A Study on the Classification of Shrubs and Grasses on the Tibetan Plateau Based on Unmanned Aerial Vehicle Multispectral Imagery
The ecosystem of the Qinghai–Tibet Plateau is highly fragile due to its unique geographical conditions, with vegetation playing a crucial role in maintaining ecological balance. Thus, accurately monitoring the distribution of vegetation in the plateau region is of paramount importance. This study em...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 21; p. 4106 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs16214106 |
Cover
Abstract | The ecosystem of the Qinghai–Tibet Plateau is highly fragile due to its unique geographical conditions, with vegetation playing a crucial role in maintaining ecological balance. Thus, accurately monitoring the distribution of vegetation in the plateau region is of paramount importance. This study employs UAV multispectral imagery in combination with four machine-learning models—Support Vector Machine (SVM), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), and Random Forest (RF)—to investigate the impact of different features and their combinations on the fine classification of shrubs and grasses on the Qinghai–Tibet Plateau, including Salix psammophila, Populus simonii Carrière, Kobresia tibetica, and Kobresia pygmaea. The results indicate that near-infrared spectral information can improve classification accuracy, with improvements of 5.21%, 1.65%, 6.64%, and 5.03% for Salix psammophila, Populus simonii Carrière, Kobresia tibetica, and Kobresia pygmaea, respectively. Feature selection effectively reduces redundant information and enhances model classification accuracy, with all four machine-learning models achieving the best performance on the optimized feature set. Furthermore, the RF model performs best on the optimized feature set, achieving an overall accuracy (OA) of 95.32% and a kappa coefficient of 0.94. This study provides important scientific support for the fine classification and ecological monitoring of plateau vegetation. |
---|---|
AbstractList | The ecosystem of the Qinghai–Tibet Plateau is highly fragile due to its unique geographical conditions, with vegetation playing a crucial role in maintaining ecological balance. Thus, accurately monitoring the distribution of vegetation in the plateau region is of paramount importance. This study employs UAV multispectral imagery in combination with four machine-learning models—Support Vector Machine (SVM), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), and Random Forest (RF)—to investigate the impact of different features and their combinations on the fine classification of shrubs and grasses on the Qinghai–Tibet Plateau, including Salix psammophila, Populus simonii Carrière, Kobresia tibetica, and Kobresia pygmaea. The results indicate that near-infrared spectral information can improve classification accuracy, with improvements of 5.21%, 1.65%, 6.64%, and 5.03% for Salix psammophila, Populus simonii Carrière, Kobresia tibetica, and Kobresia pygmaea, respectively. Feature selection effectively reduces redundant information and enhances model classification accuracy, with all four machine-learning models achieving the best performance on the optimized feature set. Furthermore, the RF model performs best on the optimized feature set, achieving an overall accuracy (OA) of 95.32% and a kappa coefficient of 0.94. This study provides important scientific support for the fine classification and ecological monitoring of plateau vegetation. |
Audience | Academic |
Author | Chen, Xiaoqiang Zhang, Wenjiang Zhang, Houxi Deng, Hui |
Author_xml | – sequence: 1 givenname: Xiaoqiang surname: Chen fullname: Chen, Xiaoqiang – sequence: 2 givenname: Hui orcidid: 0000-0003-1283-438X surname: Deng fullname: Deng, Hui – sequence: 3 givenname: Wenjiang surname: Zhang fullname: Zhang, Wenjiang – sequence: 4 givenname: Houxi orcidid: 0000-0002-3268-8749 surname: Zhang fullname: Zhang, Houxi |
BookMark | eNpNUU1vEzEUtFCRKKUXfoElbkgp_tj12scQQYlUBFJbrqvnr8TRxg6295Aj_xyHUIp98GjevNFY8xpdxBQdQm8pueFckQ-5UMFoR4l4gS4ZGdiiY4pd_IdfoetSdqQdzqki3SX6tcT3dbZHnCKuW4dXE5QSfDBQQ6OSx_fbPOuCIVp8m9vQlSftQ9CuQsTfJ6gOZvwRirOn4WPcQ4wNL10OMOEfbhvM5PDXeaqhHJypubHrPWxcPr5BLz1MxV3_fa_Q4-dPD6svi7tvt-vV8m5heK_qgg9EKiM8EO24UoP20mkK2lsmpRSOewliMJz0UljNJVirpLFEWAecKMmv0PrsaxPsxkMOe8jHMUEY_xApb0bI9ZRzNL3weiBWECCdEkTLXtMG-sFq0TPWvN6dvQ45_ZxdqeMuzTm2-COnTJBWQseb6uas2kAzDdGn9m_TrnX7YFp3PjR-KWnfMTr0pC28Py-YnErJzv-LScl4qnh8rpj_Bn7Mmbc |
Cites_doi | 10.1145/2939672.2939785 10.1016/j.knosys.2022.108651 10.1007/s40789-019-00264-5 10.1016/j.isprsjprs.2017.07.007 10.1016/0034-4257(92)90132-4 10.12677/GST.2020.81002 10.1109/ACCESS.2018.2890743 10.3390/drones7060398 10.17520/biods.2022411 10.1016/j.ecoinf.2021.101213 10.1016/j.isprsjprs.2013.11.018 10.1016/j.isprsjprs.2016.01.011 10.17520/biods.2022430 10.1016/j.ecoinf.2024.102728 10.1007/s11042-020-08851-4 10.1016/j.compag.2023.107822 10.1155/2017/1353691 10.1007/s11629-022-7333-6 10.1016/j.compag.2022.106734 10.1016/j.ecoleng.2018.11.018 10.1007/s10462-022-10275-5 10.3390/rs15194696 10.1016/j.ecolind.2024.112645 10.1016/j.neucom.2019.10.118 10.1093/jpe/rtv077 10.5194/hess-26-1089-2022 10.1109/36.843034 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16214106 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Ecology |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c56fb70d60a04960b85b149657db6522 A815421750 10_3390_rs16214106 |
GeographicLocations | China Tibetan Plateau |
GeographicLocations_xml | – name: China – name: Tibetan Plateau |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c359t-37089c6fa0be3997bf8eb1abfd28886e3f8a67c30586db38add98cd06dea30983 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:25:48 EDT 2025 Fri Jul 25 11:40:54 EDT 2025 Tue Jun 10 21:03:12 EDT 2025 Tue Jul 01 01:33:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-37089c6fa0be3997bf8eb1abfd28886e3f8a67c30586db38add98cd06dea30983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3268-8749 0000-0003-1283-438X |
OpenAccessLink | https://www.proquest.com/docview/3126014143?pq-origsite=%requestingapplication% |
PQID | 3126014143 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c56fb70d60a04960b85b149657db6522 proquest_journals_3126014143 gale_infotracacademiconefile_A815421750 crossref_primary_10_3390_rs16214106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ye (ref_20) 2023; 209 Costa (ref_28) 2023; 56 Belgiu (ref_29) 2016; 114 Jiang (ref_6) 2019; 127 Li (ref_26) 2004; 26 Zhong (ref_54) 2023; 39 Chen (ref_52) 2024; 53 Geng (ref_23) 2019; 21 Manspeizer (ref_45) 2024; 82 Morrison (ref_9) 2016; 9 ref_17 Li (ref_35) 2024; 167 Li (ref_46) 2022; 41 Du (ref_1) 2024; 44 Song (ref_13) 2023; 39 Zhang (ref_11) 2021; 57 Ao (ref_41) 2023; 51 ref_21 Trautmann (ref_3) 2022; 26 Ye (ref_18) 2022; 38 Wu (ref_59) 2020; 36 Theissler (ref_56) 2022; 247 Jin (ref_19) 2023; 38 Wang (ref_37) 2015; 31 Yang (ref_25) 2017; 42 Wang (ref_50) 2024; 36 Cervantes (ref_27) 2020; 408 Zhang (ref_32) 2023; 38 Yang (ref_2) 2011; 33 Zhang (ref_5) 2024; 44 Zhang (ref_51) 2021; 23 Gao (ref_33) 2022; 19 Petti (ref_57) 2022; 194 Lin (ref_7) 2022; 42 Dash (ref_15) 2017; 131 ref_30 Laba (ref_10) 2010; 30 He (ref_14) 2019; 6 Daughtry (ref_43) 1992; 39 ref_39 Chen (ref_12) 2024; 52 Cao (ref_60) 2024; 40 He (ref_38) 2022; 43 Xue (ref_44) 2017; 2017 Wei (ref_55) 2023; 56 Zhai (ref_16) 2020; 35 Csillik (ref_34) 2014; 88 Zhou (ref_53) 2020; 8 Zhao (ref_36) 2019; 50 Miura (ref_42) 2000; 38 Qi (ref_49) 2024; 41 ref_40 Na (ref_24) 2022; 34 (ref_48) 2019; 7 Wen (ref_31) 2022; 37 Batool (ref_47) 2020; 83 Bai (ref_58) 2023; 43 Liu (ref_8) 2021; 61 She (ref_22) 2024; 33 ref_4 |
References_xml | – ident: ref_30 doi: 10.1145/2939672.2939785 – volume: 34 start-page: 37 year: 2022 ident: ref_24 article-title: Identification of typical species in desert steppe based on unmannedaerialvehicle multispectral images publication-title: China Agric. Inform. – volume: 247 start-page: 108651 year: 2022 ident: ref_56 article-title: ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108651 – volume: 6 start-page: 320 year: 2019 ident: ref_14 article-title: A review of UAV monitoring in mining areas: Current status and future perspectives publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-019-00264-5 – volume: 131 start-page: 1 year: 2017 ident: ref_15 article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.007 – volume: 38 start-page: 225 year: 2022 ident: ref_18 article-title: Extraction of urban impervious surface based on the visible images of UAV and OBIA-RF algorithm publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 30 start-page: 18 year: 2010 ident: ref_10 article-title: The Vegetation Classification Research of North Tibetan Plateau Based on MODIS publication-title: Plateau Mt. Meteorol. Res. – volume: 39 start-page: 141 year: 1992 ident: ref_43 article-title: Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90132-4 – volume: 57 start-page: 816 year: 2021 ident: ref_11 article-title: A new vegetation map for Qinghai-Tibet Plateau by integrated classification from multi-source data products publication-title: J. Beijing Norm. Univ. – volume: 21 start-page: 1295 year: 2019 ident: ref_23 article-title: Object-Based Karst Wetland Vegetation Classification Method Using Unmanned Aerial Vehicle images and Random ForestAlgorithm publication-title: J. Geo-Inf. Sci. – volume: 42 start-page: 2852 year: 2022 ident: ref_7 article-title: Fine classification of urban vegetation based on UAV images publication-title: China Environ. Sci. – volume: 41 start-page: 11 year: 2022 ident: ref_46 article-title: Vegetation information classification method considering UAV image point cloud characteristics publication-title: Ecol. Sci. – volume: 8 start-page: 9 year: 2020 ident: ref_53 article-title: Object-Oriented Land Cover Classification Using High Spatial Resolution Remote Sensing publication-title: Geomat. Sci. Technol. doi: 10.12677/GST.2020.81002 – volume: 7 start-page: 8975 year: 2019 ident: ref_48 article-title: Texture Feature Extraction Methods: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890743 – volume: 26 start-page: 6 year: 2004 ident: ref_26 article-title: A Study on TWINSPAN Classification of Meadow Plants in Lazi County, Tibet publication-title: Acta Agric. Univ. Jiangxiensis – ident: ref_17 doi: 10.3390/drones7060398 – volume: 36 start-page: 118 year: 2020 ident: ref_59 article-title: Review on Application of Near Infrared Spectroscopy in Plant Leaves publication-title: For. Environ. Sci. – ident: ref_21 doi: 10.17520/biods.2022411 – volume: 61 start-page: 101213 year: 2021 ident: ref_8 article-title: Identification of plant species in an alpine steppe of Northern Tibet using close-range hyperspectral imagery publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101213 – volume: 38 start-page: 588 year: 2023 ident: ref_19 article-title: Crop Classification Method from UAV Images based on Object-Oriented Multi-feature Learning publication-title: Remote Sens. Technol. Appl. – volume: 88 start-page: 119 year: 2014 ident: ref_34 article-title: Automated parameterisation for multi-scale image segmentation on multiple layers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.018 – volume: 50 start-page: 232 year: 2019 ident: ref_36 article-title: Extraction Method of Summer Corn Vegetation Coverage Based on Visible Light Image of Unmanned Aerial Vehicle publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 41 start-page: 1 year: 2024 ident: ref_49 article-title: Identification of rodent hole patches in desert grasslands using UAV imagery and OBIA-CFS algorithms publication-title: Pratacultural Sci. – volume: 33 start-page: 1 year: 2024 ident: ref_22 article-title: Vegetation classification of UAV remote sensing images in desert steppe based on object-oriented technology publication-title: Acta Prataculturae Sin. – volume: 51 start-page: 13 year: 2023 ident: ref_41 article-title: Review of 54 Vegetation Indices publication-title: J. Anhui Agric. Sci. – volume: 43 start-page: 1598 year: 2023 ident: ref_58 article-title: Bi-Directional Reflection Characteristic of Vegetation Leaf Measured by Hyperspectral LiDAR and Its Impact on Chlorophyll Content Estimation publication-title: Spectrosc. Spectr. Anal. – volume: 114 start-page: 24 year: 2016 ident: ref_29 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref_4 doi: 10.17520/biods.2022430 – volume: 43 start-page: 504 year: 2022 ident: ref_38 article-title: Research on vegetation index of small watershed in the Loess Plateau based on visible light image analysis publication-title: Res. Agric. Mod. – volume: 82 start-page: 102728 year: 2024 ident: ref_45 article-title: Disentangling disturbances with nested hierarchy classification of Mediterranean garrigue/maquis shrub community compositions through remote sensing and GIS publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2024.102728 – volume: 44 start-page: 2504 year: 2024 ident: ref_1 article-title: Responses of vegetation and soil characterisitics to degraded grassland under different degrees on the Qinghai-Tibet Plateau publication-title: Acta Ecol. Sin. – volume: 83 start-page: 14959 year: 2020 ident: ref_47 article-title: Offline Signature Verification System: A Novel Technique of Fusion of GLCM and Geometric Features using SVM publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08851-4 – volume: 209 start-page: 107822 year: 2023 ident: ref_20 article-title: A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107822 – volume: 2017 start-page: 1353691 year: 2017 ident: ref_44 article-title: Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications publication-title: J. Sens. doi: 10.1155/2017/1353691 – volume: 23 start-page: 69 year: 2021 ident: ref_51 article-title: Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images publication-title: J. Agric. Sci. Technol. – volume: 33 start-page: 6 year: 2011 ident: ref_2 article-title: Quantitative characteristics of timberline vegetation on Mt. Shergyla, Tibet publication-title: J. Beijing For. Univ. – volume: 19 start-page: 1618 year: 2022 ident: ref_33 article-title: Early landslide mapping with slope units division and multi-scale objectbased image analysis—A case study in the Xiansh.ui River basin of Sichuan, China publication-title: J. Mt. Sci. doi: 10.1007/s11629-022-7333-6 – volume: 194 start-page: 106734 year: 2022 ident: ref_57 article-title: Weakly-supervised learning to automatically count cotton flowers from aerial imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106734 – volume: 38 start-page: 163 year: 2023 ident: ref_32 article-title: Study on Machine Learning Methods for Vegetation Classification in Typical Humid Mountainous Areas of South China based on the UAV Multispectral Remote Sensing publication-title: Remote Sens. Technol. Appl. – ident: ref_40 – volume: 127 start-page: 135 year: 2019 ident: ref_6 article-title: Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.11.018 – volume: 56 start-page: 4765 year: 2023 ident: ref_28 article-title: Recent advances in decision trees: An updated survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10275-5 – volume: 56 start-page: 1670 year: 2023 ident: ref_55 article-title: Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion publication-title: Sci. Agric. Sin. – ident: ref_39 doi: 10.3390/rs15194696 – volume: 42 start-page: 6 year: 2017 ident: ref_25 article-title: Information extraction of urban green space based on UAV remote sensing image publication-title: Sci. Surv. Mapp. – volume: 40 start-page: 275 year: 2024 ident: ref_60 article-title: Remote sensing monitoring of non-agriculturalization in typical areas of the Northern Xinjiang of China based on feature optimization publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 31 start-page: 152 year: 2015 ident: ref_37 article-title: Extraction of vegetation information from visible unmanned aerial vehicle images publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 167 start-page: 112645 year: 2024 ident: ref_35 article-title: Moderate Red-Edge vegetation index for High-Resolution multispectral remote sensing images in urban areas publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2024.112645 – volume: 408 start-page: 189 year: 2020 ident: ref_27 article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – volume: 39 start-page: 1688 year: 2023 ident: ref_54 article-title: Identification of rice in Shangxing Town, Liyang City based on Sentinel image and multi-feature optimization publication-title: Jiangsu J. Agric. Sci. – volume: 9 start-page: 367 year: 2016 ident: ref_9 article-title: Observer error in vegetation surveys: A review publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtv077 – volume: 26 start-page: 1089 year: 2022 ident: ref_3 article-title: The importance of vegetation in understanding terrestrial water storage variations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-1089-2022 – volume: 36 start-page: 95 year: 2024 ident: ref_50 article-title: Remote sensing information extraction for mangrove forests based on multi-feature parameters: A case study of Guangdong Province publication-title: Remote Sens. Nat. Resour. – volume: 52 start-page: 48 year: 2024 ident: ref_12 article-title: Urban Tree Species Classification by UAV Visible Light Imagery and OBIA-RF Model publication-title: J. Northeast. For. Univ. – volume: 38 start-page: 1399 year: 2000 ident: ref_42 article-title: Evaluation of sensor calibration uncertainties on vegetation indices for MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843034 – volume: 44 start-page: 2955 year: 2024 ident: ref_5 article-title: The differences of vegetation characteristics and environmental conditions among main vegetation types on the Qinghai-Tibet Plateau publication-title: Acta Ecol. Sin. – volume: 35 start-page: 185 year: 2020 ident: ref_16 article-title: Classification of Slope Plant Species Based on Image of UAV publication-title: J. Northwest For. Univ. – volume: 37 start-page: 74 year: 2022 ident: ref_31 article-title: Classifications of Tree Species Based on UAV–s Visible Light Images and Object-Oriented Method publication-title: J. Northwest For. Univ. – volume: 39 start-page: 1862 year: 2023 ident: ref_13 article-title: Classification of geological features in agricultural parks based on multispectral remote sensing by unmanned aerial vehicle publication-title: Jiangsu J. Agric. Sci. – volume: 53 start-page: 1401 year: 2024 ident: ref_52 article-title: Remote sensing parameters optimization for accurate land cover classification publication-title: Acta Geod. Cartogr. Sin. |
SSID | ssj0000331904 |
Score | 2.3839915 |
Snippet | The ecosystem of the Qinghai–Tibet Plateau is highly fragile due to its unique geographical conditions, with vegetation playing a crucial role in maintaining... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4106 |
SubjectTerms | Accuracy Algorithms Classification Climate change Datasets Decision trees Drone aircraft Ecological balance Ecological monitoring Ecology Ecosystems Environmental monitoring feature optimization Geographical distribution Grasses Imagery Infrared spectra Kobresia Kobresia pygmaea Learning algorithms Machine learning Machinery condition monitoring Near infrared radiation OBIA Populus simonii Salix psammophila Shrubs Support vector machines Tibetan Plateau UAV remote sensing Unmanned aerial vehicles Vegetation vegetation classification Willow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA3iRS-yri7OqktgFzw1k-mk08lxFD9WWBGcWbyFfDLC2iPteJij_9yqdI_rHsTLXrsDHaqSV6_oqleE_JA6luBNXzieUoEhoFClcAUkPl5XOkVdYzfyryt5MRWXt9Xtm1FfWBPWyQN3hhv6SiZXsyCZBTIrmVOVG6HIeR2cBPKA6Ath7E0ylTGYw9FiotMj5ZDXD9vHkSyxqFH-E4GyUP97cJxjzNknstWTQzruNrVN1mLzmWz0c8pnyx3yPKZY-Lek84YCc6N5pCUW-2T70nmiN7MWoIDaJtDz1uIf3dXayZ2LwATp9R-gl_aJHkP8Cvhy2txbRFs6zqeR_o4z_DzNvbm5E7OFpz_vUe1iuUumZ6eTk4uiH6JQeF7pBQAIU9rLZJmLQEZqlxTAs3UplJD8ysiTsrL2cO2VDI4rwDutfGAyRMuZVvwLWW_mTdwjVIhax-DTKAombIRcqxLOWZakTUlYMSDfV4Y1D51WhoEcA81v_pp_QI7R5q8rUN86PwCvm97r5iOvD8gReszgLQQjeNs3E8BGUc_KjBVQQ8i2KjYgByunmv56Pho-QiU1AVzx6__YzT7ZLIHrdC2KB2R90T7FQ-AqC_ctH8sXM4_mdQ priority: 102 providerName: Directory of Open Access Journals |
Title | A Study on the Classification of Shrubs and Grasses on the Tibetan Plateau Based on Unmanned Aerial Vehicle Multispectral Imagery |
URI | https://www.proquest.com/docview/3126014143 https://doaj.org/article/c56fb70d60a04960b85b149657db6522 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFYILKgXEQllZAolTVG_sOM4JZctuC6JVRbuot8ifXSSalOz2sEf-eWe83lY9wClS7EPksd-8cWbeEPJRVj4Ha9rM8BAydAGZyoXJIPCxVVEFX5VYjXx8Io9m4ttFcZEu3BYprXKDiRGoXWfxjnyfj1D8SoB7_3z9J8OuUfh3NbXQeEy2YZhjSpeaHt7dsTAOG4yJtSoph-h-v1-MZI6pjfKBH4py_f8C5ehppjvkeaKItF7b9AV55Ntd8mQS5aVXu-Rp6ls-X70kf2uKiYAr2rUUmByNLS4x-SeuN-0CPZv3AA1Ut44e9hr_8G7mnv8yHpghPf0NdFPf0DH4M4eDs_ZKI_rSOu5O-tPP8UNorNWNlZk9vP16heoXq1dkNp2cHxxlqalCZnlRLQFQmKqsDJoZD-SkNEEBXGsTXA7BsPQ8KC1LCzCgpDNcAf5VyjomndecVYq_Jltt1_o3hApRVt7ZMPKCCe0h9iqEMZoFqUMQWgzIh80SN9dr7YwGYg40RHNviAEZ4-rfzUC96_ii6y-bdHwaW8hgSuYk0xDSSGZUYUYodV86I4FCDsgntF2DpxIWwepUXAAfivpWTa2AKkL0VbAB2duYt0nHddHcb663_x9-R57lwGrWxYh7ZGvZ3_j3wEqWZhi33pBs11-Ov5_Bczw5Of0xjDH-LWnC5ek |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXBAXEQgFLgDhF9caO4xwQ2kK3u_QhJHZRb8Z2bBaJJiW7FcqRP8RvZMabtOIAt17tKLLmPfbMN4S8lIVPgZsusTyEBF1AolJhE0h8XJEVwRc5diMfn8jJXHw4zU43yO--FwbLKnubGA11WTu8I9_lQwS_EuDe357_SHBqFL6u9iM01mJx6NufkLIt30zfA39fpel4f_ZuknRTBRLHs2IFGsVU4WQwzHrwzrkNCuyVsaFMIRuUngdlZO5AD5QsLVdgAArlSiZLbzgrFIf_3iA3BeccsfrV-ODyTodxEGgm1iionBdst1kOZYqllPIvvxfHA_zLCUTPNr5L7nQhKR2tZege2fDVNrm1H-Gs222y1c1JX7T3ya8RxcLDltYVhciRxpGaWGwU-UvrQD8tGjBF1FQlPWgMvij3386-WQ-RKP34HcJbc0H3wH-WuDmvzgxaezqK2kA_-wUehMbe4NgJ2sDq9AzRNtoHZH4t5H5INqu68o8IFSIvfOnC0AsmjIdcLxPWGhakCUEYMSAvehLr8zVWh4YcBxmhrxgxIHtI_csvEF87LtTNV92pq3aZDDZnpWQGUijJrMrsEKH189JKCFkH5DXyTqMVACI40zUzwEERT0uPFISmkO1lbEB2evbqzjws9ZUwP_7_9nOyNZkdH-mj6cnhE3I7hYhq3Qi5QzZXzYV_ChHRyj6LYkjJl-uW-z_ZaR_n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anfi4IBggCgMsAeIU1U0cJzlMqGUtK4OqghXtFuzYXiexZKSdUI_8e_xVvOcmmzjAbVc7iqz3_ez3fg_glcxsiNwsAh05F5ALCNJQ6AATnyKLM2ezhLqRP03lwVx8OI6Pt-B32wtDZZWtTfSG2lQF3ZH3oj6BXwl07z3XlEXM9sdvz38ENEGKXlrbcRqqGbNg9jzcWNPkcWjXPzGdW-5N9pH3r8NwPDp6dxA0EweCIoqzFWobT7NCOsW1Rc-daJeiLVPamRAzRWkjlyqZFKgjqTQ6StE4ZGlhuDRWRTxLI_zvDdhOqF-0A9vD0XT2-fLGh0co7lxsMFKjKOO9etmXIRVayr-8oh8e8C8X4f3e-B7cbQJWNthI2H3YsuUO3Bx5sOv1Dtxupqgv1g_g14BRWeKaVSXDuJL5gZtUiuS5zyrHvixqNFRMlYa9rxW9N7ffHp1qi3Eqm33H4FddsCF6V0Ob8_JMkS9gA68r7Ktd0EGY7xz2faI1rk7OCItj_RDm10LwR9Apq9I-BiZEkllTuL4VXCiLmWAstFbcSeWcUKILL1sS5-cbJI8cMyBiRH7FiC4MifqXXxD6tl-o6pO8Uea8iKXTCTeSK0ywJNdprPsEvJ8YLTGg7cIb4l1ONgKJUKim1QEPSmhb-SDFwBVzwZh3Ybdlb94Yj2V-JepP_r_9Am6hDuQfJ9PDp3AnxHBr0yW5C51VfWGfYbi00s8bOWTw7bpF_w-FEyrB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+the+Classification+of+Shrubs+and+Grasses+on+the+Tibetan+Plateau+Based+on+Unmanned+Aerial+Vehicle+Multispectral+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Xiaoqiang&rft.au=Deng%2C+Hui&rft.au=Zhang%2C+Wenjiang&rft.au=Zhang%2C+Houxi&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=21&rft_id=info:doi/10.3390%2Frs16214106&rft.externalDocID=A815421750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |