Deep-Learning-Based Joint Resource Scheduling Algorithms for Hybrid MEC Networks

In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 7; pp. 6252 - 6265
Main Authors Jiang, Feibo, Wang, Kezhi, Dong, Li, Pan, Cunhua, Xu, Wei, Yang, Kun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2019.2954503

Cover

Abstract In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive computing tasks to offload. Our objective is to obtain an online offloading algorithm to minimize the energy consumption of all the UEs, by jointly optimizing the positions of GVs and UAVs, user association and resource allocation in real time, while considering the dynamic environment. To this end, we propose a hybrid deep-learning-based online offloading (H2O) framework where a large-scale path-loss fuzzy c-means (LS-FCM) algorithm is first proposed and used to predict the optimal positions of GVs and UAVs. Second, a fuzzy membership matrix U-based particle swarm optimization (U-PSO) algorithm is applied to solve the mixed-integer nonlinear programming (MINLP) problems and generate the sample data sets for the deep neural network (DNN) where the fuzzy membership matrix can capture the small-scale fading effects and the information of mutual interference. Third, a DNN with the scheduling layer is introduced to provide the user association and computing resource allocation under the practical latency requirement of the tasks and limited available computing resource of H-MEC. In addition, different from the traditional DNN predictor, we only input one UE's information to the DNN at one time, which will be suitable for the scenarios where the number of UE is varying and avoid the curse of dimensionality in DNN.
AbstractList In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial vehicles (UAVs), all with the mobile edge cloud installed to enable user equipments (UEs) or Internet of Things (IoT) devices with intensive computing tasks to offload. Our objective is to obtain an online offloading algorithm to minimize the energy consumption of all the UEs, by jointly optimizing the positions of GVs and UAVs, user association and resource allocation in real time, while considering the dynamic environment. To this end, we propose a hybrid deep-learning-based online offloading (H2O) framework where a large-scale path-loss fuzzy c-means (LS-FCM) algorithm is first proposed and used to predict the optimal positions of GVs and UAVs. Second, a fuzzy membership matrix U-based particle swarm optimization (U-PSO) algorithm is applied to solve the mixed-integer nonlinear programming (MINLP) problems and generate the sample data sets for the deep neural network (DNN) where the fuzzy membership matrix can capture the small-scale fading effects and the information of mutual interference. Third, a DNN with the scheduling layer is introduced to provide the user association and computing resource allocation under the practical latency requirement of the tasks and limited available computing resource of H-MEC. In addition, different from the traditional DNN predictor, we only input one UE’s information to the DNN at one time, which will be suitable for the scenarios where the number of UE is varying and avoid the curse of dimensionality in DNN.
Author Wang, Kezhi
Jiang, Feibo
Dong, Li
Xu, Wei
Pan, Cunhua
Yang, Kun
Author_xml – sequence: 1
  givenname: Feibo
  orcidid: 0000-0002-0235-0253
  surname: Jiang
  fullname: Jiang, Feibo
  email: jiangfb@hunnu.edu.cn
  organization: Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
– sequence: 2
  givenname: Kezhi
  orcidid: 0000-0001-8602-0800
  surname: Wang
  fullname: Wang, Kezhi
  email: kezhi.wang@northumbria.ac.uk
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-0127-8480
  surname: Dong
  fullname: Dong, Li
  email: dlj2017@hunnu.edu.cn
  organization: Key Laboratory of Hunan Province for New Retail Virtual Reality Technology, Hunan University of Technology and Business, Changsha
– sequence: 4
  givenname: Cunhua
  orcidid: 0000-0001-5286-7958
  surname: Pan
  fullname: Pan, Cunhua
  email: c.pan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-9341-8382
  surname: Xu
  fullname: Xu, Wei
  email: wxu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 6
  givenname: Kun
  orcidid: 0000-0002-6782-6689
  surname: Yang
  fullname: Yang, Kun
  email: kunyang@essex.ac.uk
  organization: School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, China
BookMark eNp9kE1PAjEQhhujiYj8AONlE8-Lbfere0REgaAYxfOm206huGyxLTH8e3cDMcaDp5lk3mdm8lyg09rUgNAVwX1CcH47ncwXfYpJ3qd5Eic4OkEdGtEsjNOUnv7qz1HPuTXGuMESkqcd9HIPsA1nwG2t62V4xx3IYGp07YNXcGZnBQRvYgVyVzXzYFAtjdV-tXGBMjYY70urZfA0GgbP4L-M_XCX6EzxykHvWLvo_WG0GI7D2fxxMhzMQhEluQ-jkktFyxgwlTJhTKooJVwowXGiFCMyl6mEOFOxgCTjErMkU4QRwTlVqsRRF90c9m6t-dyB88W6-bZuThY0pjFhLGNtihxSwhrnLKhia_WG231BcNG6K1p3ReuuOLprmOwPI7TnXpvaW66rf8nrA6kB4OcSy3EW4zT6BtUofpE
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TASE_2024_3409551
crossref_primary_10_3390_drones8100528
crossref_primary_10_1109_ACCESS_2021_3135690
crossref_primary_10_1109_TVT_2023_3345940
crossref_primary_10_23919_JSEE_2023_000104
crossref_primary_10_1007_s00521_022_07716_1
crossref_primary_10_1016_j_jnca_2023_103648
crossref_primary_10_1016_j_simpat_2023_102885
crossref_primary_10_1109_TNSM_2022_3208776
crossref_primary_10_1016_j_jnca_2022_103495
crossref_primary_10_3390_electronics13122307
crossref_primary_10_1109_TCC_2023_3307582
crossref_primary_10_3390_drones5040148
crossref_primary_10_1109_TNSM_2022_3206473
crossref_primary_10_1109_JIOT_2022_3151619
crossref_primary_10_1002_dac_5724
crossref_primary_10_1371_journal_pone_0310726
crossref_primary_10_1631_FITEE_2300393
crossref_primary_10_1016_j_knosys_2022_108164
crossref_primary_10_1109_JIOT_2023_3323289
crossref_primary_10_1109_TGCN_2021_3073939
crossref_primary_10_1109_ACCESS_2020_3031614
crossref_primary_10_1109_ACCESS_2021_3070908
crossref_primary_10_1109_ACCESS_2022_3150927
crossref_primary_10_3390_electronics12122599
crossref_primary_10_1109_JSTSP_2022_3222910
crossref_primary_10_1109_TMC_2023_3324332
crossref_primary_10_1016_j_dcan_2024_06_008
crossref_primary_10_3233_JIFS_189980
crossref_primary_10_3390_s20061646
crossref_primary_10_1109_TNNLS_2023_3341067
crossref_primary_10_1109_MNET_011_2000440
crossref_primary_10_1109_TGCN_2024_3379960
crossref_primary_10_1016_j_comnet_2022_109238
crossref_primary_10_1186_s13677_021_00256_4
crossref_primary_10_1016_j_jenvman_2023_119866
crossref_primary_10_1109_ACCESS_2021_3118109
crossref_primary_10_1109_TMC_2021_3059691
crossref_primary_10_1109_TGCN_2022_3232700
crossref_primary_10_1109_JIOT_2023_3318529
crossref_primary_10_1109_ACCESS_2021_3135464
crossref_primary_10_1109_LWC_2021_3095383
crossref_primary_10_1109_TCCN_2021_3103511
crossref_primary_10_1016_j_jnca_2024_103886
crossref_primary_10_1109_JSEN_2024_3370924
crossref_primary_10_1016_j_jnca_2022_103439
crossref_primary_10_1109_TCCN_2021_3116251
crossref_primary_10_1109_TWC_2024_3464610
crossref_primary_10_1109_ACCESS_2022_3208584
crossref_primary_10_1007_s00521_022_06899_x
crossref_primary_10_1109_ACCESS_2022_3147264
crossref_primary_10_1109_ACCESS_2021_3106658
crossref_primary_10_1109_TVT_2024_3377647
crossref_primary_10_1016_j_jnca_2021_103141
crossref_primary_10_1109_TGCN_2024_3421357
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1016_j_aej_2024_08_105
crossref_primary_10_1109_COMST_2022_3211462
crossref_primary_10_1109_JIOT_2021_3063686
crossref_primary_10_1109_JSYST_2024_3439343
crossref_primary_10_1002_dac_5936
crossref_primary_10_1049_cmu2_12397
crossref_primary_10_1109_MNET_133_2200524
crossref_primary_10_1109_JIOT_2021_3086961
crossref_primary_10_1109_TVT_2024_3495511
crossref_primary_10_1111_exsy_12922
crossref_primary_10_1109_JIOT_2021_3113872
crossref_primary_10_1109_TVT_2023_3335663
crossref_primary_10_1109_JIOT_2022_3233026
crossref_primary_10_1016_j_jnca_2022_103568
crossref_primary_10_1109_JIOT_2020_2988457
crossref_primary_10_1109_TNSE_2021_3113053
crossref_primary_10_1109_TETCI_2020_3007905
crossref_primary_10_1007_s11063_020_10229_4
crossref_primary_10_1016_j_comcom_2022_05_004
crossref_primary_10_1109_ACCESS_2021_3108543
crossref_primary_10_1109_ACCESS_2022_3174127
crossref_primary_10_1016_j_engappai_2023_106331
crossref_primary_10_3390_electronics12244967
crossref_primary_10_3390_drones9030178
crossref_primary_10_1109_ACCESS_2022_3144415
crossref_primary_10_1109_JIOT_2024_3410098
crossref_primary_10_1016_j_rcim_2021_102154
crossref_primary_10_1109_TWC_2022_3215795
crossref_primary_10_1109_TWC_2023_3253541
crossref_primary_10_1109_JIOT_2021_3051214
crossref_primary_10_1109_TVT_2024_3485017
crossref_primary_10_1007_s00521_021_06362_3
crossref_primary_10_1155_2022_7863972
crossref_primary_10_1016_j_jnca_2022_103341
crossref_primary_10_1109_ACCESS_2022_3184159
crossref_primary_10_1109_TVT_2024_3466116
crossref_primary_10_1007_s00521_023_08230_8
crossref_primary_10_1109_TNSE_2023_3234029
crossref_primary_10_1109_TMC_2023_3312276
crossref_primary_10_1109_TCYB_2020_2990319
crossref_primary_10_1109_COMST_2020_3024783
crossref_primary_10_1093_ijlct_ctae092
crossref_primary_10_1109_ACCESS_2022_3196688
crossref_primary_10_1007_s11042_023_17775_8
crossref_primary_10_1016_j_rineng_2025_103934
crossref_primary_10_1109_JIOT_2021_3071531
crossref_primary_10_3390_electronics12183861
crossref_primary_10_1016_j_trc_2024_104886
crossref_primary_10_1109_TWC_2023_3243611
crossref_primary_10_1109_ACCESS_2020_2997814
crossref_primary_10_1109_ACCESS_2021_3106062
crossref_primary_10_1109_TWC_2023_3266497
crossref_primary_10_1109_TMC_2024_3461719
crossref_primary_10_1145_3612918
crossref_primary_10_3390_app10062078
crossref_primary_10_3390_electronics12102212
crossref_primary_10_1007_s11280_022_01053_y
crossref_primary_10_1109_COMST_2021_3095358
crossref_primary_10_1109_JSEN_2023_3343428
crossref_primary_10_1016_j_chaos_2023_114378
crossref_primary_10_3390_drones6070177
crossref_primary_10_1016_j_dcan_2022_10_029
crossref_primary_10_1016_j_eswa_2022_117066
crossref_primary_10_1109_ACCESS_2022_3212079
crossref_primary_10_1109_JIOT_2021_3068382
crossref_primary_10_1016_j_jksuci_2023_101779
crossref_primary_10_1109_JIOT_2022_3161703
crossref_primary_10_1109_ACCESS_2021_3136239
crossref_primary_10_1109_ACCESS_2024_3502400
crossref_primary_10_1016_j_jare_2024_04_021
crossref_primary_10_1109_LWC_2022_3205503
crossref_primary_10_1109_TNET_2022_3222404
Cites_doi 10.1109/INFOCOM.2016.7524497
10.1109/MNET.2018.1700202
10.1016/j.neunet.2018.04.012
10.1109/JSAC.2017.2680898
10.1109/TC.1977.1674939
10.1109/JSAC.2017.2760186
10.1007/s11036-018-1177-x
10.1109/TNET.2018.2873002
10.1007/978-3-030-05755-8_16
10.1109/ISCC.2012.6249269
10.1109/TCOMM.2017.2699660
10.1109/CLOUD.2012.97
10.1109/MCOM.2019.1800971
10.1109/JSAC.2019.2904353
10.1109/TVT.2018.2881191
10.1109/TCC.2016.2522439
10.1109/LCOMM.2017.2772254
10.1109/GLOCOM.2018.8647789
10.1109/MNET.2013.6616113
10.1109/TPDS.2014.2316834
10.1109/TWC.2018.2821664
10.1109/TCCN.2017.2758370
10.1016/j.neunet.2014.09.003
10.1007/s11771-016-3269-8
10.1109/TPDS.2018.2832124
10.1109/MHS.1995.494215
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2954503
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6265
ExternalDocumentID 10_1109_JIOT_2019_2954503
8907406
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41604117; 41904127; 41874148; 61620106011; 61572389; 61871109
  funderid: 10.13039/501100001809
– fundername: Royal Academy of Engineering through the Distinguished Visiting Fellowship Scheme
  grantid: DVFS21819\9\7
  funderid: 10.13039/501100000287
– fundername: Hunan Provincial Science and Technology Project Foundation
  grantid: 2018TP1018; 2018RS3065
– fundername: Scientific Research Fund of Hunan Provincial Education Department in China
  grantid: 18A031
  funderid: 10.13039/100014472
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-3badf2b4e02dd588df361acfca05ff81d9d6de47f4ce57ad0857f181caa2ffb03
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Jun 29 15:55:22 EDT 2025
Wed Oct 01 04:45:27 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 27 02:35:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3badf2b4e02dd588df361acfca05ff81d9d6de47f4ce57ad0857f181caa2ffb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9341-8382
0000-0002-0235-0253
0000-0002-0127-8480
0000-0001-5286-7958
0000-0001-8602-0800
0000-0002-6782-6689
PQID 2424188780
PQPubID 2040421
PageCount 14
ParticipantIDs ieee_primary_8907406
crossref_citationtrail_10_1109_JIOT_2019_2954503
crossref_primary_10_1109_JIOT_2019_2954503
proquest_journals_2424188780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
bertsekas (ref8) 1995; 1
ref18
miettinen (ref21) 2010; 10
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/INFOCOM.2016.7524497
– ident: ref18
  doi: 10.1109/MNET.2018.1700202
– ident: ref28
  doi: 10.1016/j.neunet.2018.04.012
– ident: ref15
  doi: 10.1109/JSAC.2017.2680898
– ident: ref7
  doi: 10.1109/TC.1977.1674939
– ident: ref3
  doi: 10.1109/JSAC.2017.2760186
– ident: ref16
  doi: 10.1007/s11036-018-1177-x
– ident: ref13
  doi: 10.1109/TNET.2018.2873002
– ident: ref14
  doi: 10.1007/978-3-030-05755-8_16
– ident: ref1
  doi: 10.1109/ISCC.2012.6249269
– ident: ref12
  doi: 10.1109/TCOMM.2017.2699660
– ident: ref20
  doi: 10.1109/CLOUD.2012.97
– ident: ref5
  doi: 10.1109/MCOM.2019.1800971
– ident: ref17
  doi: 10.1109/JSAC.2019.2904353
– volume: 10
  start-page: 4
  year: 2010
  ident: ref21
  article-title: Energy efficiency of mobile clients in cloud computing
  publication-title: HotCloud
– ident: ref10
  doi: 10.1109/TVT.2018.2881191
– ident: ref19
  doi: 10.1109/TCC.2016.2522439
– ident: ref23
  doi: 10.1109/LCOMM.2017.2772254
– ident: ref6
  doi: 10.1109/GLOCOM.2018.8647789
– ident: ref2
  doi: 10.1109/MNET.2013.6616113
– ident: ref22
  doi: 10.1109/TPDS.2014.2316834
– ident: ref9
  doi: 10.1109/TWC.2018.2821664
– ident: ref27
  doi: 10.1109/TCCN.2017.2758370
– ident: ref26
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref25
  doi: 10.1007/s11771-016-3269-8
– ident: ref4
  doi: 10.1109/TPDS.2018.2832124
– volume: 1
  year: 1995
  ident: ref8
  publication-title: Dynamic Programming and Optimal Control
– ident: ref24
  doi: 10.1109/MHS.1995.494215
SSID ssj0001105196
Score 2.580079
Snippet In this article, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs), and unmanned aerial...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6252
SubjectTerms Algorithms
Artificial neural networks
Cloud computing
Deep learning
Deep neural network (DNN)
Edge computing
Energy conservation
Energy consumption
fuzzy c-means
Ground stations
Heuristic algorithms
Internet of Things
Mobile computing
mobile edge computing (MEC)
Network latency
Nonlinear programming
Particle swarm optimization
particle swarm optimization (PSO)
Real-time systems
Resource allocation
Resource management
Resource scheduling
Task analysis
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Water
Title Deep-Learning-Based Joint Resource Scheduling Algorithms for Hybrid MEC Networks
URI https://ieeexplore.ieee.org/document/8907406
https://www.proquest.com/docview/2424188780
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaAiYU3orzkgQnh4jS2m4w8VSoVGEBii_w4AwJaRNMBfj2-xCkSIMTm4SxZd7bv-d0Rsme6yojUKyZcCkx0vWeZkMBAC-2l88okCE4eXKrerejfybsZcjDFwgBAVXwGbVxWuXw3shMMlR1m6Mlhf-3ZbqZqrNZXPCVBY0TFxGXC88P-xdUN1m7lbcxlyWYsVlQ91SyVHx9wpVXOF8mgOU9dTPLUnpSmbT--tWr874GXyEI0L-lRfR-WyQwMV8hiM7qBxpe8Sq5PAV5ZbK56z46DLnO0P3oclrQJ6Afih6CHEK5Oj57vR2-P5cPLmAYjl_beEedFB2cn9LIuIx-vkdvzs5uTHovDFZhNZV6y1GjnO0YA7zgns8z5VCXaequ59D5YsblTDoLwhAXZ1Q474ftgDlitO94bnq6TueFoCBuECo7QaOOMAScU17kCmYPiwG3GpclbhDd8L2zsPI4DMJ6LygPheYGiKlBURRRVi-xPt7zWbTf-Il5F1k8JI9dbZLsRbhEf5rhANEwSPtaMb_6-a4vMd9Clripyt8lc-TaBnWB3lGa3unCfyQXXEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V7QEutKUgAqX4wAnh1Ju1nd1jKa3S0AQOqdTbyo9xW1GSqtkc2l-PZ9cbJECImw9jyZqxPc9vBuC9HWor86C59DlyOQyBF1IhRyNNUD5omxE4eTLVows5vlSXG_BxjYVBxKb4DPu0bHL5fuFWFCo7LMiTo_7aW0pKqVq01q-ISkbmiE6py0yUh-OzrzOq3ir7lM1S3WCspHyaaSp_fMGNXjndhkl3orac5Ht_Vdu-e_ytWeP_HnkHniUDkx21N2IXNnD-HLa74Q0sveU9-PYZ8Y6n9qpX_FPUZp6NFzfzmnUh_Uh8HTURAdbZ0e3V4v6mvv6xZNHMZaMHQnqxyckxm7aF5MsXcHF6Mjse8TRegbtclTXPrfFhYCWKgfeqKHzIdWZccEaoEKIdW3rtMYpPOlRD46kXfogGgTNmEIIV-UvYnC_m-AqYFASOtt5a9FILU2pUJWqBwhVC2bIHouN75VLvcRqBcVs1PogoKxJVRaKqkqh68GG95a5tvPEv4j1i_Zowcb0H-51wq_Q0lxXhYbL4tRbi9d93vYMno9nkvDo_m355A08H5GA39bn7sFnfr_BttEJqe9Bcvp8zj9pe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Joint+Resource+Scheduling+Algorithms+for+Hybrid+MEC+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Jiang%2C+Feibo&rft.au=Wang%2C+Kezhi&rft.au=Li%2C+Dong&rft.au=Pan%2C+Cunhua&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=7&rft.issue=7&rft.spage=6252&rft_id=info:doi/10.1109%2FJIOT.2019.2954503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon