1f5ad1f47bc6cbefdedc63d29bb0a73c0b010f618388a6d25b7e93 |
| IEDL.DBID | U2A |
| ISSN | 1370-4621 1573-773X |
| IngestDate | Sun Oct 26 03:07:24 EDT 2025 Sat Oct 18 23:07:53 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Wed Oct 01 01:56:21 EDT 2025 Fri Feb 21 02:36:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Temporal modeling Cognitive robotics Neuroevolution Time-delay neural networks NEAT |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-516d63fc73a1f5ad1f47bc6cbefdedc63d29bb0a73c0b010f618388a6d25b7e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://zenodo.org/record/3448105 |
| PQID | 2918338648 |
| PQPubID | 2043838 |
| PageCount | 26 |
| ParticipantIDs | unpaywall_primary_10_1007_s11063_015_9426_5 proquest_journals_2918338648 crossref_citationtrail_10_1007_s11063_015_9426_5 crossref_primary_10_1007_s11063_015_9426_5 springer_journals_10_1007_s11063_015_9426_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20160400 2016-4-00 20160401 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 4 year: 2016 text: 20160400 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cardamone L, Loiacono D, Lanzi PL (2009) Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th annual genetic and evolutionary computation conference, GECCO-2009, pp 1179–1186 WaibelAHanazawaTHintonGShikanoKLangKJPhoneme recognition using time-delay neural networksIEEE Trans Acoust Speech Signal Process198937332833910.1109/29.21701 StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvol Comput20021029912710.1162/106365602320169811 GersFASchraudolphNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2003311514319660561088.68717 MaromESaadDCohenBEfficient training of recurrent neural network with time delaysNeural Netw1997101515910.1016/S0893-6080(96)00072-X RenartARecurrent networks learn to tell timeNat Neurosci20131677277410.1038/nn.3441 Byrne MD (2003) Cognitive architecture. The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, pp 97–117 MañéROn the dimension of the compact invariant sets of certain non-linear mapsDyn Syst Turbul19818982302420544.58014 Home A (2005–2010) ANJI: another NEAT java implementation. http://anji.sourceforge.net StanleyKOBryantBDMiikkulainenRReal-time neuroevolution in the NERO video gameIEEE Trans Evol Comput20059665366810.1109/TEVC.2005.856210 MichalewiczZGenetic algorithms+ data structures= evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047 AsadaMHosodaKKuniyoshiYIshiguroHInuiTYoshikawaYOginoMYoshidaCCognitive developmental robotics: a surveyIEEE Trans Auton Ment Dev200911123410.1109/TAMD.2009.2021702 FloreanoDDürrPMattiussiCNeuroevolution: from architectures to learningEvol Intell200811476210.1007/s12065-007-0002-4 BellasFBecerraJADuroRJUsing promoters and functional introns in genetic algorithms for neuroevolutionary learning in non-stationary problemsNeurocomputing2009722134214510.1016/j.neucom.2008.10.022 BonéRde CrucianuMBeauvilleJPLearning long-term dependencies by the selective addition of time-delayed connections to recurrent neural networkNeurocomputing2002481–42292501006.68801 Stanley KO, Miikkulainen R (2002) Efficient evolution of neural networks topologies. In: Proceedings of the 2002 congress on evolutionary computation (CEC’02), pp 569–577 KimS-STime-delay recurrent neural network for temporal correlations and predictionNeurocomputing1998201–325326310.1016/S0925-2312(98)00018-60908.68136 WangGChengGCarrTRThe application of improved NeuroEvolution of augmenting topologies neural network in Marcellus Shale lithofacies predictionComput Geosci201354506510.1016/j.cageo.2013.01.022 BellasFCaamañoPFaiñaADuroRJDynamic learning in cognitive robotics through a procedural long term memoryEvol Syst201451496310.1007/s12530-013-9079-4 ThoningKWTansPPKomhyrWDAtmospheric carbon dioxide at Mauna Loa Observatory: 2, analysis of the NOAA GMCC dataJ Geophys Res Atmos198994D68549856510.1029/JD094iD06p08549 Wang Y, Kim S-P, Principe JC (2005) Comparison of TDNN training algorithms in brain machine interfaces. In: 2005 IEEE international joint conference on neural networks. IJCNN ’05. Proceedings, vol 4, pp 2459–2462 Krčah P (2008) Towards efficient evolution of morphology and control. In: GECCO’08: proceedings of the 10th annual conference on genetic and evolutionary computation 2008, pp 287–288 BoxGEPJenkinsGMTime series analysis, forecasting and control1976San FranciscoHolden-Day0363.62069 TakensFOn the numerical determination of the dimension of an attractorDyn Syst Bifurc198511259910679808410.1007/BFb00756370561.58027 StanleyKOMiikkulainenRCompetitive coevolution through evolutionary complexification J Artif Intell Res20042163100 Kohl N, Stanley K, Miikkulainen R, Samples M, Sherony R (2006) Evolving a real-world vehicle warning system. In: GECCO 2006—genetic and evolutionary computation conference, vol 2, pp 1681–1688 CaamañoPBellasFDuroRJτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uptau $$\end{document}-Neat: initial experiments in precise temporal processing through neuroevolutionNeurocomputing2015150434910.1016/j.neucom.2014.04.077 SantosJDuroRJBecerraJACrespoJLBellasFConsiderations in the application of evolution to the generation of robot controllersInf Sci200113312714810.1016/S0020-0255(01)00081-00981.68742 Caamano P, Bellas F, Duro RJ (2014) Augmenting the NEAT algorithm to improve its temporal processing capabilities. In: 2014 international joint conference on neural networks (IJCNN), pp 1467–1473 YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219 Raffe WL, Zambetta F, Li X (2013) Neuroevolution of content layout in the PCG: angry bots video game. In: 2013 IEEE congress on evolutionary computation CEC, pp 673–680 DuroRJReyesJSDiscrete-time backpropagation for training synaptic delay-based artificial neural networksIEEE Trans Neural Netw199910477978910.1109/72.774220 BellasFDuroRJFainaASoutoDMultilevel darwinist brain (MDB): artifcial evolution in a cognitive architecture for real robotsIEEE Trans Auton Ment Dev20102434035410.1109/TAMD.2010.2086453 WengJOn developmental mental architecturesNeurocomputing20077013–152303232310.1016/j.neucom.2006.07.017 Chen L, Alahakoon D (2006) NeuroEvolution of augmenting topologies with learning for data classification. In: Information and automation, 2006. ICIA 2006. International conference on. IEEE, pp 367–371 9426_CR13 9426_CR15 9426_CR14 F Bellas (9426_CR35) 2014; 5 D Floreano (9426_CR4) 2008; 1 KW Thoning (9426_CR32) 1989; 94 KO Stanley (9426_CR7) 2002; 10 KO Stanley (9426_CR12) 2005; 9 R Boné (9426_CR23) 2002; 48 F Bellas (9426_CR34) 2010; 2 GEP Box (9426_CR33) 1976 E Marom (9426_CR21) 1997; 10 9426_CR8 M Asada (9426_CR2) 2009; 1 Z Michalewicz (9426_CR30) 1996 9426_CR1 9426_CR31 X Yao (9426_CR5) 1999; 87 9426_CR11 S-S Kim (9426_CR22) 1998; 20 9426_CR10 G Wang (9426_CR9) 2013; 54 KO Stanley (9426_CR16) 2004; 21 A Renart (9426_CR18) 2013; 16 J Weng (9426_CR3) 2007; 70 9426_CR26 R Mañé (9426_CR24) 1981; 898 9426_CR29 FA Gers (9426_CR17) 2003; 3 P Caamaño (9426_CR28) 2015; 150 F Takens (9426_CR25) 1985; 1125 J Santos (9426_CR27) 2001; 133 F Bellas (9426_CR6) 2009; 72 A Waibel (9426_CR19) 1989; 37 RJ Duro (9426_CR20) 1999; 10 |
| References_xml | – reference: MichalewiczZGenetic algorithms+ data structures= evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047 – reference: StanleyKOBryantBDMiikkulainenRReal-time neuroevolution in the NERO video gameIEEE Trans Evol Comput20059665366810.1109/TEVC.2005.856210 – reference: BellasFCaamañoPFaiñaADuroRJDynamic learning in cognitive robotics through a procedural long term memoryEvol Syst201451496310.1007/s12530-013-9079-4 – reference: MaromESaadDCohenBEfficient training of recurrent neural network with time delaysNeural Netw1997101515910.1016/S0893-6080(96)00072-X – reference: Wang Y, Kim S-P, Principe JC (2005) Comparison of TDNN training algorithms in brain machine interfaces. In: 2005 IEEE international joint conference on neural networks. IJCNN ’05. Proceedings, vol 4, pp 2459–2462 – reference: BellasFDuroRJFainaASoutoDMultilevel darwinist brain (MDB): artifcial evolution in a cognitive architecture for real robotsIEEE Trans Auton Ment Dev20102434035410.1109/TAMD.2010.2086453 – reference: MañéROn the dimension of the compact invariant sets of certain non-linear mapsDyn Syst Turbul19818982302420544.58014 – reference: StanleyKOMiikkulainenREvolving neural networks through augmenting topologiesEvol Comput20021029912710.1162/106365602320169811 – reference: Stanley KO, Miikkulainen R (2002) Efficient evolution of neural networks topologies. In: Proceedings of the 2002 congress on evolutionary computation (CEC’02), pp 569–577 – reference: BellasFBecerraJADuroRJUsing promoters and functional introns in genetic algorithms for neuroevolutionary learning in non-stationary problemsNeurocomputing2009722134214510.1016/j.neucom.2008.10.022 – reference: Chen L, Alahakoon D (2006) NeuroEvolution of augmenting topologies with learning for data classification. In: Information and automation, 2006. ICIA 2006. International conference on. IEEE, pp 367–371 – reference: DuroRJReyesJSDiscrete-time backpropagation for training synaptic delay-based artificial neural networksIEEE Trans Neural Netw199910477978910.1109/72.774220 – reference: Kohl N, Stanley K, Miikkulainen R, Samples M, Sherony R (2006) Evolving a real-world vehicle warning system. In: GECCO 2006—genetic and evolutionary computation conference, vol 2, pp 1681–1688 – reference: BoxGEPJenkinsGMTime series analysis, forecasting and control1976San FranciscoHolden-Day0363.62069 – reference: WangGChengGCarrTRThe application of improved NeuroEvolution of augmenting topologies neural network in Marcellus Shale lithofacies predictionComput Geosci201354506510.1016/j.cageo.2013.01.022 – reference: ThoningKWTansPPKomhyrWDAtmospheric carbon dioxide at Mauna Loa Observatory: 2, analysis of the NOAA GMCC dataJ Geophys Res Atmos198994D68549856510.1029/JD094iD06p08549 – reference: RenartARecurrent networks learn to tell timeNat Neurosci20131677277410.1038/nn.3441 – reference: CaamañoPBellasFDuroRJτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\uptau $$\end{document}-Neat: initial experiments in precise temporal processing through neuroevolutionNeurocomputing2015150434910.1016/j.neucom.2014.04.077 – reference: Cardamone L, Loiacono D, Lanzi PL (2009) Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th annual genetic and evolutionary computation conference, GECCO-2009, pp 1179–1186 – reference: FloreanoDDürrPMattiussiCNeuroevolution: from architectures to learningEvol Intell200811476210.1007/s12065-007-0002-4 – reference: Byrne MD (2003) Cognitive architecture. The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, pp 97–117 – reference: Home A (2005–2010) ANJI: another NEAT java implementation. http://anji.sourceforge.net/ – reference: Krčah P (2008) Towards efficient evolution of morphology and control. In: GECCO’08: proceedings of the 10th annual conference on genetic and evolutionary computation 2008, pp 287–288 – reference: KimS-STime-delay recurrent neural network for temporal correlations and predictionNeurocomputing1998201–325326310.1016/S0925-2312(98)00018-60908.68136 – reference: WengJOn developmental mental architecturesNeurocomputing20077013–152303232310.1016/j.neucom.2006.07.017 – reference: YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219 – reference: Raffe WL, Zambetta F, Li X (2013) Neuroevolution of content layout in the PCG: angry bots video game. In: 2013 IEEE congress on evolutionary computation CEC, pp 673–680 – reference: BonéRde CrucianuMBeauvilleJPLearning long-term dependencies by the selective addition of time-delayed connections to recurrent neural networkNeurocomputing2002481–42292501006.68801 – reference: GersFASchraudolphNSchmidhuberJLearning precise timing with LSTM recurrent networksJ Mach Learn Res2003311514319660561088.68717 – reference: TakensFOn the numerical determination of the dimension of an attractorDyn Syst Bifurc198511259910679808410.1007/BFb00756370561.58027 – reference: Caamano P, Bellas F, Duro RJ (2014) Augmenting the NEAT algorithm to improve its temporal processing capabilities. In: 2014 international joint conference on neural networks (IJCNN), pp 1467–1473 – reference: StanleyKOMiikkulainenRCompetitive coevolution through evolutionary complexification J Artif Intell Res20042163100 – reference: AsadaMHosodaKKuniyoshiYIshiguroHInuiTYoshikawaYOginoMYoshidaCCognitive developmental robotics: a surveyIEEE Trans Auton Ment Dev200911123410.1109/TAMD.2009.2021702 – reference: WaibelAHanazawaTHintonGShikanoKLangKJPhoneme recognition using time-delay neural networksIEEE Trans Acoust Speech Signal Process198937332833910.1109/29.21701 – reference: SantosJDuroRJBecerraJACrespoJLBellasFConsiderations in the application of evolution to the generation of robot controllersInf Sci200113312714810.1016/S0020-0255(01)00081-00981.68742 – volume: 1 start-page: 47 issue: 1 year: 2008 ident: 9426_CR4 publication-title: Evol Intell doi: 10.1007/s12065-007-0002-4 – volume: 70 start-page: 2303 issue: 13–15 year: 2007 ident: 9426_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.07.017 – volume: 10 start-page: 779 issue: 4 year: 1999 ident: 9426_CR20 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.774220 – ident: 9426_CR29 doi: 10.1109/IJCNN.2014.6889488 – volume: 21 start-page: 63 year: 2004 ident: 9426_CR16 publication-title: J Artif Intell Res doi: 10.1613/jair.1338 – volume: 150 start-page: 43 year: 2015 ident: 9426_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.077 – volume: 133 start-page: 127 year: 2001 ident: 9426_CR27 publication-title: Inf Sci doi: 10.1016/S0020-0255(01)00081-0 – volume: 87 start-page: 1423 issue: 9 year: 1999 ident: 9426_CR5 publication-title: Proc IEEE doi: 10.1109/5.784219 – ident: 9426_CR8 doi: 10.1109/CEC.2002.1004508 – volume: 20 start-page: 253 issue: 1–3 year: 1998 ident: 9426_CR22 publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00018-6 – volume: 48 start-page: 229 issue: 1–4 year: 2002 ident: 9426_CR23 publication-title: Neurocomputing – volume-title: Genetic algorithms+ data structures= evolution programs year: 1996 ident: 9426_CR30 doi: 10.1007/978-3-662-03315-9 – volume: 16 start-page: 772 year: 2013 ident: 9426_CR18 publication-title: Nat Neurosci doi: 10.1038/nn.3441 – volume: 3 start-page: 115 year: 2003 ident: 9426_CR17 publication-title: J Mach Learn Res – volume: 10 start-page: 51 issue: 1 year: 1997 ident: 9426_CR21 publication-title: Neural Netw doi: 10.1016/S0893-6080(96)00072-X – ident: 9426_CR11 doi: 10.1145/1389095.1389142 – ident: 9426_CR13 doi: 10.1109/CEC.2013.6557633 – ident: 9426_CR15 doi: 10.1145/1143997.1144273 – ident: 9426_CR31 – volume: 1125 start-page: 99 year: 1985 ident: 9426_CR25 publication-title: Dyn Syst Bifurc doi: 10.1007/BFb0075637 – volume: 9 start-page: 653 issue: 6 year: 2005 ident: 9426_CR12 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.856210 – volume: 1 start-page: 12 issue: 1 year: 2009 ident: 9426_CR2 publication-title: IEEE Trans Auton Ment Dev doi: 10.1109/TAMD.2009.2021702 – volume: 94 start-page: 8549 issue: D6 year: 1989 ident: 9426_CR32 publication-title: J Geophys Res Atmos doi: 10.1029/JD094iD06p08549 – ident: 9426_CR26 – volume-title: Time series analysis, forecasting and control year: 1976 ident: 9426_CR33 – volume: 2 start-page: 340 issue: 4 year: 2010 ident: 9426_CR34 publication-title: IEEE Trans Auton Ment Dev doi: 10.1109/TAMD.2010.2086453 – volume: 5 start-page: 49 issue: 1 year: 2014 ident: 9426_CR35 publication-title: Evol Syst doi: 10.1007/s12530-013-9079-4 – ident: 9426_CR10 doi: 10.1109/ICINFA.2006.374100 – volume: 898 start-page: 230 year: 1981 ident: 9426_CR24 publication-title: Dyn Syst Turbul – volume: 72 start-page: 2134 year: 2009 ident: 9426_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.10.022 – ident: 9426_CR14 doi: 10.1145/1569901.1570060 – ident: 9426_CR1 – volume: 54 start-page: 50 year: 2013 ident: 9426_CR9 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.01.022 – volume: 37 start-page: 328 issue: 3 year: 1989 ident: 9426_CR19 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/29.21701 – volume: 10 start-page: 99 issue: 2 year: 2002 ident: 9426_CR7 publication-title: Evol Comput doi: 10.1162/106365602320169811 |
| SSID | ssj0010020 |
| Score | 2.0999641 |
| Snippet | This paper describes and tests an approach to improve the temporal processing capabilities of the neuroevolution of augmenting topologies (NEAT) algorithm.... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 479 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Carbon dioxide Carbon dioxide concentration Complex Systems Computational Intelligence Computer Science Design Experiments Mutation Neural networks Neurons Robotics Signal processing Synapses Time dependence Time series Topology |
| SummonAdditionalLinks | – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dByAPoSy6Pyoaciq4kdO8mhqhZYBJW6qihIHCpFfoVWSpMFsqr239eTjXfLZXuOY8sz9vgbz_gbgPdMRaV1TFGTa--gqJxT5f0dKlTONNcp5xYfJ3-dyIub5MutuN2ASXgLg2mVwSZ2hto2Bu_IP7LcLz6eyST7PL2nWDUKo6uhhIbqSyvYTx3F2DPYZMiMNYDNk_Hk29UyroDoqHPB0ogmksUhztk9pvPeEeYWCZr7Y4uKpyfVCn4uI6Zb8HxWT9X8j6qqfw6l813Y7tEkGS3U_xI2XP0KdkKlBtJv3Nfw4xIT0u3M-B7J93mtvKEw5MxVav5IftXEo0AyGY-uyai685Nuf_4mbUMWFw6OYL20jrobm56GfCNy1egGSZ7fwM35-Pr0gvZ1FajhIm-piKWVvDQpV3EplI3LJNVGGu282qyR3LJc60il3OA1aVRKL_osU9IyoVOX87cwqJva7QGRqebGZdrDrDhhsVIeL6GdMMYji4zrIURBhoXpScex9kVVrOiSUeyFF3uBYi_EED4sf5kuGDfWNT4Miin6zfdYrJbKEI6Dslaf13R2vNTn_4feXz_0Abzw2EouknwOYdA-zNyRxy-tftcvyr89yuoD priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jexAfnJ84UYngk5LRNk3aPo45UcEh6mCCUJI01WFtZXbI_PXerO2mPkx8bpqmnHycm3vvuQgdO8KKI-0IogIJBooIKBFg7xAmAkdS6VEameTk6z6_GLhXQzasoaMqF-ZTp2COzVz4ZU00CgaEbVRKG5wB3a6jxqB_03mYGVKeRVxe5FYxjwJTpMPKczlLjwN7x0QLMRLAQUTYz7NnQSjnPtBVtDJJ38T0QyTJt2PmvLlI1imiS17ak1y21ecv7calf7CO1kqSiTvFrNhANZ1uomZVwAGX63kLPV6aOPVoomBY-G6aCtg_FD7TiZi-41GKgRzifq9zjzvJUzYe5c-vOM9wcQ-hsSmjNlP0Nk27VRgSvs1kZrSft9HgvHffvSBluQWiKAtywmwecRorjwo7ZiKyY9eTiiupAc1IcRo5gZSW8Kgyt6dWzGE78H3BI4dJTwd0B9XTLNW7CHNPUqV9CezLdh1bCKBRZvtQCgiHT2ULWRUQoSq1yE1JjCRcqCgb7ELALjTYhayFTuavvBVCHMsa71fohuWafA-dAMZLfe76LXRaIb54vKSz0_mk-PvTe_9qvY_q-XiiD4DY5PKwnNpfdrnytw priority: 102 providerName: Unpaywall |
| Title | Introducing Synaptic Delays in the NEAT Algorithm to Improve Modelling in Cognitive Robotics |
| URI | https://link.springer.com/article/10.1007/s11063-015-9426-5 https://www.proquest.com/docview/2918338648 https://zenodo.org/record/3448105 |
| UnpaywallVersion | submittedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-773X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NeBg8jDFAdIPKDzwNWUrs2EkeM2iBTVSIUQkkpMh2HFYpSxBNNfXf79wmLUgIxFMUxblEd_bdd77zHcAhU16eWaaoiTU6KCrmVKG_Q4WKmeY65Dxzh5MvBvJsGPy8ETfNOe5xm-3ehiRnmnp52A29F5f7I2iMZoWKFVgTrpoXTuIhSxahAweAZl5W6NFAMr8NZb5E4rkxWiLMRVB0Az5Oygc1_aeK4ond6X-GTw1gJMlcwlvwwZZfYLNtxkCatbkNd-cu5zybGKRIfk9LhbrAkBNbqOmYjEqCQI8Mesk1SYr76nFU__lL6orM9xQscS3RZtW53dDjNqWIXFW6cnWcd2DY710fn9GmdQI1XMQ1Fb7MJM9NyJWfC5X5eRBqI422KJnMSJ6xWGtPhdy4nVAvl7i0o0jJjAkd2pjvwmpZlXYPiAw1NzbSiKT8gPlKISRyqsAYBA8R1x3wWh6mpqkr7tpbFOmyIrJje4psTx3bU9GB74tXHuZFNV4bvN8KJm3W1zhlMf4vj2QQdeCoFdby8SvEjhbyfPvTX99F-xusI5qS87SefVitHyf2ABFLrbuwEvVPu7CWnN7-6uH1R29wedWdzVu8Gw4uk9v_vIHlsQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7aFw4I0IFNgDXKhW2Lv22j5UKLSpEtpGqKRSD0hmX6aVjB2Ioyp_jt_GrONN4BJOPXu9a8_Mzn6z8wJ4w2RQGMsk1ZlCA0VmnEq0d2gsM6a4Sjg3Ljn5bCyGF9Gny_hyC377XBgXVul1YquoTa3dHfl7lqHw8VRE6YfpT-q6Rjnvqm-hIbvWCuagLTHWJXac2MUNmnCzg9ER8vstY8eDyeGQdl0GqOZx1tA4FEbwQidchkUsTVhEidJCK4s_YbTghmVKBTLh2l0aBoXAD0lTKQyLVWJdMSY8AnYiHmVo_O18HIw_n6_8GA6NtSZfEtBIsND7VdvkPbTGXCxTTDM8Jmn878m4hrsrD-1d2J1XU7m4kWX51yF4_ADudeiV9Jfi9hC2bPUI7vvOEKRTFI_h68gFwJu5xhnJl0UlUTFpcmRLuZiR64og6iTjQX9C-uV3JHJz9YM0NVlecFji-rO1pcLd0EMf30TOa1W7otJP4OJWKPwUtqu6ss-AiERxbVOFsC6MWCgl4jOnl7RGJJNy1YPA0zDXXZFz12ujzNflmR3ZcyR77siexz14t3pluqzwsWnwnmdM3m32Wb4WzR7se2atH2-YbH_Fz_8v_Xzz0q9hdzg5O81PR-OTF3AHcZ1YBhjtwXbza25fInZq1KtOQAl8u-098Qf8qyii |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6aFJLm0DaPUrdpuoeeEpZIu9qVdDRJTF41pYkhh4DYl1qDKplYJvjfd9aS7AZKSs9ajcTMPr7ZmfkG4AtTQW4dU9SkGh0UlXKq0N-hQqVMcx1zbn1x8tehPB9Fl3firu1zOu2y3buQZFPT4Fmayvp4YvPjVeEbejI-D0jQFI8YKtbgZeR5EnBCj1h_GUbwYGjhccUBjSQLu7Dm30Q8PZhWaHMZIN2CzVk5UfNHVRR_nEGDt_C6BY-k31h7G164cgfedI0ZSLtOd-H-wuef25lBieRmXircFww5dYWaT8m4JAj6yPCsf0v6xY_qYVz__EXqijT3C4749mgLpm4_9KRLLyLfK115Tuc9GA3Obk_OadtGgRou0pqKUFrJcxNzFeZC2TCPYm2k0Q6tZI3klqVaByrmxt-KBrnEZZ4kSlomdOxS_g7Wy6p074HIWHPjEo2oKoxYqBTCI78tGINAIuG6B0Gnw8y0HOO-1UWRrdiRvdozVHvm1Z6JHhwuX5k0BBvPDd7vDJO1a22asRT_lycySnpw1Blr9fgZYUdLe_770x_-S_Zn2Ph2OsiuL4ZXH-EVgizZZPvsw3r9MHOfEMjU-mAxWX8DGZHnFQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jexAfnJ84UYngk5LRNk3aPo45UcEh6mCCUJI01WFtZXbI_PXerO2mPkx8bpqmnHycm3vvuQgdO8KKI-0IogIJBooIKBFg7xAmAkdS6VEameTk6z6_GLhXQzasoaMqF-ZTp2COzVz4ZU00CgaEbVRKG5wB3a6jxqB_03mYGVKeRVxe5FYxjwJTpMPKczlLjwN7x0QLMRLAQUTYz7NnQSjnPtBVtDJJ38T0QyTJt2PmvLlI1imiS17ak1y21ecv7calf7CO1kqSiTvFrNhANZ1uomZVwAGX63kLPV6aOPVoomBY-G6aCtg_FD7TiZi-41GKgRzifq9zjzvJUzYe5c-vOM9wcQ-hsSmjNlP0Nk27VRgSvs1kZrSft9HgvHffvSBluQWiKAtywmwecRorjwo7ZiKyY9eTiiupAc1IcRo5gZSW8Kgyt6dWzGE78H3BI4dJTwd0B9XTLNW7CHNPUqV9CezLdh1bCKBRZvtQCgiHT2ULWRUQoSq1yE1JjCRcqCgb7ELALjTYhayFTuavvBVCHMsa71fohuWafA-dAMZLfe76LXRaIb54vKSz0_mk-PvTe_9qvY_q-XiiD4DY5PKwnNpfdrnytw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+Synaptic+Delays+in+the+NEAT+Algorithm+to+Improve+Modelling+in+Cognitive+Robotics&rft.jtitle=Neural+processing+letters&rft.au=Caama%C3%B1o%2C+P.&rft.au=Salgado%2C+R.&rft.au=Bellas%2C+F.&rft.au=Duro%2C+R.+J.&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=43&rft.issue=2&rft.spage=479&rft.epage=504&rft_id=info:doi/10.1007%2Fs11063-015-9426-5&rft.externalDocID=10_1007_s11063_015_9426_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |