Research on the traceability and treatment of nitrate pollution in groundwater: a comprehensive review
The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO 3 − ) has emerged as a pervasive contaminant in groundwater, at...
Saved in:
| Published in | Environmental geochemistry and health Vol. 47; no. 4; p. 107 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0269-4042 1573-2983 1573-2983 |
| DOI | 10.1007/s10653-025-02412-0 |
Cover
| Abstract | The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO
3
−
) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO
3
−
pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO
3
−
contamination. Technologies for tracing NO
3
−
-polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO
3
−
concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO
3
−
pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO
3
−
pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. |
|---|---|
| AbstractList | The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO₃⁻) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO₃⁻ pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO₃⁻ contamination. Technologies for tracing NO₃⁻-polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO₃⁻ concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO₃⁻ pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO₃⁻ pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO ) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO contamination. Technologies for tracing NO -polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO 3 − ) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO 3 − pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO 3 − contamination. Technologies for tracing NO 3 − -polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO 3 − concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO 3 − pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO 3 − pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO3−) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO3− pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO3− contamination. Technologies for tracing NO3−-polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO3− concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO3− pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO3− pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO3-) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO3- pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO3- contamination. Technologies for tracing NO3--polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO3- concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO3- pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO3- pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources.The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO3-) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO3- pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO3- contamination. Technologies for tracing NO3--polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO3- concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO3- pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO3- pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources. |
| ArticleNumber | 107 |
| Author | Wang, Xinyi Zhang, Yu Li, Ruihua Gu, Haiping Zhao, Lei Yang, Ziyan Liu, Yuhao Chen, Weisheng Song, Gangfu Lv, Haiyang |
| Author_xml | – sequence: 1 givenname: Yuhao surname: Liu fullname: Liu, Yuhao email: liuyuhao@ncwu.edu.cn organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 3 givenname: Haiyang surname: Lv fullname: Lv, Haiyang organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 4 givenname: Lei surname: Zhao fullname: Zhao, Lei organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 5 givenname: Xinyi surname: Wang fullname: Wang, Xinyi organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 6 givenname: Ziyan surname: Yang fullname: Yang, Ziyan organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 7 givenname: Ruihua surname: Li fullname: Li, Ruihua organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 8 givenname: Weisheng surname: Chen fullname: Chen, Weisheng email: chenweisheng@ncwu.edu.cn organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 9 givenname: Gangfu surname: Song fullname: Song, Gangfu organization: Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power – sequence: 10 givenname: Haiping surname: Gu fullname: Gu, Haiping organization: School of Forestry, Henan Agricultural University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40053144$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9rFTEUxYO02NfqF3AhATduRm_-zWTcSam2UBBKuw6Z5KZvykzyTGZa-u2NfVXBhS7ChZvfyc0955gcxBSRkDcMPjCA7mNh0CrRAFf1SMYbeEE2THWi4b0WB2QDvO0bCZIfkeNS7gCg76R-SY4kgBJMyg0JV1jQZrelKdJli3TJ1qEdxmlcHqmNvjbQLjPGhaZA41jvF6S7NE3rMlbNGOltTmv0D7WfP1FLXZp3GbcYy3iPNOP9iA-vyGGwU8HXz_WE3Hw5uz49by6_fb04_XzZOKH6pRFtcDrAMDjutWId12xgflBWtb6XMjDQNnAletF7FrDXvuVcOS80Q3Q8iBPyfv_uLqfvK5bFzGNxOE02YlqLERyA644x-X-UVa9YD62u6Lu_0Lu05lgXeaLqzyRTlXr7TK3DjN7s8jjb_Gh-mV0BvgdcTqVkDL8RBuZnomafqKmJmqdEDVSR2ItKheMt5j-z_6H6AQBaook |
| Cites_doi | 10.1016/j.jenvman.2023.118192 10.1016/j.jenvman.2022.116827 10.1016/j.watres.2020.116537 10.1038/s43247-025-02016-7 10.13031/2013.42263 10.1016/j.scitotenv.2024.177418 10.1007/s00442-002-0977-6 10.1016/j.jhydrol.2023.129911 10.1016/j.scitotenv.2023.162026 10.12357/cjea.20230117 10.1016/j.watres.2023.119663 10.1016/S0269-7491(01)00111-7 10.1016/j.jenvman.2022.115265 10.1016/j.jhazmat.2024.136594 10.1007/s11270-023-06100-6 10.14336/AD.2017.1207 10.1021/es010027y 10.3390/su162310777 10.13227/j.hjkx.201804046 10.1007/s13762-020-02825-7 10.1071/EN13036 10.1016/j.biortech.2013.08.146 10.1016/j.electacta.2007.03.064 10.1021/acs.est.2c07216 10.1007/s12665-017-6729-z 10.3390/w12113292 10.13198/j.issn.1001-6929.2021.03.10 10.1007/s10666-019-09671-z 10.1016/j.envpol.2011.09.033 10.1016/j.eti.2020.100917 10.1007/978-3-319-14212-8_10 10.1016/j.eti.2018.05.006 10.1016/j.chemosphere.2024.141964 10.1016/j.envpol.2003.11.004 10.1111/j.1461-0248.2008.01163.x 10.16438/j.0513-4870.2015-0551 10.1007/s00442-003-1218-3 10.1007/s11783-011-0274-x 10.1016/j.gexplo.2025.107670 10.1016/j.jenvman.2024.122941 10.1016/j.jpowsour.2015.04.045 10.1016/j.chemosphere.2023.139909 10.1503/cmaj.220434 10.1029/2000wr900270 10.1016/j.watres.2019.04.047 10.1016/j.jhazmat.2011.06.008 10.1371/journal.pone.0283787 10.5194/bg-11-4913-2014 10.1016/S0043-1354(02)00206-3 10.1016/j.scitotenv.2024.177120 10.1007/978-3-319-73645-7_20 10.1016/j.envpol.2022.120534 10.1007/s004420100723 10.1016/j.jhydrol.2023.129868 10.12029/gc20240328001 10.3390/w15101833 10.1016/j.chemosphere.2019.04.163 10.1016/j.jpowsour.2014.06.076 10.1016/j.bej.2018.02.016 10.3390/w15234067 10.1016/j.ecohyd.2024.09.006 10.1007/s004420000571 10.1016/j.scitotenv.2021.151065 10.1201/9781420012613.ch7 10.1016/j.gsd.2025.101406 10.1007/s11783-023-1731-z 10.1007/BF02911334 10.1016/j.scitotenv.2023.166863 10.1007/s11356-012-1092-9 10.13227/j.hjkx.201802088 10.1016/j.jenvman.2020.111197 10.1007/s10040-018-1720-7 10.1016/S0160-4120(03)00095-3 10.1016/j.scitotenv.2017.10.086 10.1038/s41396-022-01300-0 10.1016/j.scitotenv.2020.137134 10.1016/j.scitotenv.2018.01.159 10.1371/journal.pone.0009672 10.1016/j.scitotenv.2020.138907 10.1007/s10570-020-03052-6 10.1016/j.chemosphere.2024.141830 10.1016/j.envpol.2016.08.078 10.1007/s11356-022-19277-w 10.1016/j.scitotenv.2018.03.261 10.1039/D3RA01403G 10.1007/s004420100786 10.1016/j.agwat.2021.106826 10.1016/j.envpol.2024.125301 10.1016/j.jconhyd.2021.103895 10.1016/j.biortech.2017.01.076 10.1016/j.procbio.2005.03.017 10.1016/j.jhydrol.2023.129131 10.1080/02508060108686913 10.1016/j.biortech.2021.126274 10.1007/s10653-023-01684-8 10.1088/1757-899X/301/1/012159 10.1007/s12665-016-5721-3 10.1016/j.gca.2007.05.021 10.1016/S0269-7491(00)00147-0 10.1111/1574-6976.12031 10.1016/j.chemosphere.2014.03.112 10.1016/j.scitotenv.2023.169300 10.1007/s11356-022-23536-1 10.1016/j.jhazmat.2021.126103 10.2134/jeq2015.06.0330 10.3133/ofr94464 10.7717/peerj.5096 10.1016/S0169-7722(01)00152-8 10.7541/2022.2020.253 10.1016/j.softx.2023.101450 10.1021/acs.est.4c08197 10.3390/su16010423 10.1007/s10666-019-9653-7 10.1016/j.jclepro.2021.128059 10.1016/j.envpol.2024.124076 10.1016/j.watres.2021.116814 10.18520/cs/v118/i6/883-891 10.1007/s13762-013-0236-x 10.1016/j.jwpe.2020.101196 10.1007/s004420000578 10.1111/j.1461-0248.2008.01233.x 10.1016/j.desal.2010.04.053 10.1016/j.jenvman.2012.06.030 10.1016/j.scitotenv.2017.12.252 10.1016/j.envres.2024.120052 10.1039/c6em00531d 10.1039/D3EW00019B 10.1016/j.watres.2008.12.048 10.1007/s12665-014-3641-7 10.1016/j.jhydrol.2010.11.017 10.1002/9780470691854.ch12 10.1007/s11783-022-1591-y 10.1007/978-3-030-38152-3_16 10.1016/j.ecoenv.2020.110227 10.1016/j.envpol.2021.116930 10.1016/j.agee.2009.04.004 10.1007/s11004-012-9436-z 10.1016/j.envpol.2021.117112 10.1016/j.scitotenv.2013.10.043 10.1016/j.envres.2024.119932 10.1016/j.chemosphere.2023.138967 10.1016/j.jenvman.2019.01.020 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to Springer Nature B.V. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to Springer Nature B.V. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7UA C1K F1W H97 K9. L.G SOI 7X8 7S9 L.6 |
| DOI | 10.1007/s10653-025-02412-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Health & Medical Complete (Alumni) Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health Geology Environmental Sciences |
| EISSN | 1573-2983 |
| EndPage | 107 |
| ExternalDocumentID | 40053144 10_1007_s10653_025_02412_0 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52000069 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 52000069 |
| GroupedDBID | --- -Y2 .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7X7 7XC 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAK LK5 LLZTM M1P M2P M4Y M7R MA- MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PF0 PHGZT PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZCA ZMTXR ~02 ~A9 ~EX ~KM AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION ESTFP PHGZM PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7ST 7UA C1K F1W H97 K9. L.G SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c359t-36fc8f0bbc2d8517281b1db5a56d944f108af253939d1fe98d6225cd381eec2f3 |
| IEDL.DBID | U2A |
| ISSN | 0269-4042 1573-2983 |
| IngestDate | Fri Sep 05 17:15:08 EDT 2025 Thu Oct 02 05:33:25 EDT 2025 Tue Oct 07 05:51:16 EDT 2025 Mon Jul 21 05:22:24 EDT 2025 Wed Oct 01 06:36:29 EDT 2025 Wed Apr 02 01:29:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Nitrate pollution Source identification Remediation Groundwater |
| Language | English |
| License | 2025. The Author(s), under exclusive licence to Springer Nature B.V. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-36fc8f0bbc2d8517281b1db5a56d944f108af253939d1fe98d6225cd381eec2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 40053144 |
| PQID | 3174944415 |
| PQPubID | 54167 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3200287114 proquest_miscellaneous_3174819068 proquest_journals_3174944415 pubmed_primary_40053144 crossref_primary_10_1007_s10653_025_02412_0 springer_journals_10_1007_s10653_025_02412_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Netherlands – name: Kew |
| PublicationSubtitle | Official Journal of the Society for Environmental Geochemistry and Health |
| PublicationTitle | Environmental geochemistry and health |
| PublicationTitleAbbrev | Environ Geochem Health |
| PublicationTitleAlternate | Environ Geochem Health |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | R Carrey (2412_CR11) 2021; 188 C Jin (2412_CR33) 2023; 340 J Xiao (2412_CR118) 2021; 278 R Liu (2412_CR51) 2019; 158 E Pastén-Zapata (2412_CR73) 2014; 470–471 AC Parnell (2412_CR71) 2010; 5 B Wang (2412_CR109) 2023; 15 X Liu (2412_CR54) 2024 X Ming (2412_CR63) 2020; 735 S Tong (2412_CR104) 2013; 148 KTB MacQuarrie (2412_CR57) 2001; 52 P Karthikeyan (2412_CR35) 2020; 27 D Kaown (2412_CR34) 2009; 132 F Obiri-Nyarko (2412_CR69) 2014; 111 X Ren (2412_CR86) 2023; 334 CDA McLay (2412_CR61) 2001; 115 J Yu (2412_CR127) 2021; 283 M Shrimali (2412_CR95) 2001; 112 D Guinoiseau (2412_CR22) 2018; 626 AK Thakur (2412_CR103) 2020; 19 R Chen (2412_CR12) 2023; 871 C Briand (2412_CR10) 2013; 10 X Liu (2412_CR55) 2025; 6 SMA Banaei (2412_CR5) 2021; 18 L Zhang (2412_CR133) 2011; 5 K Wick (2412_CR115) 2012; 111 S Liu (2412_CR52) 2023; 9 H Zhang (2412_CR132) 2020; 717 DL Phillips (2412_CR79) 2002; 130 KM Ransom (2412_CR85) 2022; 807 2412_CR37 A Jackson (2412_CR31) 2009; 12 A Richa (2412_CR87) 2022; 316 T Sheng (2412_CR94) 2018; 39 X Wang (2412_CR113) 2013; 20 NA Qambrani (2412_CR83) 2015; 73 S Shukla (2412_CR97) 2020 B Badgley (2412_CR4) 2015 J-H Min (2412_CR62) 2002; 6 P Wu (2412_CR116) 2022; 29 X Kou (2412_CR41) 2021; 250 HS Moon (2412_CR64) 2004; 129 JM McArthur (2412_CR60) 2001; 37 CD Aju (2412_CR1) 2024; 357 J Mahlknecht (2412_CR58) 2023; 905 X Li (2412_CR45) 2024; 16 M Rotiroti (2412_CR89) 2023; 623 M Zhou (2412_CR140) 2007; 52 2412_CR81 Z Chen (2412_CR13) 2024; 957 CD Egbi (2412_CR18) 2020; 191 K Han (2412_CR26) 2023; 18 Z Zhao (2412_CR135) 2025; 482 D Xue (2412_CR122) 2012; 161 SH Kim (2412_CR38) 2021; 191 F Yang (2412_CR123) 2023; 316 F Valivand (2412_CR107) 2020; 25 L Ma (2412_CR56) 2018; 9 A Wang (2412_CR108) 2018; 633 2412_CR136 X Lin (2412_CR48) 2023; 13 X Guo (2412_CR23) 2020; 274 2412_CR96 D Liu (2412_CR50) 2023; 57 2412_CR98 2412_CR99 IS Babiker (2412_CR3) 2004; 29 MG Jiménez (2412_CR32) 2023; 23 J Spoelstra (2412_CR100) 2007; 71 Y Yang (2412_CR125) 2021; 315 R Hussien (2412_CR30) 2023; 30 I Matiatos (2412_CR59) 2019; 24 O Nikolenko (2412_CR67) 2018; 621 G Gui (2412_CR21) 2016; 51 A Laoufi (2412_CR42) 2024; 16 K Yang (2412_CR124) 2024; 51 K Zheng (2412_CR138) 2022; 16 D Saleh (2412_CR90) 2022; 194 Z-Y Wu (2412_CR117) 2022; 344 T Peng (2412_CR74) 2018; 134 X Xu (2412_CR120) 2025; 59 OE Mosley (2412_CR66) 2022; 16 J Li (2412_CR43) 2023; 624 D Han (2412_CR25) 2016; 218 K Zheng (2412_CR137) 2024; 370 X-Q Du (2412_CR15) 2018; 39 D Pittalis (2412_CR80) 2018; 26 2412_CR106 DL Phillips (2412_CR77) 2001; 128 MA Engle (2412_CR19) 2013; 45 RGK Hinton (2412_CR29) 2024; 957 T Boschetti (2412_CR9) 2025; 271 S Sarkar (2412_CR91) 2021; 243 T Yılmaz (2412_CR126) 2023; 326 M Berg (2412_CR6) 2001; 35 JA Torres-Martínez (2412_CR105) 2021; 417 B Zhang (2412_CR131) 2014; 268 AK Shakya (2412_CR93) 2019; 235 R Aravena (2412_CR2) 2009 L Hao (2412_CR27) 2015; 287 X Du (2412_CR16) 2020; 12 JW Moore (2412_CR65) 2008; 11 C Liu (2412_CR49) 2001; 26 BC Stock (2412_CR101) 2018; 6 H Wang (2412_CR110) 2021; 34 S Zhai (2412_CR130) 2017; 232 VJ Harwood (2412_CR28) 2014; 38 R Biddau (2412_CR7) 2023; 232 A Zaryab (2412_CR129) 2023; 45 W Wang (2412_CR112) 2016; 75 K-H Zhu (2412_CR143) 2022; 46 J Serra (2412_CR92) 2024; 355 S Wang (2412_CR111) 2023; 342 DL Phillips (2412_CR76) 2001; 127 Z Cui (2412_CR14) 2016; 45 KM Rogers (2412_CR88) 2023; 617 A Zhu (2412_CR142) 2019; 228 P Borah (2412_CR8) 2025; 28 Y Liang (2412_CR47) 2018; 301 Q Zhou (2412_CR141) 2024 R Noori (2412_CR68) 2010; 260 M Prosnansky (2412_CR82) 2002; 36 S Liu (2412_CR53) 2023; 234 L Liang (2412_CR46) 2023; 15 Y Du (2412_CR17) 2017; 19 PL Koch (2412_CR39) 2002; 133 PR Rad (2412_CR84) 2020; 35 Y Zhao (2412_CR134) 2011; 192 L Li (2412_CR44) 2024; 263 B Xu (2412_CR119) 2024; 912 C Yudao (2412_CR128) 2017; 76 BG Katz (2412_CR36) 2011; 397 M Gutiérrez (2412_CR24) 2018; 624 K Zheng (2412_CR139) 2023; 17 AM Paruch (2412_CR72) 2024; 351 H Sun (2412_CR102) 2023; 31 W Fan (2412_CR20) 2024; 363 XM Wang (2412_CR114) 2013; 10 DL Phillips (2412_CR75) 2001; 127 D Xue (2412_CR121) 2009; 43 HI Park (2412_CR70) 2005; 40 DL Phillips (2412_CR78) 2003; 136 F Korth (2412_CR40) 2014; 11 |
| References_xml | – volume: 342 start-page: 118192 year: 2023 ident: 2412_CR111 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.118192 – volume: 326 start-page: 116827 year: 2023 ident: 2412_CR126 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2022.116827 – volume: 188 start-page: 116537 year: 2021 ident: 2412_CR11 publication-title: Water Research doi: 10.1016/j.watres.2020.116537 – volume: 6 start-page: 58 issue: 1 year: 2025 ident: 2412_CR55 publication-title: Communications Earth & Environment doi: 10.1038/s43247-025-02016-7 – ident: 2412_CR136 doi: 10.13031/2013.42263 – volume: 957 start-page: 177418 year: 2024 ident: 2412_CR29 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2024.177418 – volume: 133 start-page: 14 issue: 1 year: 2002 ident: 2412_CR39 publication-title: Oecologia doi: 10.1007/s00442-002-0977-6 – volume: 624 start-page: 129911 year: 2023 ident: 2412_CR43 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2023.129911 – volume: 871 start-page: 162026 year: 2023 ident: 2412_CR12 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2023.162026 – volume: 31 start-page: 1839 issue: 11 year: 2023 ident: 2412_CR102 publication-title: Chinese Journal of Eco-Agriculture doi: 10.12357/cjea.20230117 – volume: 232 start-page: 119663 year: 2023 ident: 2412_CR7 publication-title: Water Research doi: 10.1016/j.watres.2023.119663 – volume: 115 start-page: 191 issue: 2 year: 2001 ident: 2412_CR61 publication-title: Environmental Pollution doi: 10.1016/S0269-7491(01)00111-7 – volume: 316 start-page: 115265 year: 2022 ident: 2412_CR87 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2022.115265 – volume: 482 start-page: 136594 year: 2025 ident: 2412_CR135 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2024.136594 – volume: 234 start-page: 76 issue: 2 year: 2023 ident: 2412_CR53 publication-title: Water, Air, & Soil Pollution doi: 10.1007/s11270-023-06100-6 – volume: 9 start-page: 938 year: 2018 ident: 2412_CR56 publication-title: Aging and Disease doi: 10.14336/AD.2017.1207 – volume: 35 start-page: 2621 issue: 13 year: 2001 ident: 2412_CR6 publication-title: Environmental Science & Technology doi: 10.1021/es010027y – volume: 16 start-page: 10777 issue: 23 year: 2024 ident: 2412_CR42 publication-title: Sustainability doi: 10.3390/su162310777 – volume: 39 start-page: 4547 year: 2018 ident: 2412_CR94 publication-title: Huan Jing Ke Xue= Huanjing Kexue / [bian Ji, Zhongguo Ke Xue Yuan Huan Jing Ke Xue Wei Yuan Hui "huan Jing Ke Xue" Bian Ji Wei Yuan Hui.] doi: 10.13227/j.hjkx.201804046 – volume: 18 start-page: 151 issue: 1 year: 2021 ident: 2412_CR5 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-020-02825-7 – volume: 10 start-page: 365 year: 2013 ident: 2412_CR10 publication-title: Environmental Chemistry doi: 10.1071/EN13036 – volume: 148 start-page: 121 year: 2013 ident: 2412_CR104 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2013.08.146 – volume: 52 start-page: 6052 issue: 19 year: 2007 ident: 2412_CR140 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2007.03.064 – volume: 57 start-page: 7328 issue: 19 year: 2023 ident: 2412_CR50 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.2c07216 – volume: 76 start-page: 392 issue: 11 year: 2017 ident: 2412_CR128 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6729-z – volume: 12 start-page: 3292 year: 2020 ident: 2412_CR16 publication-title: Water doi: 10.3390/w12113292 – volume: 34 start-page: 1886 year: 2021 ident: 2412_CR110 publication-title: Research of Environmental Sciences doi: 10.13198/j.issn.1001-6929.2021.03.10 – volume: 25 start-page: 187 issue: 2 year: 2020 ident: 2412_CR107 publication-title: Environmental Modeling & Assessment doi: 10.1007/s10666-019-09671-z – volume: 161 start-page: 43 year: 2012 ident: 2412_CR122 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2011.09.033 – volume: 19 start-page: 100917 year: 2020 ident: 2412_CR103 publication-title: Environmental Technology & Innovation doi: 10.1016/j.eti.2020.100917 – start-page: 267 volume-title: Advances in watershed science and assessment year: 2015 ident: 2412_CR4 doi: 10.1007/978-3-319-14212-8_10 – ident: 2412_CR98 doi: 10.1016/j.eti.2018.05.006 – volume: 357 start-page: 141964 year: 2024 ident: 2412_CR1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.141964 – volume: 129 start-page: 499 issue: 3 year: 2004 ident: 2412_CR64 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2003.11.004 – volume: 11 start-page: 470 issue: 5 year: 2008 ident: 2412_CR65 publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2008.01163.x – volume: 51 start-page: 59 year: 2016 ident: 2412_CR21 publication-title: Acta Pharmaceutica Sinica doi: 10.16438/j.0513-4870.2015-0551 – volume: 136 start-page: 261 issue: 2 year: 2003 ident: 2412_CR78 publication-title: Oecologia doi: 10.1007/s00442-003-1218-3 – volume: 5 start-page: 604 issue: 4 year: 2011 ident: 2412_CR133 publication-title: Frontiers of Environmental Science & Engineering in China doi: 10.1007/s11783-011-0274-x – volume: 271 start-page: 107670 year: 2025 ident: 2412_CR9 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2025.107670 – volume: 370 start-page: 122941 year: 2024 ident: 2412_CR137 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2024.122941 – volume: 287 start-page: 43 year: 2015 ident: 2412_CR27 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2015.04.045 – volume: 340 start-page: 139909 year: 2023 ident: 2412_CR33 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.139909 – volume: 194 start-page: E1066 year: 2022 ident: 2412_CR90 publication-title: Canadian Medical Association Journal doi: 10.1503/cmaj.220434 – volume: 37 start-page: 109 issue: 1 year: 2001 ident: 2412_CR60 publication-title: Water Resources Research doi: 10.1029/2000wr900270 – volume: 158 start-page: 401 year: 2019 ident: 2412_CR51 publication-title: Water Research doi: 10.1016/j.watres.2019.04.047 – volume: 192 start-page: 1033 issue: 3 year: 2011 ident: 2412_CR134 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2011.06.008 – volume: 18 start-page: e0283787 issue: 3 year: 2023 ident: 2412_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0283787 – volume: 11 start-page: 4913 issue: 17 year: 2014 ident: 2412_CR40 publication-title: Biogeosciences doi: 10.5194/bg-11-4913-2014 – volume: 36 start-page: 4801 issue: 19 year: 2002 ident: 2412_CR82 publication-title: Water Research doi: 10.1016/S0043-1354(02)00206-3 – volume: 957 year: 2024 ident: 2412_CR13 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2024.177120 – ident: 2412_CR96 doi: 10.1007/978-3-319-73645-7_20 – volume: 316 start-page: 120534 year: 2023 ident: 2412_CR123 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2022.120534 – volume: 128 start-page: 304 issue: 2 year: 2001 ident: 2412_CR77 publication-title: Oecologia doi: 10.1007/s004420100723 – volume: 623 start-page: 129868 year: 2023 ident: 2412_CR89 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2023.129868 – volume: 51 start-page: 2066 issue: 6 year: 2024 ident: 2412_CR124 publication-title: Geology in China doi: 10.12029/gc20240328001 – volume: 15 start-page: 1833 issue: 10 year: 2023 ident: 2412_CR109 publication-title: Water doi: 10.3390/w15101833 – volume: 228 start-page: 721 year: 2019 ident: 2412_CR142 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.163 – volume: 268 start-page: 423 year: 2014 ident: 2412_CR131 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2014.06.076 – volume: 134 start-page: 12 year: 2018 ident: 2412_CR74 publication-title: Biochemical Engineering Journal doi: 10.1016/j.bej.2018.02.016 – volume: 15 start-page: 4067 year: 2023 ident: 2412_CR46 publication-title: Water doi: 10.3390/w15234067 – year: 2024 ident: 2412_CR54 publication-title: Ecohydrology & Hydrobiology doi: 10.1016/j.ecohyd.2024.09.006 – volume: 127 start-page: 166 issue: 2 year: 2001 ident: 2412_CR75 publication-title: Oecologia doi: 10.1007/s004420000571 – volume: 807 start-page: 151065 year: 2022 ident: 2412_CR85 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2021.151065 – start-page: 203 volume-title: Environmental isotopes in biodegradation and bioremediation year: 2009 ident: 2412_CR2 doi: 10.1201/9781420012613.ch7 – volume: 28 start-page: 101406 year: 2025 ident: 2412_CR8 publication-title: Groundwater for Sustainable Development doi: 10.1016/j.gsd.2025.101406 – volume: 17 start-page: 131 issue: 11 year: 2023 ident: 2412_CR139 publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-023-1731-z – volume: 6 start-page: 35 issue: 1 year: 2002 ident: 2412_CR62 publication-title: Geosciences Journal doi: 10.1007/BF02911334 – volume: 905 start-page: 166863 year: 2023 ident: 2412_CR58 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2023.166863 – volume: 20 start-page: 2236 issue: 4 year: 2013 ident: 2412_CR113 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-012-1092-9 – volume: 39 start-page: 5266 year: 2018 ident: 2412_CR15 publication-title: Huan Jing Ke Xue= Huanjing Kexue doi: 10.13227/j.hjkx.201802088 – volume: 274 start-page: 111197 year: 2020 ident: 2412_CR23 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2020.111197 – volume: 26 start-page: 2021 issue: 6 year: 2018 ident: 2412_CR80 publication-title: Hydrogeology Journal doi: 10.1007/s10040-018-1720-7 – volume: 29 start-page: 1009 issue: 8 year: 2004 ident: 2412_CR3 publication-title: Environment International doi: 10.1016/S0160-4120(03)00095-3 – volume: 621 start-page: 1415 year: 2018 ident: 2412_CR67 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2017.10.086 – volume: 16 start-page: 2561 issue: 11 year: 2022 ident: 2412_CR66 publication-title: The ISME Journal doi: 10.1038/s41396-022-01300-0 – volume: 717 start-page: 137134 year: 2020 ident: 2412_CR132 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.137134 – volume: 626 start-page: 1057 year: 2018 ident: 2412_CR22 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.01.159 – volume: 5 start-page: e9672 issue: 3 year: 2010 ident: 2412_CR71 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009672 – volume: 735 start-page: 138907 year: 2020 ident: 2412_CR63 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.138907 – volume: 27 start-page: 4539 issue: 8 year: 2020 ident: 2412_CR35 publication-title: Cellulose doi: 10.1007/s10570-020-03052-6 – volume: 355 start-page: 141830 year: 2024 ident: 2412_CR92 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.141830 – volume: 218 start-page: 1222 year: 2016 ident: 2412_CR25 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2016.08.078 – volume: 29 start-page: 48661 issue: 32 year: 2022 ident: 2412_CR116 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-19277-w – volume: 633 start-page: 1078 year: 2018 ident: 2412_CR108 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.03.261 – volume: 13 start-page: 14675 issue: 21 year: 2023 ident: 2412_CR48 publication-title: RSC Advances doi: 10.1039/D3RA01403G – volume: 130 start-page: 114 issue: 1 year: 2002 ident: 2412_CR79 publication-title: Oecologia doi: 10.1007/s004420100786 – volume: 250 start-page: 106826 year: 2021 ident: 2412_CR41 publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2021.106826 – volume: 363 start-page: 125301 year: 2024 ident: 2412_CR20 publication-title: Chinese Xinjiang. Environmental Pollution doi: 10.1016/j.envpol.2024.125301 – volume: 243 start-page: 103895 year: 2021 ident: 2412_CR91 publication-title: Journal of Contaminant Hydrology doi: 10.1016/j.jconhyd.2021.103895 – volume: 232 start-page: 278 year: 2017 ident: 2412_CR130 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2017.01.076 – volume: 40 start-page: 3383 issue: 10 year: 2005 ident: 2412_CR70 publication-title: Process Biochemistry doi: 10.1016/j.procbio.2005.03.017 – volume: 617 start-page: 129131 year: 2023 ident: 2412_CR88 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2023.129131 – volume: 26 start-page: 265 year: 2001 ident: 2412_CR49 publication-title: Water International doi: 10.1080/02508060108686913 – volume: 344 start-page: 126274 year: 2022 ident: 2412_CR117 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2021.126274 – volume: 45 start-page: 7813 issue: 11 year: 2023 ident: 2412_CR129 publication-title: Environmental Geochemistry and Health doi: 10.1007/s10653-023-01684-8 – volume: 301 start-page: 012159 year: 2018 ident: 2412_CR47 publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/301/1/012159 – ident: 2412_CR106 – volume: 75 start-page: 936 issue: 11 year: 2016 ident: 2412_CR112 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-5721-3 – volume: 71 start-page: 3757 issue: 15 year: 2007 ident: 2412_CR100 publication-title: Geochimica Et Cosmochimica Acta doi: 10.1016/j.gca.2007.05.021 – volume: 112 start-page: 351 issue: 3 year: 2001 ident: 2412_CR95 publication-title: Environmental Pollution doi: 10.1016/S0269-7491(00)00147-0 – volume: 38 start-page: 1 issue: 1 year: 2014 ident: 2412_CR28 publication-title: FEMS Microbiology Reviews doi: 10.1111/1574-6976.12031 – volume: 111 start-page: 243 year: 2014 ident: 2412_CR69 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.03.112 – volume: 912 start-page: 169300 year: 2024 ident: 2412_CR119 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2023.169300 – volume: 30 start-page: 22115 issue: 8 year: 2023 ident: 2412_CR30 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-23536-1 – volume: 417 start-page: 126103 year: 2021 ident: 2412_CR105 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2021.126103 – volume: 45 start-page: 839 issue: 3 year: 2016 ident: 2412_CR14 publication-title: Journal of Environmental Quality doi: 10.2134/jeq2015.06.0330 – ident: 2412_CR81 doi: 10.3133/ofr94464 – volume: 6 start-page: e5096 year: 2018 ident: 2412_CR101 publication-title: PeerJ doi: 10.7717/peerj.5096 – volume: 52 start-page: 29 issue: 1 year: 2001 ident: 2412_CR57 publication-title: Journal of Contaminant Hydrology doi: 10.1016/S0169-7722(01)00152-8 – volume: 46 start-page: 427 issue: 3 year: 2022 ident: 2412_CR143 publication-title: Acta Hydrobiologica Sinica doi: 10.7541/2022.2020.253 – volume: 23 start-page: 101450 year: 2023 ident: 2412_CR32 publication-title: SoftwareX doi: 10.1016/j.softx.2023.101450 – volume: 59 start-page: 467 issue: 1 year: 2025 ident: 2412_CR120 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.4c08197 – volume: 16 start-page: 423 issue: 1 year: 2024 ident: 2412_CR45 publication-title: Sustainability doi: 10.3390/su16010423 – volume: 24 start-page: 659 issue: 6 year: 2019 ident: 2412_CR59 publication-title: Environmental Modeling & Assessment doi: 10.1007/s10666-019-9653-7 – volume: 315 start-page: 128059 year: 2021 ident: 2412_CR125 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.128059 – volume: 351 start-page: 124076 year: 2024 ident: 2412_CR72 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2024.124076 – volume: 191 start-page: 116814 year: 2021 ident: 2412_CR38 publication-title: Water Research doi: 10.1016/j.watres.2021.116814 – year: 2020 ident: 2412_CR97 publication-title: Current Science doi: 10.18520/cs/v118/i6/883-891 – volume: 10 start-page: 955 issue: 5 year: 2013 ident: 2412_CR114 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-013-0236-x – volume: 35 start-page: 101196 year: 2020 ident: 2412_CR84 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2020.101196 – volume: 127 start-page: 171 issue: 2 year: 2001 ident: 2412_CR76 publication-title: Oecologia doi: 10.1007/s004420000578 – volume: 12 start-page: E1 year: 2009 ident: 2412_CR31 publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2008.01233.x – volume: 260 start-page: 129 issue: 1 year: 2010 ident: 2412_CR68 publication-title: Desalination doi: 10.1016/j.desal.2010.04.053 – volume: 111 start-page: 178 year: 2012 ident: 2412_CR115 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2012.06.030 – volume: 624 start-page: 1513 year: 2018 ident: 2412_CR24 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2017.12.252 – volume: 263 start-page: 120052 year: 2024 ident: 2412_CR44 publication-title: Environmental Research doi: 10.1016/j.envres.2024.120052 – volume: 19 start-page: 161 issue: 2 year: 2017 ident: 2412_CR17 publication-title: Environmental Science: Processes & Impacts doi: 10.1039/c6em00531d – volume: 9 start-page: 1610 issue: 6 year: 2023 ident: 2412_CR52 publication-title: Environmental Science: Water Research & Technology doi: 10.1039/D3EW00019B – volume: 43 start-page: 1159 issue: 5 year: 2009 ident: 2412_CR121 publication-title: Water Research doi: 10.1016/j.watres.2008.12.048 – volume: 73 start-page: 3445 issue: 7 year: 2015 ident: 2412_CR83 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-014-3641-7 – volume: 397 start-page: 151 issue: 3 year: 2011 ident: 2412_CR36 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.11.017 – ident: 2412_CR37 doi: 10.1002/9780470691854.ch12 – volume: 16 start-page: 156 issue: 12 year: 2022 ident: 2412_CR138 publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-022-1591-y – ident: 2412_CR99 doi: 10.1007/978-3-030-38152-3_16 – volume: 191 start-page: 110227 year: 2020 ident: 2412_CR18 publication-title: Ecotoxicology and Environmental Safety doi: 10.1016/j.ecoenv.2020.110227 – volume: 278 start-page: 116930 year: 2021 ident: 2412_CR118 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2021.116930 – volume: 132 start-page: 223 issue: 3 year: 2009 ident: 2412_CR34 publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2009.04.004 – volume: 45 start-page: 87 issue: 1 year: 2013 ident: 2412_CR19 publication-title: Mathematical Geosciences doi: 10.1007/s11004-012-9436-z – volume: 283 start-page: 117112 year: 2021 ident: 2412_CR127 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2021.117112 – volume: 470–471 start-page: 855 year: 2014 ident: 2412_CR73 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2013.10.043 – year: 2024 ident: 2412_CR141 publication-title: Environmental Research doi: 10.1016/j.envres.2024.119932 – volume: 334 start-page: 138967 year: 2023 ident: 2412_CR86 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138967 – volume: 235 start-page: 9 year: 2019 ident: 2412_CR93 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2019.01.020 |
| SSID | ssj0009748 |
| Score | 2.4126859 |
| SecondaryResourceType | review_article |
| Snippet | The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 107 |
| SubjectTerms | Contaminants Control methods Earth and Environmental Science Environment Environmental Chemistry Environmental Health Environmental Monitoring Fertilizers Geochemistry Groundwater Groundwater - analysis Groundwater - chemistry Groundwater pollution Groundwater quality Household wastes hydrochemistry Industrial wastes Industrial wastewater Integrity landfill leachates Landfills Leachates Mathematical models Microorganisms Nitrates Nitrates - analysis Nitrogen Organic nitrogen Origins Oxygen isotopes Permeable reactive barriers Pollution Pollution detection Pollution prevention Pollution sources Preservation Public Health Remediation Review Paper Sewage soil organic nitrogen Soil permeability Soil pollution Soil Science & Conservation Terrestrial Pollution traceability Tracers Waste disposal sites Wastewater Wastewater treatment Water Pollutants, Chemical - analysis Water quality |
| Title | Research on the traceability and treatment of nitrate pollution in groundwater: a comprehensive review |
| URI | https://link.springer.com/article/10.1007/s10653-025-02412-0 https://www.ncbi.nlm.nih.gov/pubmed/40053144 https://www.proquest.com/docview/3174944415 https://www.proquest.com/docview/3174819068 https://www.proquest.com/docview/3200287114 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009748 issn: 0269-4042 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009748 issn: 0269-4042 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2983 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009748 issn: 0269-4042 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD5YRaiI6NbLVl2m0DcNJHPbpG-LrIqlPnXBPoXJXNCX7LIXiv--Z2aS3RWt4EsImSEccubynZzvfAPwnWvRrzKZJ17cJOFc8aRKOV4UU0zyiskgu_jrXt6O-N2DeGiKwmYt271NSYaVeq3YTQqfc_QVxdwTCj7BlvByXjiKR3SwktrthzOzMLgoMDritCmVefsdL7ejVxjzVX40bDvX-7DX4EUyiA4-gA1bd2BnTUWwA0fDVbEadm1m66wD2zfh2N7nDuzGv3MkFh19AdcS7si4JggByXyqtI2S3c9E1YYsCehk7AhOe68oQSb-XGTvSfJUE18PUpu_-Hz6gyjiuelT-xj58CRWxBzC6Hr4--o2aU5cSDQTxTxh0uncpVWlqUEo1qcIajNTCSWkKTh3WZorRwUrWGEyZ4vcSFwPtMFt31pNHTuCzXpc2xMgmlZap0rjmyjHG4ycjJauLyRiGsV0Fy7aD19OorBGuZJQ9m4q0U1lcFOZduGs9U3ZTLJZidCHo1UIQbrwbdmM08PnPFRtx4vYx4Memb_TxxNVMHDMeBeOo9-XJvGwSnFsuWwHwsqA_9v79WPdT-EzDYPSM4LOYHM-XdhzBDvzqgdbg5s_P4e9MMb_AfHK9lI |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJwQI8VEYFAYYiTfIlNgXN-FtQt0K-3hapfEU-VMgpHRqU6Hx13OOk3YwQNpLFMVWdHHOl9_Fv_sZ4C2afKwzWSRB3CRBVJjoFOmghBIStZCt7OLxiZzO8PNZftYVhS17tnu_JNlG6kvFbjIPa46hohgDoeAmbCElKHwAW3sHXw4nG7HdcbtrFqUXJeVHyLtimb_f5fcP0hWUeWWFtP3w7D-AWW9y5Jt83101etf8_EPN8brP9BDud0iU7UXXeQQ3XD2Eu5f0CYewPdmUwVHXLg4sh3DroN0Q-GII9-J_PxbLmR6D76l8bF4zApesWSjjohj4BVO1ZWtqO5t7RgElaFWw87DjcvAR9q1modKktj_o-uIDUyyw3hfua2Tas1hr8wRm-5PTj9Ok28shMSIvm0RIbwqfam24JZA35gSXM6tzlUtbIvosLZTnuShFaTPvysJKijTGEqBwznAvtmFQz2v3DJjh2phUGboTRzqhnMwa6ce5JLSkhBnBu_6FVudRsqPaiDOHAa9owKt2wKt0BDv9O6-66busCFQhWUXgZgRv1s008cJqiqrdfBX7BDgli__0CRQYSkkzHMHT6E9rk7CNf0gt73vf2Bjwb3ufX6_7a7g9PT0-qo4-nRy-gDu8dbXAO9qBQbNYuZcEqRr9qptBvwA_WRSg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIioQQrDQslDASNxo1MSeeBNuFXQpXxUHVuotcvwhuHhX21RV_z1jO9ldVIrEJYriUWRlxvZzZt4zwBvU5aQtZJUFcZMMUWHW5kgXJZSQ2AoZZRe_ncqTGX4-K882WPyx2n1ISSZOQ1Bp8t3hwrjDDeKbLEP-MbCLMRQXbMFtDEIJFNEzfrSW3Z3E87Noo1HTTgl5T5v5-zv-XJqu4c1rudK4BE0fwoMeO7Kj5OxHcMv6EdzbUBQcwe7xmrhGpv3IPR_BnY_xCN-rEdxPf-pYIiA9BjcU37G5ZwQHWbdU2ib57iumvGGrYnQ2d4ymgKAuwRbhjOTgVfbLs8AN8eaSni_fMcVCnfrS_ky18SyxY57AbHr84_1J1p--kGlR1l0mpNOVy9tWc0OwbMIJ4BamLVUpTY3oirxSjpeiFrUpnK0rI2lu0IYggLWaO7EL237u7VNgmrda50rTmzjSDe2ijJZuUkrCN0roMbwdPnyzSCIbzVpOObipITc10U1NPob9wTdNP-DOG4JBSL0iODKG16tmGioh_6G8nV8kmwCAZPUPm1C0QpvIAsewl_y-6hLGGQup5WAIhHUHbu7vs_8zfwU73z9Mm6-fTr88h7s8xmcoFNqH7W55YV8QBuralzHMfwMaLPvm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+traceability+and+treatment+of+nitrate+pollution+in+groundwater%3A+a+comprehensive+review&rft.jtitle=Environmental+geochemistry+and+health&rft.au=Liu%2C+Yuhao&rft.au=Zhang%2C+Yu&rft.au=Lv%2C+Haiyang&rft.au=Zhao%2C+Lei&rft.date=2025-04-01&rft.issn=0269-4042&rft.volume=47&rft.issue=4+p.107-107&rft.spage=107&rft.epage=107&rft_id=info:doi/10.1007%2Fs10653-025-02412-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-4042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-4042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-4042&client=summon |