Deep-Learning-Based Joint Resource Scheduling Algorithms for Hybrid MEC Networks
In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive...
Saved in:
| Published in | IEEE internet of things journal Vol. 7; no. 7; pp. 6252 - 6265 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2019.2954503 |
Cover
| Abstract | In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive computing tasks to offload. Our objective is to obtain an online offloading algorithm to minimize the energy consumption of all the UEs, by jointly optimizing the positions of GVs and UAVs, user association and resource allocation in real time, while considering the dynamic environment. To this end, we propose a hybrid deep-learning-based online offloading (H2O) framework where a large-scale path-loss fuzzy c-means (LS-FCM) algorithm is first proposed and used to predict the optimal positions of GVs and UAVs. Second, a fuzzy membership matrix U-based particle swarm optimization (U-PSO) algorithm is applied to solve the mixed-integer nonlinear programming (MINLP) problems and generate the sample data sets for the deep neural network (DNN) where the fuzzy membership matrix can capture the small-scale fading effects and the information of mutual interference. Third, a DNN with the scheduling layer is introduced to provide the user association and computing resource allocation under the practical latency requirement of the tasks and limited available computing resource of H-MEC. In addition, different from the traditional DNN predictor, we only input one UE's information to the DNN at one time, which will be suitable for the scenarios where the number of UE is varying and avoid the curse of dimensionality in DNN. |
|---|---|
| AbstractList | In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive computing tasks to offload. Our objective is to obtain an online offloading algorithm to minimize the energy consumption of all the UEs, by jointly optimizing the positions of GVs and UAVs, user association and resource allocation in real time, while considering the dynamic environment. To this end, we propose a hybrid deep-learning-based online offloading (H2O) framework where a large-scale path-loss fuzzy c-means (LS-FCM) algorithm is first proposed and used to predict the optimal positions of GVs and UAVs. Second, a fuzzy membership matrix U-based particle swarm optimization (U-PSO) algorithm is applied to solve the mixed-integer nonlinear programming (MINLP) problems and generate the sample data sets for the deep neural network (DNN) where the fuzzy membership matrix can capture the small-scale fading effects and the information of mutual interference. Third, a DNN with the scheduling layer is introduced to provide the user association and computing resource allocation under the practical latency requirement of the tasks and limited available computing resource of H-MEC. In addition, different from the traditional DNN predictor, we only input one UE’s information to the DNN at one time, which will be suitable for the scenarios where the number of UE is varying and avoid the curse of dimensionality in DNN. |
| Author | Wang, Kezhi Jiang, Feibo Dong, Li Xu, Wei Pan, Cunhua Yang, Kun |
| Author_xml | – sequence: 1 givenname: Feibo orcidid: 0000-0002-0235-0253 surname: Jiang fullname: Jiang, Feibo email: jiangfb@hunnu.edu.cn organization: Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China – sequence: 2 givenname: Kezhi orcidid: 0000-0001-8602-0800 surname: Wang fullname: Wang, Kezhi email: kezhi.wang@northumbria.ac.uk organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K – sequence: 3 givenname: Li orcidid: 0000-0002-0127-8480 surname: Dong fullname: Dong, Li email: dlj2017@hunnu.edu.cn organization: Key Laboratory of Hunan Province for New Retail Virtual Reality Technology, Hunan University of Technology and Business, Changsha – sequence: 4 givenname: Cunhua orcidid: 0000-0001-5286-7958 surname: Pan fullname: Pan, Cunhua email: c.pan@qmul.ac.uk organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 5 givenname: Wei orcidid: 0000-0001-9341-8382 surname: Xu fullname: Xu, Wei email: wxu@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 6 givenname: Kun orcidid: 0000-0002-6782-6689 surname: Yang fullname: Yang, Kun email: kunyang@essex.ac.uk organization: School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, China |
| BookMark | eNp9kE1PAjEQhhujiYj8AONlE8-Lbfere0REgaAYxfOm206huGyxLTH8e3cDMcaDp5lk3mdm8lyg09rUgNAVwX1CcH47ncwXfYpJ3qd5Eic4OkEdGtEsjNOUnv7qz1HPuTXGuMESkqcd9HIPsA1nwG2t62V4xx3IYGp07YNXcGZnBQRvYgVyVzXzYFAtjdV-tXGBMjYY70urZfA0GgbP4L-M_XCX6EzxykHvWLvo_WG0GI7D2fxxMhzMQhEluQ-jkktFyxgwlTJhTKooJVwowXGiFCMyl6mEOFOxgCTjErMkU4QRwTlVqsRRF90c9m6t-dyB88W6-bZuThY0pjFhLGNtihxSwhrnLKhia_WG231BcNG6K1p3ReuuOLprmOwPI7TnXpvaW66rf8nrA6kB4OcSy3EW4zT6BtUofpE |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_TASE_2024_3409551 crossref_primary_10_3390_drones8100528 crossref_primary_10_1109_ACCESS_2021_3135690 crossref_primary_10_1109_TVT_2023_3345940 crossref_primary_10_23919_JSEE_2023_000104 crossref_primary_10_1007_s00521_022_07716_1 crossref_primary_10_1016_j_jnca_2023_103648 crossref_primary_10_1016_j_simpat_2023_102885 crossref_primary_10_1109_TNSM_2022_3208776 crossref_primary_10_1016_j_jnca_2022_103495 crossref_primary_10_3390_electronics13122307 crossref_primary_10_1109_TCC_2023_3307582 crossref_primary_10_3390_drones5040148 crossref_primary_10_1109_TNSM_2022_3206473 crossref_primary_10_1109_JIOT_2022_3151619 crossref_primary_10_1002_dac_5724 crossref_primary_10_1371_journal_pone_0310726 crossref_primary_10_1631_FITEE_2300393 crossref_primary_10_1016_j_knosys_2022_108164 crossref_primary_10_1109_JIOT_2023_3323289 crossref_primary_10_1109_TGCN_2021_3073939 crossref_primary_10_1109_ACCESS_2020_3031614 crossref_primary_10_1109_ACCESS_2021_3070908 crossref_primary_10_1109_ACCESS_2022_3150927 crossref_primary_10_3390_electronics12122599 crossref_primary_10_1109_JSTSP_2022_3222910 crossref_primary_10_1109_TMC_2023_3324332 crossref_primary_10_1016_j_dcan_2024_06_008 crossref_primary_10_3233_JIFS_189980 crossref_primary_10_3390_s20061646 crossref_primary_10_1109_TNNLS_2023_3341067 crossref_primary_10_1109_MNET_011_2000440 crossref_primary_10_1109_TGCN_2024_3379960 crossref_primary_10_1016_j_comnet_2022_109238 crossref_primary_10_1186_s13677_021_00256_4 crossref_primary_10_1016_j_jenvman_2023_119866 crossref_primary_10_1109_ACCESS_2021_3118109 crossref_primary_10_1109_TMC_2021_3059691 crossref_primary_10_1109_TGCN_2022_3232700 crossref_primary_10_1109_JIOT_2023_3318529 crossref_primary_10_1109_ACCESS_2021_3135464 crossref_primary_10_1109_LWC_2021_3095383 crossref_primary_10_1109_TCCN_2021_3103511 crossref_primary_10_1016_j_jnca_2024_103886 crossref_primary_10_1109_JSEN_2024_3370924 crossref_primary_10_1016_j_jnca_2022_103439 crossref_primary_10_1109_TCCN_2021_3116251 crossref_primary_10_1109_TWC_2024_3464610 crossref_primary_10_1109_ACCESS_2022_3208584 crossref_primary_10_1007_s00521_022_06899_x crossref_primary_10_1109_ACCESS_2022_3147264 crossref_primary_10_1109_ACCESS_2021_3106658 crossref_primary_10_1109_TVT_2024_3377647 crossref_primary_10_1016_j_jnca_2021_103141 crossref_primary_10_1109_TGCN_2024_3421357 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1016_j_aej_2024_08_105 crossref_primary_10_1109_COMST_2022_3211462 crossref_primary_10_1109_JIOT_2021_3063686 crossref_primary_10_1109_JSYST_2024_3439343 crossref_primary_10_1002_dac_5936 crossref_primary_10_1049_cmu2_12397 crossref_primary_10_1109_MNET_133_2200524 crossref_primary_10_1109_JIOT_2021_3086961 crossref_primary_10_1109_TVT_2024_3495511 crossref_primary_10_1111_exsy_12922 crossref_primary_10_1109_JIOT_2021_3113872 crossref_primary_10_1109_TVT_2023_3335663 crossref_primary_10_1109_JIOT_2022_3233026 crossref_primary_10_1016_j_jnca_2022_103568 crossref_primary_10_1109_JIOT_2020_2988457 crossref_primary_10_1109_TNSE_2021_3113053 crossref_primary_10_1109_TETCI_2020_3007905 crossref_primary_10_1007_s11063_020_10229_4 crossref_primary_10_1016_j_comcom_2022_05_004 crossref_primary_10_1109_ACCESS_2021_3108543 crossref_primary_10_1109_ACCESS_2022_3174127 crossref_primary_10_1016_j_engappai_2023_106331 crossref_primary_10_3390_electronics12244967 crossref_primary_10_3390_drones9030178 crossref_primary_10_1109_ACCESS_2022_3144415 crossref_primary_10_1109_JIOT_2024_3410098 crossref_primary_10_1016_j_rcim_2021_102154 crossref_primary_10_1109_TWC_2022_3215795 crossref_primary_10_1109_TWC_2023_3253541 crossref_primary_10_1109_JIOT_2021_3051214 crossref_primary_10_1109_TVT_2024_3485017 crossref_primary_10_1007_s00521_021_06362_3 crossref_primary_10_1155_2022_7863972 crossref_primary_10_1016_j_jnca_2022_103341 crossref_primary_10_1109_ACCESS_2022_3184159 crossref_primary_10_1109_TVT_2024_3466116 crossref_primary_10_1007_s00521_023_08230_8 crossref_primary_10_1109_TNSE_2023_3234029 crossref_primary_10_1109_TMC_2023_3312276 crossref_primary_10_1109_TCYB_2020_2990319 crossref_primary_10_1109_COMST_2020_3024783 crossref_primary_10_1093_ijlct_ctae092 crossref_primary_10_1109_ACCESS_2022_3196688 crossref_primary_10_1007_s11042_023_17775_8 crossref_primary_10_1016_j_rineng_2025_103934 crossref_primary_10_1109_JIOT_2021_3071531 crossref_primary_10_3390_electronics12183861 crossref_primary_10_1016_j_trc_2024_104886 crossref_primary_10_1109_TWC_2023_3243611 crossref_primary_10_1109_ACCESS_2020_2997814 crossref_primary_10_1109_ACCESS_2021_3106062 crossref_primary_10_1109_TWC_2023_3266497 crossref_primary_10_1109_TMC_2024_3461719 crossref_primary_10_1145_3612918 crossref_primary_10_3390_app10062078 crossref_primary_10_3390_electronics12102212 crossref_primary_10_1007_s11280_022_01053_y crossref_primary_10_1109_COMST_2021_3095358 crossref_primary_10_1109_JSEN_2023_3343428 crossref_primary_10_1016_j_chaos_2023_114378 crossref_primary_10_3390_drones6070177 crossref_primary_10_1016_j_dcan_2022_10_029 crossref_primary_10_1016_j_eswa_2022_117066 crossref_primary_10_1109_ACCESS_2022_3212079 crossref_primary_10_1109_JIOT_2021_3068382 crossref_primary_10_1016_j_jksuci_2023_101779 crossref_primary_10_1109_JIOT_2022_3161703 crossref_primary_10_1109_ACCESS_2021_3136239 crossref_primary_10_1109_ACCESS_2024_3502400 crossref_primary_10_1016_j_jare_2024_04_021 crossref_primary_10_1109_LWC_2022_3205503 crossref_primary_10_1109_TNET_2022_3222404 |
| Cites_doi | 10.1109/INFOCOM.2016.7524497 10.1109/MNET.2018.1700202 10.1016/j.neunet.2018.04.012 10.1109/JSAC.2017.2680898 10.1109/TC.1977.1674939 10.1109/JSAC.2017.2760186 10.1007/s11036-018-1177-x 10.1109/TNET.2018.2873002 10.1007/978-3-030-05755-8_16 10.1109/ISCC.2012.6249269 10.1109/TCOMM.2017.2699660 10.1109/CLOUD.2012.97 10.1109/MCOM.2019.1800971 10.1109/JSAC.2019.2904353 10.1109/TVT.2018.2881191 10.1109/TCC.2016.2522439 10.1109/LCOMM.2017.2772254 10.1109/GLOCOM.2018.8647789 10.1109/MNET.2013.6616113 10.1109/TPDS.2014.2316834 10.1109/TWC.2018.2821664 10.1109/TCCN.2017.2758370 10.1016/j.neunet.2014.09.003 10.1007/s11771-016-3269-8 10.1109/TPDS.2018.2832124 10.1109/MHS.1995.494215 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2019.2954503 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 6265 |
| ExternalDocumentID | 10_1109_JIOT_2019_2954503 8907406 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41604117; 41904127; 41874148; 61620106011; 61572389; 61871109 funderid: 10.13039/501100001809 – fundername: Royal Academy of Engineering through the Distinguished Visiting Fellowship Scheme grantid: DVFS21819\9\7 funderid: 10.13039/501100000287 – fundername: Hunan Provincial Science and Technology Project Foundation grantid: 2018TP1018; 2018RS3065 – fundername: Scientific Research Fund of Hunan Provincial Education Department in China grantid: 18A031 funderid: 10.13039/100014472 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-3badf2b4e02dd588df361acfca05ff81d9d6de47f4ce57ad0857f181caa2ffb03 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Sun Jun 29 15:55:22 EDT 2025 Wed Oct 01 04:45:27 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 27 02:35:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-3badf2b4e02dd588df361acfca05ff81d9d6de47f4ce57ad0857f181caa2ffb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9341-8382 0000-0002-0235-0253 0000-0002-0127-8480 0000-0001-5286-7958 0000-0001-8602-0800 0000-0002-6782-6689 |
| PQID | 2424188780 |
| PQPubID | 2040421 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_8907406 crossref_citationtrail_10_1109_JIOT_2019_2954503 crossref_primary_10_1109_JIOT_2019_2954503 proquest_journals_2424188780 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 bertsekas (ref8) 1995; 1 ref18 miettinen (ref21) 2010; 10 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1109/INFOCOM.2016.7524497 – ident: ref18 doi: 10.1109/MNET.2018.1700202 – ident: ref28 doi: 10.1016/j.neunet.2018.04.012 – ident: ref15 doi: 10.1109/JSAC.2017.2680898 – ident: ref7 doi: 10.1109/TC.1977.1674939 – ident: ref3 doi: 10.1109/JSAC.2017.2760186 – ident: ref16 doi: 10.1007/s11036-018-1177-x – ident: ref13 doi: 10.1109/TNET.2018.2873002 – ident: ref14 doi: 10.1007/978-3-030-05755-8_16 – ident: ref1 doi: 10.1109/ISCC.2012.6249269 – ident: ref12 doi: 10.1109/TCOMM.2017.2699660 – ident: ref20 doi: 10.1109/CLOUD.2012.97 – ident: ref5 doi: 10.1109/MCOM.2019.1800971 – ident: ref17 doi: 10.1109/JSAC.2019.2904353 – volume: 10 start-page: 4 year: 2010 ident: ref21 article-title: Energy efficiency of mobile clients in cloud computing publication-title: HotCloud – ident: ref10 doi: 10.1109/TVT.2018.2881191 – ident: ref19 doi: 10.1109/TCC.2016.2522439 – ident: ref23 doi: 10.1109/LCOMM.2017.2772254 – ident: ref6 doi: 10.1109/GLOCOM.2018.8647789 – ident: ref2 doi: 10.1109/MNET.2013.6616113 – ident: ref22 doi: 10.1109/TPDS.2014.2316834 – ident: ref9 doi: 10.1109/TWC.2018.2821664 – ident: ref27 doi: 10.1109/TCCN.2017.2758370 – ident: ref26 doi: 10.1016/j.neunet.2014.09.003 – ident: ref25 doi: 10.1007/s11771-016-3269-8 – ident: ref4 doi: 10.1109/TPDS.2018.2832124 – volume: 1 year: 1995 ident: ref8 publication-title: Dynamic Programming and Optimal Control – ident: ref24 doi: 10.1109/MHS.1995.494215 |
| SSID | ssj0001105196 |
| Score | 2.580079 |
| Snippet | In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6252 |
| SubjectTerms | Algorithms Artificial neural networks Cloud computing Deep learning Deep neural network (DNN) Edge computing Energy conservation Energy consumption fuzzy c-means Ground stations Heuristic algorithms Internet of Things Mobile computing mobile edge computing (MEC) Network latency Nonlinear programming Particle swarm optimization particle swarm optimization (PSO) Real-time systems Resource allocation Resource management Resource scheduling Task analysis unmanned aerial vehicle (UAV) Unmanned aerial vehicles Water |
| Title | Deep-Learning-Based Joint Resource Scheduling Algorithms for Hybrid MEC Networks |
| URI | https://ieeexplore.ieee.org/document/8907406 https://www.proquest.com/docview/2424188780 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaAiYU3orzkgQnh4jS2m4w8VSoVGEBii_w4AwJaRNMBfj2-xCkSIMTm4SxZd7bv-d0Rsme6yojUKyZcCkx0vWeZkMBAC-2l88okCE4eXKrerejfybsZcjDFwgBAVXwGbVxWuXw3shMMlR1m6Mlhf-3ZbqZqrNZXPCVBY0TFxGXC88P-xdUN1m7lbcxlyWYsVlQ91SyVHx9wpVXOF8mgOU9dTPLUnpSmbT--tWr874GXyEI0L-lRfR-WyQwMV8hiM7qBxpe8Sq5PAV5ZbK56z46DLnO0P3oclrQJ6Afih6CHEK5Oj57vR2-P5cPLmAYjl_beEedFB2cn9LIuIx-vkdvzs5uTHovDFZhNZV6y1GjnO0YA7zgns8z5VCXaequ59D5YsblTDoLwhAXZ1Q474ftgDlitO94bnq6TueFoCBuECo7QaOOMAScU17kCmYPiwG3GpclbhDd8L2zsPI4DMJ6LygPheYGiKlBURRRVi-xPt7zWbTf-Il5F1k8JI9dbZLsRbhEf5rhANEwSPtaMb_6-a4vMd9Clripyt8lc-TaBnWB3lGa3unCfyQXXEQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V7QEutKUgAqX4wAnh1Ju1nd1jKa3S0AQOqdTbyo9xW1GSqtkc2l-PZ9cbJECImw9jyZqxPc9vBuC9HWor86C59DlyOQyBF1IhRyNNUD5omxE4eTLVows5vlSXG_BxjYVBxKb4DPu0bHL5fuFWFCo7LMiTo_7aW0pKqVq01q-ISkbmiE6py0yUh-OzrzOq3ir7lM1S3WCspHyaaSp_fMGNXjndhkl3orac5Ht_Vdu-e_ytWeP_HnkHniUDkx21N2IXNnD-HLa74Q0sveU9-PYZ8Y6n9qpX_FPUZp6NFzfzmnUh_Uh8HTURAdbZ0e3V4v6mvv6xZNHMZaMHQnqxyckxm7aF5MsXcHF6Mjse8TRegbtclTXPrfFhYCWKgfeqKHzIdWZccEaoEKIdW3rtMYpPOlRD46kXfogGgTNmEIIV-UvYnC_m-AqYFASOtt5a9FILU2pUJWqBwhVC2bIHouN75VLvcRqBcVs1PogoKxJVRaKqkqh68GG95a5tvPEv4j1i_Zowcb0H-51wq_Q0lxXhYbL4tRbi9d93vYMno9nkvDo_m355A08H5GA39bn7sFnfr_BttEJqe9Bcvp8zj9pe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Joint+Resource+Scheduling+Algorithms+for+Hybrid+MEC+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Jiang%2C+Feibo&rft.au=Wang%2C+Kezhi&rft.au=Li%2C+Dong&rft.au=Pan%2C+Cunhua&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=7&rft.issue=7&rft.spage=6252&rft_id=info:doi/10.1109%2FJIOT.2019.2954503&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |