Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network
The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel...
        Saved in:
      
    
          | Published in | Energies (Basel) Vol. 17; no. 19; p. 4798 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1073 1996-1073  | 
| DOI | 10.3390/en17194798 | 
Cover
| Abstract | The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel deep learning-based EV charging load prediction framework to assess the impact of EVs on the MES. First, to model the EV traffic flow, a modified weight fusion spatial–temporal graph convolutional network (WSTGCN) is proposed to capture the inherent spatial–temporal characteristics of traffic flow. Specifically, to enhance the WSTGCN performance, the modified residual modules and weight fusion mechanism are integrated into the WSTGCN. Then, based on the predicted traffic flow, an improved queuing theory model is introduced to predict the charging load. In this improved queuing theory model, special consideration is given to subjective EV user behaviors, such as refusing to join queues and leaving impatiently, making the queuing model more realistic. Additionally, it should be noted that the proposed charging load predicting method relies on traffic flow data rather than historical charging data, which successfully addresses the data insufficiency problem of newly established charging stations, thereby offering significant practical value. Experimental results demonstrate that the proposed WSTGCN model exhibits superior accuracy in predicting traffic flow compared to other benchmark models, and the improved queuing theory model further enhances the accuracy of the results. | 
    
|---|---|
| AbstractList | The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel deep learning-based EV charging load prediction framework to assess the impact of EVs on the MES. First, to model the EV traffic flow, a modified weight fusion spatial–temporal graph convolutional network (WSTGCN) is proposed to capture the inherent spatial–temporal characteristics of traffic flow. Specifically, to enhance the WSTGCN performance, the modified residual modules and weight fusion mechanism are integrated into the WSTGCN. Then, based on the predicted traffic flow, an improved queuing theory model is introduced to predict the charging load. In this improved queuing theory model, special consideration is given to subjective EV user behaviors, such as refusing to join queues and leaving impatiently, making the queuing model more realistic. Additionally, it should be noted that the proposed charging load predicting method relies on traffic flow data rather than historical charging data, which successfully addresses the data insufficiency problem of newly established charging stations, thereby offering significant practical value. Experimental results demonstrate that the proposed WSTGCN model exhibits superior accuracy in predicting traffic flow compared to other benchmark models, and the improved queuing theory model further enhances the accuracy of the results. | 
    
| Audience | Academic | 
    
| Author | Zhang, Xian Zhou, Hui Wen, Ziyi Cong, Huiluan Wang, Zhiqiang Zhang, Jun  | 
    
| Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 2 givenname: Huiluan surname: Cong fullname: Cong, Huiluan – sequence: 3 givenname: Hui surname: Zhou fullname: Zhou, Hui – sequence: 4 givenname: Zhiqiang surname: Wang fullname: Wang, Zhiqiang – sequence: 5 givenname: Ziyi surname: Wen fullname: Wen, Ziyi – sequence: 6 givenname: Xian surname: Zhang fullname: Zhang, Xian  | 
    
| BookMark | eNp9kcFu1DAQhi1UJErphSeIxA20rR177fhYVm2ptAIkChytiT3OesnGwUmoeuMdeEOepA5BwAn74NGvfz6N_3lKjrrYISHPGT3jXNNz7JhiWihdPSLHTGu5YlTxo3_qJ-R0GPY0H84Z5_yYxMsW7ZiCLT7hLtgWi80OUhO6pthGcMX7hC7YMcSueA0DuiIXnzE0u7G4moZZ_tDDGKD9-f3HLR76mKAtrhP0u2ITu2-xneberL3F8S6mL8_IYw_tgKe_3xPy8erydvNmtX13fbO52K4sX-txJRxIqChWrKo9Y1BXDuralpqxMqtSlU4gr9F76lwtpLNlRaFEx6VcW1vzE3KzcF2EvelTOEC6NxGC-SXE1BhI4_xhI0qJas1BeWqFrwVYoUAz7SsmpELIrFcLa-p6uL-Dtv0DZNTM0Zu_0Wf3i8Xdp_h1wmE0-zilHMFgOGNSCpG3kV1ni6uBPELofBwT2HwdHoLNe_Uh6xcV47RSazpjXy4NNsVhSOj_N8MDFwWkTQ | 
    
| Cites_doi | 10.3233/JIFS-231775 10.1016/j.apenergy.2017.02.021 10.1109/PSGEC51302.2021.9542354 10.24963/ijcai.2018/505 10.1109/TSG.2020.2998072 10.1016/j.epsr.2016.06.003 10.1038/s41598-024-56507-2 10.1109/TIA.2021.3089446 10.1080/15472450.2021.1966627 10.1016/j.apenergy.2023.121032 10.3390/en11051253 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1109/TSG.2023.3321116 10.1007/s10846-024-02125-z 10.1109/TCYB.2020.2975134 10.1016/j.trc.2023.104205 10.3390/pr11082256 10.1109/TTE.2022.3192285 10.1109/TII.2020.2990397 10.1007/s40031-022-00798-4 10.1007/s10489-024-05394-1 10.1080/15325008.2017.1336583  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/en17194798 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ - Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1073 | 
    
| ExternalDocumentID | oai_doaj_org_article_426e753a7f0c4fb4ac47a919f81467ea 10.3390/en17194798 A813087508 10_3390_en17194798  | 
    
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-4da6a80e818bf11ab8dabbc291120e8672d4e3beff0ddb46dc280a2ed3665ccb3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1996-1073 | 
    
| IngestDate | Tue Oct 14 19:08:28 EDT 2025 Sun Sep 07 11:15:50 EDT 2025 Mon Jun 30 14:50:22 EDT 2025 Tue Jul 01 05:40:23 EDT 2025 Thu Oct 16 04:39:07 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-4da6a80e818bf11ab8dabbc291120e8672d4e3beff0ddb46dc280a2ed3665ccb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/en17194798 | 
    
| PQID | 3116644996 | 
    
| PQPubID | 2032402 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_426e753a7f0c4fb4ac47a919f81467ea unpaywall_primary_10_3390_en17194798 proquest_journals_3116644996 gale_infotracacademiconefile_A813087508 crossref_primary_10_3390_en17194798  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-10-01 | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Energies (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Yi (ref_5) 2022; 26 Mekkaoui (ref_9) 2024; 54 Wang (ref_4) 2023; 340 ref_10 Zhang (ref_16) 2024; 46 Louie (ref_2) 2017; 45 Sasidharan (ref_7) 2023; 104 Wang (ref_11) 2023; 153 Guo (ref_23) 2019; 33 Chen (ref_13) 2024; 110 ref_25 Dabbaghjamanesh (ref_8) 2021; 17 Li (ref_14) 2021; 35 ref_22 ref_21 Amini (ref_1) 2016; 140 Zhang (ref_18) 2020; 51 Williams (ref_24) 2003; 129 ref_3 Li (ref_15) 2023; 17 Shi (ref_17) 2023; 15 ref_29 ref_28 ref_27 Arias (ref_20) 2017; 195 ref_26 Jahangir (ref_6) 2020; 11 Wu (ref_19) 2021; 58 Su (ref_12) 2023; 9  | 
    
| References_xml | – volume: 46 start-page: 821 year: 2024 ident: ref_16 article-title: Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-231775 – ident: ref_28 – volume: 195 start-page: 738 year: 2017 ident: ref_20 article-title: Prediction of electric vehicle charging-power demand in realistic urban traffic networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.021 – ident: ref_22 doi: 10.1109/PSGEC51302.2021.9542354 – ident: ref_26 – ident: ref_27 doi: 10.24963/ijcai.2018/505 – volume: 11 start-page: 4738 year: 2020 ident: ref_6 article-title: Plug-in electric vehicle behavior modeling in energy market: A novel deep learning-based approach with clustering technique publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2998072 – volume: 140 start-page: 378 year: 2016 ident: ref_1 article-title: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.06.003 – ident: ref_3 doi: 10.1038/s41598-024-56507-2 – volume: 58 start-page: 2718 year: 2021 ident: ref_19 article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3089446 – volume: 33 start-page: 922 year: 2019 ident: ref_23 article-title: Attention-based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 35 start-page: 4189 year: 2021 ident: ref_14 article-title: Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 26 start-page: 690 year: 2022 ident: ref_5 article-title: Electric vehicle charging demand forecasting using deep learning model publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2021.1966627 – volume: 340 start-page: 121032 year: 2023 ident: ref_4 article-title: Short-term electric vehicle charging demand prediction: A deep learning approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121032 – ident: ref_10 doi: 10.3390/en11051253 – volume: 129 start-page: 664 year: 2003 ident: ref_24 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 15 start-page: 3016 year: 2023 ident: ref_17 article-title: Load forecasting of electric vehicle charging stations: Attention-based spatiotemporal multi-graph convolutional networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3321116 – ident: ref_25 – volume: 110 start-page: 94 year: 2024 ident: ref_13 article-title: Multi-encoder spatio-temporal feature fusion network for electric vehicle charging load prediction publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-024-02125-z – ident: ref_29 – volume: 17 start-page: 1 year: 2023 ident: ref_15 article-title: Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution publication-title: ACM Trans. Knowl. Discov. Data – volume: 51 start-page: 3157 year: 2020 ident: ref_18 article-title: Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2975134 – volume: 153 start-page: 104205 year: 2023 ident: ref_11 article-title: Predicting electric vehicle charging demand using a heterogeneous spatio-temporal graph convolutional network publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2023.104205 – ident: ref_21 doi: 10.3390/pr11082256 – volume: 9 start-page: 114 year: 2023 ident: ref_12 article-title: Operating status prediction model at EV charging stations with fusing spatiotemporal graph convolutional network publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2022.3192285 – volume: 17 start-page: 4229 year: 2021 ident: ref_8 article-title: Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2990397 – volume: 104 start-page: 105 year: 2023 ident: ref_7 article-title: Comparative analysis of deep learning models for electric vehicle charging load forecasting publication-title: J. Inst. Eng. Ser. B doi: 10.1007/s40031-022-00798-4 – volume: 54 start-page: 4352 year: 2024 ident: ref_9 article-title: LA-RCNN: Luong attention-recurrent-convolutional neural network for EV charging load prediction publication-title: Appl. Intell. doi: 10.1007/s10489-024-05394-1 – volume: 45 start-page: 1498 year: 2017 ident: ref_2 article-title: Time-series modeling of aggregated electric vehicle charging station load publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325008.2017.1336583  | 
    
| SSID | ssj0000331333 | 
    
| Score | 2.3837717 | 
    
| Snippet | The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 4798 | 
    
| SubjectTerms | Accuracy Battery chargers charging load prediction Deep learning Electric vehicles Neural networks Queuing theory spatial–temporal network Time series Traffic flow User behavior Wavelet transforms weight fusion  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kF81B4gtHozQY8DRkerqnu-eYhKxBNHhINLem-jEoLLNh3TV48z_4D_0lVs1M4oqgF29D0wxFVXfX9_XjK4C9xlY2K6NLgsum1Mbk0rW5LYMKskbC-Crwa-S3p-bkXL--aC42Sn3xnbBRHnh03D5lkEyQGm1XRd0FjVFbbGXb8d6VzQM0qly7QaaGNVgpIl9q1CNVxOv3cy8tEXbbut8y0CDU_-dyvA231_0lfr3C-Xwj38x24O4EFMXBaOA9uJX7-7C9IR_4ABbHQw2bT1G8zx-5l-DDc646JN4sMIl3Sz6FYc-LQ0pWSdDHh2ErVMzWvEsmuCAxDcAf376fjRJVc_GKFazF0aL_Mg1Kajsd74o_hPPZ8dnRSTkVUCijatpVqRMadFWmpBw6KTG4hCHEmha4mlqNrZPOKuSuq1IK2qRYuwrrnJQxTYxBPYKtftHnxyAaVJn-hE52RMlyCJTWiAnJmKoO0dkCXlw71V-OOhme-AW73v9yfQGH7O-bHqxtPTRQxP0Ucf-viBfwkqPleQaulhhxekhAhrKWlT9wkmUOCXkWsHsdUD9Nzc9eSWkIBBLPK2DvJsh_MfrJ_zD6KdypCQ6N1wB3YWu1XOdnBGdW4fkwcn8COsX0Kg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH5itJYFCz6FZrPJJnko0it3LaJHkVb7FmY_osKRnOedxTf_B_9D_xJn8nGtCH0LS1iWmdmZ38zu_gZgP82izCudhASXdZho7cO88EVolJExEsZXhl8jv5_p04vk7WV6uQWz4S0MX6scfGLrqF1juUZ-oKTUFLsJnr9ZfAu5axSfrg4tNLBvreAOW4qxO7AdMzPWCLbHk9nZh03VJVKKkjLV8ZQqyvcPfC0zSuSzIv8nMrUE_v-76R24u64X-PMK5_MbcWj6AO73AFIcdRp_CFu-fgQ7N2gFH0MzaXvbfLXio__Cfwk-VOduROJdg06cLfl0hjUixhTEnKCPT22JVEzXXD0T3KiYDPPPr9_nHXXVXJwws7U4buofvbHS2Ky7Q_4ELqaT8-PTsG-sEFqVFqswcagxjzwFa1NJiSZ3aIyNyfHFNKqz2CVeGV9VkXMm0c7GeYSxd0rr1FqjnsKobmr_DESKytNMmMuKUjVvDIU7ypCkdVGFmGcBvBqEWi46_oyS8g4WfXkt-gDGLO_NH8x53Q40y89lv4VKwhKekivMqsgmlUnQJhkWsqi4ipl5DOA1a6vknblaosX-gQEtlDmuyqNcMv0hIdIAdgeFlv2W_V5eG1gA-xsl37Lo57fP8gLuxQSAuot_uzBaLdf-JQGYldnrrfIvpbvyEQ priority: 102 providerName: ProQuest  | 
    
| Title | Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network | 
    
| URI | https://www.proquest.com/docview/3116644996 https://doi.org/10.3390/en17194798 https://doaj.org/article/426e753a7f0c4fb4ac47a919f81467ea  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO - Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9t7QPsYfydyBiVBZN4yohjx04e26rthKCq0ArlKfK_CESVTiUFwRPfgW_IJ-GcpKMMaeIliiwnsnxn3-_u7N8BnCYyko4JHiJcFiEXwoVp5rJQM01jhRifaX8b-fVUnM_5y0Wy2IOn27swO_l7hu74C1dSiX62zNJ96IoE8XYHuvPprP--ThdnAvcRyRre0Wsf_GVpakL-f7fdA7i1KS_Vt69qudyxK-M7MNyOqDlO8ulsU-kz8_0aWePNQ74Lhy2sJP1GD-7Bnivvw8EO2eADWI3qijcfDXnrPvhexKfafY0i8mqlLJmtfc7Gy4kM0LRZgi_v6sApGW98TI348sWorr9-_LxoCK2WZOL5rslwVX5pVRjbps3J8ocwH48uhudhW24hNCzJqpBbJVQaOTThuqBU6dQqrU2M22GMrULGljumXVFE1mourInTSMXOMiESYzQ7gk65Kt0jIIliDv-kUlqgA-e0RiOIfhM1NiqUSmUAz7aiyS8bVo0cvRE_ffmf6Qtg4KV21cMzYdcNONt5u7ByRBgOXS4li8jwQnNluFQZzQof25ROBfDcyzz367VaK6Paawc4UM98lfdT6kkREacGcLJVi7xdyJ9zRqlAyIiKFsDplarcMOjj_-v2GG7HCI-aY4En0KnWG_cE4U2le7Cfjic96A5G09mbXh0kwOdkQXut5v8GOKr8GQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QPyKlAIrUcTJqte7WduHCjUlIaVpVKEUejP7Z6gU2SFNqHrjHXgfHoYnYcZ20iKk3nqzVtZqNf8zu_MNwHY7DmMvlAwwXFaBVMoHSerTwAjDI40xvjDUjXw0VP0T-eG0fboCvxe9MPSscmETK0PtSks18h3BuULfjeH528n3gKZG0e3qYoSGbkYruN0KYqxp7Dj0lxeYwp3vHrxDfr-Ool53tN8PmikDgRXtdBZIp5VOQo-ey-Sca5M4bYyN0ApEuKriyEkvjM_z0DkjlbNREurIO6FU21ojcN87sCaFTDH5W-t0h8cfl1WeUAhMAkWNiypEGu74gsc8lXGa_OMJq4EB_7uFDVifFxN9eaHH42t-r3cf7jUBK9urJewBrPjiIWxcgzF8BGW3mqVzZtkn_43-YnSJT9OP2KDUjh1P6TaIJIB10Gk6hh-fq5Is682pWsdoMDIqwp-fv0Y1VNaYvSckbbZfFj8a5cC1Yf1m_TGc3AqJn8BqURb-KbC2Fh530gnPMTX0xqB7xYyMWxfmWidxC14tiJpNaryODPMcIn12RfoWdIjeyz8IY7taKKdfs0ZlM4xdPCZzOs5DK3MjtZWxTnmaU9U09roFb4hbGVmC2VRb3TQ04EEJUyvbSzjBLWIE3IKtBUOzxkScZ1cC3YLtJZNvOPTmzbu8hPX-6GiQDQ6Gh8_gboTBV_3ocAtWZ9O5f47B08y8aCSUwZfbVoq_gbIxUg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMASRZyijePESQ4I9ZW2tKx6aKE341cAaZUs212q3vgP_Bt-Dr-EmSS7LULqrbfIiixrxvP0zDcAa2kWZV7IJER3WYaJlD7MC1-ERhgea_TxhaFu5A9DuXucvD9JT5bg97wXhsoq5zqxVdSusZQjHwjOJdpudM8HVV8WcbhVvht_D2mCFL20zsdpdFdk35-fYfh2-nZvC3n9Oo7L7aPN3bCfMBBakRbTMHFa6jzyaLVMxbk2udPG2Bg1QIyrMotd4oXxVRU5ZxLpbJxHOvZOSJlaawTuewNuZoTiTl3q5c4ivxMJgeGf6BBRhSiiga95xoskK_J_bGA7KuB_g7ACt2f1WJ-f6dHoksUr78Hd3lVl693dug9Lvn4AK5cADB9Cs91O0flm2Uf_lf5i9HxPc4_YQaMdO5zQOxDxnm2guXQMPz61yVhWzihPx2gkMorAn5-_jjqQrBHbIQxtttnUP3qxwLVhV63-CI6vhcCPYbluav8EWKqFx510zisMCr0xaFgxFuPWRZXWeRbAqzlR1bhD6lAY4RDp1QXpA9ggei_-IHTtdqGZfFG9sCr0WjyGcTqrIptUJtE2yXTBi4rypZnXAbwhbinSAdOJtrpvZcCDEpqWWs85AS2i7xvA6pyhqlcOp-riKgewtmDyFYd-evUuL-EWioI62BvuP4M7MXpdXbXhKixPJzP_HL2mqXnRXk8Gn69bHv4CQg4u7A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QF64B8RKMiCSpxS4tixk-N21aVCsOqhC-UUjX-iIlbZasmC6KnvwBv2STpOsmUpUsUtsuxo5Bl7vvHY3wDsZDrRXigZE1xWsVTKx3nhi9gIw1MkjC9MeI38caIOpvL9cXa8Aa9Wb2HW8veCwvG3vuaa4mxd5LdgU2WEtwewOZ0cDr-06eJC0T6iRcc7em3AX56mJeT_d9vdgtvL-hR__cTZbM2vjO_BaCVRd53k2-6yMbv27BpZ480i34e7Paxkw84OHsCGrx_C1hrZ4COY77cVb75a9smfhF4spNpDjSL2YY6OHS5Cziboie2Ra3OMPj63B6dsvAxnaiyULyZzvTj_fdQRWs3Yu8B3zUbz-kdvwtQ26W6WP4bpeP9odBD35RZiK7KiiaVDhXniyYWbinM0uUNjbErbYUqtSqdOemF8VSXOGamcTfMEU--EUpm1RjyBQT2v_VNgGQpPf8KcVxTAeWPICVLcxK1LKsRcR_B6pZrytGPVKCkaCdNX_pm-CPaC1q56BCbstoFmu-wXVkkIw1PIhbpKrKyMRCs1Fryowtmm9hjBm6DzMqzXZoEW-2cHJGhgviqHOQ-kiIRTI9hemUXZL-TvpeBcEWQkQ4tg58pUbhD62f91ew53UoJH3bXAbRg0i6V_QfCmMS97-74E4FT3sw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Vehicle+Charging+Load+Prediction+Based+on+Weight+Fusion+Spatial%E2%80%93Temporal+Graph+Convolutional+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Jun&rft.au=Cong%2C+Huiluan&rft.au=Zhou%2C+Hui&rft.au=Wang%2C+Zhiqiang&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=19&rft_id=info:doi/10.3390%2Fen17194798&rft.externalDocID=A813087508 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |