Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network

The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 19; p. 4798
Main Authors Zhang, Jun, Cong, Huiluan, Zhou, Hui, Wang, Zhiqiang, Wen, Ziyi, Zhang, Xian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en17194798

Cover

Abstract The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel deep learning-based EV charging load prediction framework to assess the impact of EVs on the MES. First, to model the EV traffic flow, a modified weight fusion spatial–temporal graph convolutional network (WSTGCN) is proposed to capture the inherent spatial–temporal characteristics of traffic flow. Specifically, to enhance the WSTGCN performance, the modified residual modules and weight fusion mechanism are integrated into the WSTGCN. Then, based on the predicted traffic flow, an improved queuing theory model is introduced to predict the charging load. In this improved queuing theory model, special consideration is given to subjective EV user behaviors, such as refusing to join queues and leaving impatiently, making the queuing model more realistic. Additionally, it should be noted that the proposed charging load predicting method relies on traffic flow data rather than historical charging data, which successfully addresses the data insufficiency problem of newly established charging stations, thereby offering significant practical value. Experimental results demonstrate that the proposed WSTGCN model exhibits superior accuracy in predicting traffic flow compared to other benchmark models, and the improved queuing theory model further enhances the accuracy of the results.
AbstractList The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel deep learning-based EV charging load prediction framework to assess the impact of EVs on the MES. First, to model the EV traffic flow, a modified weight fusion spatial–temporal graph convolutional network (WSTGCN) is proposed to capture the inherent spatial–temporal characteristics of traffic flow. Specifically, to enhance the WSTGCN performance, the modified residual modules and weight fusion mechanism are integrated into the WSTGCN. Then, based on the predicted traffic flow, an improved queuing theory model is introduced to predict the charging load. In this improved queuing theory model, special consideration is given to subjective EV user behaviors, such as refusing to join queues and leaving impatiently, making the queuing model more realistic. Additionally, it should be noted that the proposed charging load predicting method relies on traffic flow data rather than historical charging data, which successfully addresses the data insufficiency problem of newly established charging stations, thereby offering significant practical value. Experimental results demonstrate that the proposed WSTGCN model exhibits superior accuracy in predicting traffic flow compared to other benchmark models, and the improved queuing theory model further enhances the accuracy of the results.
Audience Academic
Author Zhang, Xian
Zhou, Hui
Wen, Ziyi
Cong, Huiluan
Wang, Zhiqiang
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 2
  givenname: Huiluan
  surname: Cong
  fullname: Cong, Huiluan
– sequence: 3
  givenname: Hui
  surname: Zhou
  fullname: Zhou, Hui
– sequence: 4
  givenname: Zhiqiang
  surname: Wang
  fullname: Wang, Zhiqiang
– sequence: 5
  givenname: Ziyi
  surname: Wen
  fullname: Wen, Ziyi
– sequence: 6
  givenname: Xian
  surname: Zhang
  fullname: Zhang, Xian
BookMark eNp9kcFu1DAQhi1UJErphSeIxA20rR177fhYVm2ptAIkChytiT3OesnGwUmoeuMdeEOepA5BwAn74NGvfz6N_3lKjrrYISHPGT3jXNNz7JhiWihdPSLHTGu5YlTxo3_qJ-R0GPY0H84Z5_yYxMsW7ZiCLT7hLtgWi80OUhO6pthGcMX7hC7YMcSueA0DuiIXnzE0u7G4moZZ_tDDGKD9-f3HLR76mKAtrhP0u2ITu2-xneberL3F8S6mL8_IYw_tgKe_3xPy8erydvNmtX13fbO52K4sX-txJRxIqChWrKo9Y1BXDuralpqxMqtSlU4gr9F76lwtpLNlRaFEx6VcW1vzE3KzcF2EvelTOEC6NxGC-SXE1BhI4_xhI0qJas1BeWqFrwVYoUAz7SsmpELIrFcLa-p6uL-Dtv0DZNTM0Zu_0Wf3i8Xdp_h1wmE0-zilHMFgOGNSCpG3kV1ni6uBPELofBwT2HwdHoLNe_Uh6xcV47RSazpjXy4NNsVhSOj_N8MDFwWkTQ
Cites_doi 10.3233/JIFS-231775
10.1016/j.apenergy.2017.02.021
10.1109/PSGEC51302.2021.9542354
10.24963/ijcai.2018/505
10.1109/TSG.2020.2998072
10.1016/j.epsr.2016.06.003
10.1038/s41598-024-56507-2
10.1109/TIA.2021.3089446
10.1080/15472450.2021.1966627
10.1016/j.apenergy.2023.121032
10.3390/en11051253
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1109/TSG.2023.3321116
10.1007/s10846-024-02125-z
10.1109/TCYB.2020.2975134
10.1016/j.trc.2023.104205
10.3390/pr11082256
10.1109/TTE.2022.3192285
10.1109/TII.2020.2990397
10.1007/s40031-022-00798-4
10.1007/s10489-024-05394-1
10.1080/15325008.2017.1336583
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/en17194798
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_426e753a7f0c4fb4ac47a919f81467ea
10.3390/en17194798
A813087508
10_3390_en17194798
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c359t-4da6a80e818bf11ab8dabbc291120e8672d4e3beff0ddb46dc280a2ed3665ccb3
IEDL.DBID UNPAY
ISSN 1996-1073
IngestDate Tue Oct 14 19:08:28 EDT 2025
Sun Sep 07 11:15:50 EDT 2025
Mon Jun 30 14:50:22 EDT 2025
Tue Jul 01 05:40:23 EDT 2025
Thu Oct 16 04:39:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4da6a80e818bf11ab8dabbc291120e8672d4e3beff0ddb46dc280a2ed3665ccb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/en17194798
PQID 3116644996
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_426e753a7f0c4fb4ac47a919f81467ea
unpaywall_primary_10_3390_en17194798
proquest_journals_3116644996
gale_infotracacademiconefile_A813087508
crossref_primary_10_3390_en17194798
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yi (ref_5) 2022; 26
Mekkaoui (ref_9) 2024; 54
Wang (ref_4) 2023; 340
ref_10
Zhang (ref_16) 2024; 46
Louie (ref_2) 2017; 45
Sasidharan (ref_7) 2023; 104
Wang (ref_11) 2023; 153
Guo (ref_23) 2019; 33
Chen (ref_13) 2024; 110
ref_25
Dabbaghjamanesh (ref_8) 2021; 17
Li (ref_14) 2021; 35
ref_22
ref_21
Amini (ref_1) 2016; 140
Zhang (ref_18) 2020; 51
Williams (ref_24) 2003; 129
ref_3
Li (ref_15) 2023; 17
Shi (ref_17) 2023; 15
ref_29
ref_28
ref_27
Arias (ref_20) 2017; 195
ref_26
Jahangir (ref_6) 2020; 11
Wu (ref_19) 2021; 58
Su (ref_12) 2023; 9
References_xml – volume: 46
  start-page: 821
  year: 2024
  ident: ref_16
  article-title: Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-231775
– ident: ref_28
– volume: 195
  start-page: 738
  year: 2017
  ident: ref_20
  article-title: Prediction of electric vehicle charging-power demand in realistic urban traffic networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.021
– ident: ref_22
  doi: 10.1109/PSGEC51302.2021.9542354
– ident: ref_26
– ident: ref_27
  doi: 10.24963/ijcai.2018/505
– volume: 11
  start-page: 4738
  year: 2020
  ident: ref_6
  article-title: Plug-in electric vehicle behavior modeling in energy market: A novel deep learning-based approach with clustering technique
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2998072
– volume: 140
  start-page: 378
  year: 2016
  ident: ref_1
  article-title: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.06.003
– ident: ref_3
  doi: 10.1038/s41598-024-56507-2
– volume: 58
  start-page: 2718
  year: 2021
  ident: ref_19
  article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2021.3089446
– volume: 33
  start-page: 922
  year: 2019
  ident: ref_23
  article-title: Attention-based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 35
  start-page: 4189
  year: 2021
  ident: ref_14
  article-title: Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 26
  start-page: 690
  year: 2022
  ident: ref_5
  article-title: Electric vehicle charging demand forecasting using deep learning model
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2021.1966627
– volume: 340
  start-page: 121032
  year: 2023
  ident: ref_4
  article-title: Short-term electric vehicle charging demand prediction: A deep learning approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121032
– ident: ref_10
  doi: 10.3390/en11051253
– volume: 129
  start-page: 664
  year: 2003
  ident: ref_24
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 15
  start-page: 3016
  year: 2023
  ident: ref_17
  article-title: Load forecasting of electric vehicle charging stations: Attention-based spatiotemporal multi-graph convolutional networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3321116
– ident: ref_25
– volume: 110
  start-page: 94
  year: 2024
  ident: ref_13
  article-title: Multi-encoder spatio-temporal feature fusion network for electric vehicle charging load prediction
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-024-02125-z
– ident: ref_29
– volume: 17
  start-page: 1
  year: 2023
  ident: ref_15
  article-title: Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 51
  start-page: 3157
  year: 2020
  ident: ref_18
  article-title: Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2975134
– volume: 153
  start-page: 104205
  year: 2023
  ident: ref_11
  article-title: Predicting electric vehicle charging demand using a heterogeneous spatio-temporal graph convolutional network
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2023.104205
– ident: ref_21
  doi: 10.3390/pr11082256
– volume: 9
  start-page: 114
  year: 2023
  ident: ref_12
  article-title: Operating status prediction model at EV charging stations with fusing spatiotemporal graph convolutional network
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2022.3192285
– volume: 17
  start-page: 4229
  year: 2021
  ident: ref_8
  article-title: Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2990397
– volume: 104
  start-page: 105
  year: 2023
  ident: ref_7
  article-title: Comparative analysis of deep learning models for electric vehicle charging load forecasting
  publication-title: J. Inst. Eng. Ser. B
  doi: 10.1007/s40031-022-00798-4
– volume: 54
  start-page: 4352
  year: 2024
  ident: ref_9
  article-title: LA-RCNN: Luong attention-recurrent-convolutional neural network for EV charging load prediction
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05394-1
– volume: 45
  start-page: 1498
  year: 2017
  ident: ref_2
  article-title: Time-series modeling of aggregated electric vehicle charging station load
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325008.2017.1336583
SSID ssj0000331333
Score 2.3837717
Snippet The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4798
SubjectTerms Accuracy
Battery chargers
charging load prediction
Deep learning
Electric vehicles
Neural networks
Queuing theory
spatial–temporal network
Time series
Traffic flow
User behavior
Wavelet transforms
weight fusion
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kF81B4gtHozQY8DRkerqnu-eYhKxBNHhINLem-jEoLLNh3TV48z_4D_0lVs1M4oqgF29D0wxFVXfX9_XjK4C9xlY2K6NLgsum1Mbk0rW5LYMKskbC-Crwa-S3p-bkXL--aC42Sn3xnbBRHnh03D5lkEyQGm1XRd0FjVFbbGXb8d6VzQM0qly7QaaGNVgpIl9q1CNVxOv3cy8tEXbbut8y0CDU_-dyvA231_0lfr3C-Xwj38x24O4EFMXBaOA9uJX7-7C9IR_4ABbHQw2bT1G8zx-5l-DDc646JN4sMIl3Sz6FYc-LQ0pWSdDHh2ErVMzWvEsmuCAxDcAf376fjRJVc_GKFazF0aL_Mg1Kajsd74o_hPPZ8dnRSTkVUCijatpVqRMadFWmpBw6KTG4hCHEmha4mlqNrZPOKuSuq1IK2qRYuwrrnJQxTYxBPYKtftHnxyAaVJn-hE52RMlyCJTWiAnJmKoO0dkCXlw71V-OOhme-AW73v9yfQGH7O-bHqxtPTRQxP0Ucf-viBfwkqPleQaulhhxekhAhrKWlT9wkmUOCXkWsHsdUD9Nzc9eSWkIBBLPK2DvJsh_MfrJ_zD6KdypCQ6N1wB3YWu1XOdnBGdW4fkwcn8COsX0Kg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH5itJYFCz6FZrPJJnko0it3LaJHkVb7FmY_osKRnOedxTf_B_9D_xJn8nGtCH0LS1iWmdmZ38zu_gZgP82izCudhASXdZho7cO88EVolJExEsZXhl8jv5_p04vk7WV6uQWz4S0MX6scfGLrqF1juUZ-oKTUFLsJnr9ZfAu5axSfrg4tNLBvreAOW4qxO7AdMzPWCLbHk9nZh03VJVKKkjLV8ZQqyvcPfC0zSuSzIv8nMrUE_v-76R24u64X-PMK5_MbcWj6AO73AFIcdRp_CFu-fgQ7N2gFH0MzaXvbfLXio__Cfwk-VOduROJdg06cLfl0hjUixhTEnKCPT22JVEzXXD0T3KiYDPPPr9_nHXXVXJwws7U4buofvbHS2Ky7Q_4ELqaT8-PTsG-sEFqVFqswcagxjzwFa1NJiSZ3aIyNyfHFNKqz2CVeGV9VkXMm0c7GeYSxd0rr1FqjnsKobmr_DESKytNMmMuKUjVvDIU7ypCkdVGFmGcBvBqEWi46_oyS8g4WfXkt-gDGLO_NH8x53Q40y89lv4VKwhKekivMqsgmlUnQJhkWsqi4ipl5DOA1a6vknblaosX-gQEtlDmuyqNcMv0hIdIAdgeFlv2W_V5eG1gA-xsl37Lo57fP8gLuxQSAuot_uzBaLdf-JQGYldnrrfIvpbvyEQ
  priority: 102
  providerName: ProQuest
Title Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network
URI https://www.proquest.com/docview/3116644996
https://doi.org/10.3390/en17194798
https://doaj.org/article/426e753a7f0c4fb4ac47a919f81467ea
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9t7QPsYfydyBiVBZN4yohjx04e26rthKCq0ArlKfK_CESVTiUFwRPfgW_IJ-GcpKMMaeIliiwnsnxn3-_u7N8BnCYyko4JHiJcFiEXwoVp5rJQM01jhRifaX8b-fVUnM_5y0Wy2IOn27swO_l7hu74C1dSiX62zNJ96IoE8XYHuvPprP--ThdnAvcRyRre0Wsf_GVpakL-f7fdA7i1KS_Vt69qudyxK-M7MNyOqDlO8ulsU-kz8_0aWePNQ74Lhy2sJP1GD-7Bnivvw8EO2eADWI3qijcfDXnrPvhexKfafY0i8mqlLJmtfc7Gy4kM0LRZgi_v6sApGW98TI348sWorr9-_LxoCK2WZOL5rslwVX5pVRjbps3J8ocwH48uhudhW24hNCzJqpBbJVQaOTThuqBU6dQqrU2M22GMrULGljumXVFE1mourInTSMXOMiESYzQ7gk65Kt0jIIliDv-kUlqgA-e0RiOIfhM1NiqUSmUAz7aiyS8bVo0cvRE_ffmf6Qtg4KV21cMzYdcNONt5u7ByRBgOXS4li8jwQnNluFQZzQof25ROBfDcyzz367VaK6Paawc4UM98lfdT6kkREacGcLJVi7xdyJ9zRqlAyIiKFsDplarcMOjj_-v2GG7HCI-aY4En0KnWG_cE4U2le7Cfjic96A5G09mbXh0kwOdkQXut5v8GOKr8GQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QPyKlAIrUcTJqte7WduHCjUlIaVpVKEUejP7Z6gU2SFNqHrjHXgfHoYnYcZ20iKk3nqzVtZqNf8zu_MNwHY7DmMvlAwwXFaBVMoHSerTwAjDI40xvjDUjXw0VP0T-eG0fboCvxe9MPSscmETK0PtSks18h3BuULfjeH528n3gKZG0e3qYoSGbkYruN0KYqxp7Dj0lxeYwp3vHrxDfr-Ool53tN8PmikDgRXtdBZIp5VOQo-ey-Sca5M4bYyN0ApEuKriyEkvjM_z0DkjlbNREurIO6FU21ojcN87sCaFTDH5W-t0h8cfl1WeUAhMAkWNiypEGu74gsc8lXGa_OMJq4EB_7uFDVifFxN9eaHH42t-r3cf7jUBK9urJewBrPjiIWxcgzF8BGW3mqVzZtkn_43-YnSJT9OP2KDUjh1P6TaIJIB10Gk6hh-fq5Is682pWsdoMDIqwp-fv0Y1VNaYvSckbbZfFj8a5cC1Yf1m_TGc3AqJn8BqURb-KbC2Fh530gnPMTX0xqB7xYyMWxfmWidxC14tiJpNaryODPMcIn12RfoWdIjeyz8IY7taKKdfs0ZlM4xdPCZzOs5DK3MjtZWxTnmaU9U09roFb4hbGVmC2VRb3TQ04EEJUyvbSzjBLWIE3IKtBUOzxkScZ1cC3YLtJZNvOPTmzbu8hPX-6GiQDQ6Gh8_gboTBV_3ocAtWZ9O5f47B08y8aCSUwZfbVoq_gbIxUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMASRZyijePESQ4I9ZW2tKx6aKE341cAaZUs212q3vgP_Bt-Dr-EmSS7LULqrbfIiixrxvP0zDcAa2kWZV7IJER3WYaJlD7MC1-ERhgea_TxhaFu5A9DuXucvD9JT5bg97wXhsoq5zqxVdSusZQjHwjOJdpudM8HVV8WcbhVvht_D2mCFL20zsdpdFdk35-fYfh2-nZvC3n9Oo7L7aPN3bCfMBBakRbTMHFa6jzyaLVMxbk2udPG2Bg1QIyrMotd4oXxVRU5ZxLpbJxHOvZOSJlaawTuewNuZoTiTl3q5c4ivxMJgeGf6BBRhSiiga95xoskK_J_bGA7KuB_g7ACt2f1WJ-f6dHoksUr78Hd3lVl693dug9Lvn4AK5cADB9Cs91O0flm2Uf_lf5i9HxPc4_YQaMdO5zQOxDxnm2guXQMPz61yVhWzihPx2gkMorAn5-_jjqQrBHbIQxtttnUP3qxwLVhV63-CI6vhcCPYbluav8EWKqFx510zisMCr0xaFgxFuPWRZXWeRbAqzlR1bhD6lAY4RDp1QXpA9ggei_-IHTtdqGZfFG9sCr0WjyGcTqrIptUJtE2yXTBi4rypZnXAbwhbinSAdOJtrpvZcCDEpqWWs85AS2i7xvA6pyhqlcOp-riKgewtmDyFYd-evUuL-EWioI62BvuP4M7MXpdXbXhKixPJzP_HL2mqXnRXk8Gn69bHv4CQg4u7A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QF64B8RKMiCSpxS4tixk-N21aVCsOqhC-UUjX-iIlbZasmC6KnvwBv2STpOsmUpUsUtsuxo5Bl7vvHY3wDsZDrRXigZE1xWsVTKx3nhi9gIw1MkjC9MeI38caIOpvL9cXa8Aa9Wb2HW8veCwvG3vuaa4mxd5LdgU2WEtwewOZ0cDr-06eJC0T6iRcc7em3AX56mJeT_d9vdgtvL-hR__cTZbM2vjO_BaCVRd53k2-6yMbv27BpZ480i34e7Paxkw84OHsCGrx_C1hrZ4COY77cVb75a9smfhF4spNpDjSL2YY6OHS5Cziboie2Ra3OMPj63B6dsvAxnaiyULyZzvTj_fdQRWs3Yu8B3zUbz-kdvwtQ26W6WP4bpeP9odBD35RZiK7KiiaVDhXniyYWbinM0uUNjbErbYUqtSqdOemF8VSXOGamcTfMEU--EUpm1RjyBQT2v_VNgGQpPf8KcVxTAeWPICVLcxK1LKsRcR_B6pZrytGPVKCkaCdNX_pm-CPaC1q56BCbstoFmu-wXVkkIw1PIhbpKrKyMRCs1Fryowtmm9hjBm6DzMqzXZoEW-2cHJGhgviqHOQ-kiIRTI9hemUXZL-TvpeBcEWQkQ4tg58pUbhD62f91ew53UoJH3bXAbRg0i6V_QfCmMS97-74E4FT3sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Vehicle+Charging+Load+Prediction+Based+on+Weight+Fusion+Spatial%E2%80%93Temporal+Graph+Convolutional+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Jun&rft.au=Cong%2C+Huiluan&rft.au=Zhou%2C+Hui&rft.au=Wang%2C+Zhiqiang&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=19&rft_id=info:doi/10.3390%2Fen17194798&rft.externalDocID=A813087508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon