Enhanced Salp Search Algorithm for Optimization Extreme Learning Machine and Application to Dew Point Temperature Prediction
Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, t...
        Saved in:
      
    
          | Published in | International journal of computational intelligence systems Vol. 15; no. 1; pp. 1 - 20 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        18.11.2022
     Springer Nature B.V Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1875-6883 1875-6891 1875-6883  | 
| DOI | 10.1007/s44196-022-00160-y | 
Cover
| Abstract | Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models. | 
    
|---|---|
| AbstractList | Abstract Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models. Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models.  | 
    
| ArticleNumber | 98 | 
    
| Author | Zhang, Xiangmin Luo, Qifang Zhou, Yongquan Huang, Huajuan  | 
    
| Author_xml | – sequence: 1 givenname: Xiangmin surname: Zhang fullname: Zhang, Xiangmin organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis – sequence: 2 givenname: Yongquan orcidid: 0000-0003-4404-952X surname: Zhou fullname: Zhou, Yongquan email: yongquanzhou@126.com organization: College of Artificial Intelligence, Guangxi University for Nationalities, Xiangsihu College of Gunagxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis – sequence: 3 givenname: Huajuan surname: Huang fullname: Huang, Huajuan organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis – sequence: 4 givenname: Qifang surname: Luo fullname: Luo, Qifang organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis  | 
    
| BookMark | eNqNkcFq3DAURU1JoWmaH-hK0LWbJ1mS5eWQTtvAlASSroUsPc9o8EiurCGZ0o-PMw5t6SJ0JSHuOXqP-7Y4CTFgUbyn8JEC1Bcj57SRJTBWAlAJ5eFVcUpVLUqpVHXy1_1NcT6OWwBglANwflr8WoaNCRYduTX9QG7RJLshi34dk8-bHeliItdD9jv_02QfA1k-5IQ7JKspGXxYk2_GbnxAYoIji2HovZ2DOZJPeE9uog-Z3OFuwGTyPiG5Sei8fcq8K153ph_x_Pk8K75_Xt5dfi1X11-uLher0laiyWVVUedkSxm6GgVHbDupRK0E2Foy5IqBaXnVgKpc04q2tSgUZ8A761zreHVWXM1eF81WD8nvTDroaLw-PsS01iZlb3vUQkkjeccQQXKmqqazFmzLOtaiE85Ormp27cNgDvem738LKeinPvTch5760Mc-9GGiPszUkOKPPY5Zb-M-hWlpzZTkQjBZ0ynF5pRNcRwTdv-nVv9A1udjBTkZ37-MPu8yTv-ENaY_U71APQJRr8Az | 
    
| CitedBy_id | crossref_primary_10_3934_era_2023145 crossref_primary_10_1016_j_seta_2023_103309  | 
    
| Cites_doi | 10.1007/s11063-012-9236-y 10.1016/j.applthermaleng.2015.10.056 10.1016/j.eswa.2020.113803 10.1016/j.enconman.2017.08.014 10.1016/j.eswa.2018.03.024 10.1016/j.applthermaleng.2015.12.078 10.1016/j.ces.2021.116600 10.1016/j.advengsoft.2013.12.007 10.1016/j.eswa.2019.03.002 10.1007/s10462-017-9605-z 10.1109/72.80341 10.1016/j.future.2020.03.055 10.1162/neco.1991.3.4.579 10.1175/BAMS-86-2-225 10.1016/j.advengsoft.2016.01.008 10.1016/j.applthermaleng.2015.12.077 10.1016/j.measurement.2020.108161 10.1088/1748-9326/aad135 10.1016/j.neucom.2011.12.062 10.1016/j.jaridenv.2006.11.003 10.1016/j.engappai.2021.104439 10.1007/s12205-014-1197-4 10.1016/j.applthermaleng.2007.06.024 10.1016/j.advengsoft.2017.07.002 10.2166/hydro.2021.178 10.1016/j.neunet.2014.10.001 10.1007/s11063-016-9496-z 10.1016/j.engappai.2017.05.003 10.1016/j.atmosres.2021.105508 10.1109/TAC.2005.852557 10.1007/s00521-013-1522-8 10.1016/j.neucom.2005.12.126 10.1109/ACCESS.2020.2981968 10.1016/j.ins.2021.11.051 10.1016/j.swevo.2011.02.002 10.1109/CEC.2014.6900329 10.1016/j.asoc.2020.106476 10.1109/72.329697  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 7SC 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/s44196-022-00160-y | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1875-6883 | 
    
| EndPage | 20 | 
    
| ExternalDocumentID | oai_doaj_org_article_586a64f2ee0642839fcc0cb2f2bed5dc 10.1007/s44196-022-00160-y 10_1007_s44196_022_00160_y  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U21A20464; 62066005 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HCIFZ HZ~ J~4 K7- O9- OK1 PIMPY RSV SOJ TFW TR2 AASML AAYXX CITATION 7SC 8FD 8FE 8FG AZQEC CCPQU DWQXO GNUQQ JQ2 L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADMSI ADTOC AHDSZ H13 IL9 IPNFZ M4Z RIG TDBHL TFL UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-331dd6b12ed7e54eebf6857850c762e4820ab439083d9b5bbce584204fcddbd43 | 
    
| IEDL.DBID | C24 | 
    
| ISSN | 1875-6883 1875-6891  | 
    
| IngestDate | Fri Oct 03 12:53:35 EDT 2025 Tue Aug 19 19:21:46 EDT 2025 Tue Oct 21 12:47:06 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 01:20:20 EDT 2025 Fri Feb 21 02:44:37 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | NSSA-ELM Metaheuristic Salp search algorithm Extreme learning machine Dew point temperature  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-331dd6b12ed7e54eebf6857850c762e4820ab439083d9b5bbce584204fcddbd43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4404-952X | 
    
| OpenAccessLink | https://link.springer.com/10.1007/s44196-022-00160-y | 
    
| PQID | 2864552671 | 
    
| PQPubID | 4869256 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_586a64f2ee0642839fcc0cb2f2bed5dc unpaywall_primary_10_1007_s44196_022_00160_y proquest_journals_2864552671 crossref_primary_10_1007_s44196_022_00160_y crossref_citationtrail_10_1007_s44196_022_00160_y springer_journals_10_1007_s44196_022_00160_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-18 | 
    
| PublicationDateYYYYMMDD | 2022-11-18 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-18 day: 18  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht – name: Abingdon  | 
    
| PublicationTitle | International journal of computational intelligence systems | 
    
| PublicationTitleAbbrev | Int J Comput Intell Syst | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Netherlands Springer Nature B.V Springer  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer  | 
    
| References | Han, Yao, Ling (CR12) 2012; 116 Eshtay, Faris (CR21) 2018; 104 Huang, Zhu, Siew (CR9) 2004; 2 Han, Zhu, Wang (CR26) 2021; 163 Li, Chen, Wang, Heidari (CR46) 2020; 111 Beldjilali, Benadda, Sadouni (CR16) 2020; 23 Kim, Singh, Lee, Seo (CR33) 2015; 19 CR31 Huang, Huang, Song, You (CR42) 2015; 61 Zhu, Ma, Zhao, Wang (CR25) 2020; 8 Wang, Tang (CR29) 2016; 98 Li, Peng, Irwin (CR7) 2005; 50 Li, Sun, Tseng, Li (CR22) 2019; 127 Wang, Chen, Li, Cai (CR20) 2017; 63 Derrac, García, Molina, Herrera (CR50) 2011; 1 Annema (CR2) 1995; 13 Yin, Dong, Chen, Ge (CR19) 2017; 150 Yang, Deb (CR47) 2010; 1 Niu, Ma, Li, Yan (CR11) 2016; 44 Gibbons, Chakraborti (CR49) 2011 Rajashree Dash, Dash n (CR18) 2014; 36 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR39) 2017; 114 Wen (CR23) 2020; 94 Pumo, Noto (CR35) 2021; 254 CR44 CR40 Huang, Zhu, Siew (CR10) 2006; 70 Hussain, Salleh, Shi, Shi (CR13) 2019; 52 Chen, Zhang, Karimian, Xiao (CR27) 2021; 23 Ding, Xinzheng, Nie (CR8) 2013; 25 Nguyen, Bui, Fujita, Hong (CR15) 2021; 105 Mirjalili, Lewis (CR43) 2016; 95 Cao, Lin, Huang (CR17) 2012; 36 Mirjalili, Mirjalili, Lewis (CR45) 2014; 69 Blanco, Pena (CR32) 2008; 28 Scarpa, Tagliafico (CR28) 2016; 100 Hagan, Menhaj (CR5) 1994; 5 Lawrence (CR36) 2005; 86 Wasko, William Tang, Mehrotra (CR34) 2018; 13 Baghban, Bahadori, Rozyn, Lee (CR38) 2016; 93 Zamfirache, Precup, Roman, Petriu (CR14) 2021; 585 Bai, Li-Gang, Ya (CR41) 2014; 2014 Mangasarian, Street, Wolberg (CR1) 1995; 43 Wang, Tao, Liu (CR30) 2021; 238 Faris, Mirjalili, Aljarah, Mafarja (CR48) 2020 Chen, Cowan, Grant (CR6) 1991; 2 Drezner (CR37) 2007; 69 Ovtcharov, Ruwase, Kim, Fowers, Strauss, Chung (CR3) 2015; 2 Chris (CR4) 1991; 3 Chen, Gu, Lin, Wang (CR24) 2020; 166 H Faris (160_CR48) 2020 TD Drezner (160_CR37) 2007; 69 S Chen (160_CR6) 1991; 2 D Pumo (160_CR35) 2021; 254 S Chen (160_CR24) 2020; 166 H Yin (160_CR19) 2017; 150 F Han (160_CR12) 2012; 116 S Li (160_CR46) 2020; 111 L-L Li (160_CR22) 2019; 127 S Mirjalili (160_CR45) 2014; 69 K Li (160_CR7) 2005; 50 S Ding (160_CR8) 2013; 25 P Niu (160_CR11) 2016; 44 160_CR44 IA Zamfirache (160_CR14) 2021; 585 YC Wang (160_CR29) 2016; 98 OL Mangasarian (160_CR1) 1995; 43 XS Yang (160_CR47) 2010; 1 J Derrac (160_CR50) 2011; 1 M Eshtay (160_CR21) 2018; 104 S Kim (160_CR33) 2015; 19 JD Gibbons (160_CR49) 2011 L Bai (160_CR41) 2014; 2014 B Chris (160_CR4) 1991; 3 GB Huang (160_CR9) 2004; 2 G Huang (160_CR42) 2015; 61 B Beldjilali (160_CR16) 2020; 23 Y Chen (160_CR27) 2021; 23 160_CR31 T Nguyen (160_CR15) 2021; 105 160_CR40 K Ovtcharov (160_CR3) 2015; 2 S Mirjalili (160_CR39) 2017; 114 MG Lawrence (160_CR36) 2005; 86 S Han (160_CR26) 2021; 163 PK Rajashree Dash (160_CR18) 2014; 36 JL Wang (160_CR30) 2021; 238 K Hussain (160_CR13) 2019; 52 X Wen (160_CR23) 2020; 94 MT Hagan (160_CR5) 1994; 5 JM Blanco (160_CR32) 2008; 28 A Baghban (160_CR38) 2016; 93 F Scarpa (160_CR28) 2016; 100 S Mirjalili (160_CR43) 2016; 95 J Cao (160_CR17) 2012; 36 M Wang (160_CR20) 2017; 63 GB Huang (160_CR10) 2006; 70 W Zhu (160_CR25) 2020; 8 C Wasko (160_CR34) 2018; 13 AJ Annema (160_CR2) 1995; 13  | 
    
| References_xml | – volume: 23 start-page: 935 issue: 5 year: 2021 ident: CR27 article-title: A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm publication-title: J. Hydroinf. – volume: 150 start-page: 108 year: 2017 end-page: 121 ident: CR19 article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization publication-title: Energy Conver. Manag. – volume: 94 issue: 9 year: 2020 ident: CR23 article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine publication-title: Appl. Soft Comput. – volume: 36 start-page: 285 year: 2012 end-page: 330 ident: CR17 article-title: Self-adaptive evolutionary extreme learning machine publication-title: Neural Process Lett – volume: 1 start-page: 330 issue: 4 year: 2010 end-page: 343 ident: CR47 article-title: Engineering optimisation by cuckoo search publication-title: In. J. Mathe. Model. Numer. Optim. – volume: 2 start-page: 1 issue: 11 year: 2015 end-page: 4 ident: CR3 article-title: Accelerating deep convolutional neural networks using specialized hardware publication-title: Microsoft. Res. Whitepaper. – volume: 3 start-page: 579 issue: 4 year: 1991 end-page: 588 ident: CR4 article-title: Improving the generalization properties of radial basis function neural networks publication-title: Neural. Comput. – year: 2020 ident: CR48 publication-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines nature-inspired optimizers. Studies in computational intelligence – volume: 23 start-page: 5 year: 2020 end-page: 17 ident: CR16 article-title: Vehicles circuits optimization by combining GPS/GSM information with metaheuristic algorithms publication-title: Sci. Technol. – volume: 104 start-page: 134 year: 2018 end-page: 152 ident: CR21 article-title: Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems publication-title: Expert. Syst. Appl. – volume: 36 start-page: 285 year: 2014 end-page: 305 ident: CR18 article-title: A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction publication-title: Swarm. Evolut. Comput. – volume: 28 start-page: 777 year: 2008 end-page: 784 ident: CR32 article-title: Increase in the boiler's performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels publication-title: Appl. Therm. Eng. – volume: 2 start-page: 302 issue: 2 year: 1991 end-page: 309 ident: CR6 article-title: Orthogonal least squares learning algorithm for radial basis function networks publication-title: IEEE Trans. Neural. Networks. – volume: 93 start-page: 1043 year: 2016 end-page: 1052 ident: CR38 article-title: Estimation of air dew point temperature using computational intelligence schemes publication-title: Appl. Therm. Eng. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR39 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 238 year: 2021 ident: CR30 article-title: Numerical study on acid condensation and corrosion characteristics of three-dimensional finned tube surface publication-title: Chem. Eng. Sci. – volume: 2 start-page: 985 issue: 25–29 year: 2004 end-page: 990 ident: CR9 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: Proc. Int. Joint. Conf. Neural. Networks. (IJCNN2004). – volume: 44 start-page: 813 year: 2016 end-page: 830 ident: CR11 article-title: A kind of parameters self-adjusting extreme learning machine publication-title: Neural. Process. Lett. – volume: 585 start-page: 162 year: 2021 end-page: 175 ident: CR14 article-title: Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm publication-title: Inf. Sci. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR43 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 13 start-page: 27 issue: 4 year: 1995 end-page: 31 ident: CR2 article-title: Feed-forward neural networks publication-title: Compr. Chemom. – volume: 166 year: 2020 ident: CR24 article-title: Prediction, monitoring, and interpretation of dam leakageflow via adaptative kernel extreme learning machine publication-title: Measurement – volume: 19 start-page: 1930 year: 2015 end-page: 1940 ident: CR33 article-title: Modeling the physical dynamics of daily dew point temperature using soft computing techniques publication-title: KSCE J. Civ. Eng. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR45 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 1 start-page: 3 issue: 1 year: 2011 end-page: 18 ident: CR50 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 127 start-page: 58 year: 2019 end-page: 67 ident: CR22 article-title: Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation publication-title: Expert Syst. Appl. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: CR46 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Futur. Gener. Comput. Syst. – start-page: 977 year: 2011 end-page: 979 ident: CR49 publication-title: Nonparametric statistical inference – volume: 8 start-page: 61107 year: 2020 end-page: 61123 ident: CR25 article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine publication-title: IEEE access – volume: 69 start-page: 554 year: 2007 end-page: 568 ident: CR37 article-title: An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions publication-title: J. Arid Environ. – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR10 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 163 year: 2021 ident: CR26 article-title: Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems publication-title: Expert Syst. Appl. – volume: 105 year: 2021 ident: CR15 article-title: Multiple-objective optimization applied in extracting multiple-choice tests publication-title: Eng. Appl. Artif. Intell. – volume: 43 start-page: 570 issue: 4 year: 1995 end-page: 577 ident: CR1 article-title: Breast cancer diagnosis and prognosis via linear programming publication-title: IEEE. Comput. Sci. Eng. – volume: 13 year: 2018 ident: CR34 article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia publication-title: Environ. Res. Lett. – volume: 254 year: 2021 ident: CR35 article-title: Exploring the linkage between dew point temperature and precipitation extremes: A multi-time-scale analysis on a semi-arid Mediterranean region publication-title: Atmos. Res. – ident: CR40 – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: CR13 article-title: Metaheuristic research: A comprehensive survey publication-title: Artif Intell Rev – volume: 63 start-page: 54 year: 2017 end-page: 68 ident: CR20 article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction publication-title: Eng. Appl. Artif. Intell. – ident: CR44 – volume: 50 start-page: 1211 issue: 8 year: 2005 end-page: 1216 ident: CR7 article-title: A fast nonlinear model identification method publication-title: IEEE Trans. Autom. Control – volume: 100 start-page: 820 year: 2016 end-page: 828 ident: CR28 article-title: Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point publication-title: Appl. Therm. Eng. – volume: 5 start-page: 989 issue: 6 year: 1994 end-page: 993 ident: CR5 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Trans. Neural. Networks. – volume: 2014 start-page: 1 year: 2014 end-page: 14 ident: CR41 article-title: A novel artificial bee colony algorithm based on internal-feedback strategy for image template matching publication-title: Sci World J – volume: 86 start-page: 225 year: 2005 end-page: 234 ident: CR36 article-title: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications publication-title: Am. Meteor. Soc. – volume: 98 start-page: 492 year: 2016 end-page: 501 ident: CR29 article-title: Estimation of sulfuric acid dew point temperature on heat transfer fin surface publication-title: Appl. Therm. Eng. – volume: 25 start-page: 549 year: 2013 end-page: 556 ident: CR8 article-title: Extreme learning machine and its applications publication-title: Neural Comput & Applic – ident: CR31 – volume: 116 start-page: 87 year: 2012 end-page: 93 ident: CR12 article-title: An improved evolutionary extreme learning machine based on particle swarm optimization publication-title: Neurocomputing – volume: 61 start-page: 32 year: 2015 end-page: 48 ident: CR42 article-title: Review treznds in extreme learning machines: A review publication-title: Neural Netw. – volume: 36 start-page: 285 year: 2012 ident: 160_CR17 publication-title: Neural Process Lett doi: 10.1007/s11063-012-9236-y – volume: 93 start-page: 1043 year: 2016 ident: 160_CR38 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.056 – volume: 163 year: 2021 ident: 160_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113803 – volume: 150 start-page: 108 year: 2017 ident: 160_CR19 publication-title: Energy Conver. Manag. doi: 10.1016/j.enconman.2017.08.014 – volume: 2014 start-page: 1 year: 2014 ident: 160_CR41 publication-title: Sci World J – volume: 104 start-page: 134 year: 2018 ident: 160_CR21 publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2018.03.024 – volume: 98 start-page: 492 year: 2016 ident: 160_CR29 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.078 – ident: 160_CR44 – volume: 13 start-page: 27 issue: 4 year: 1995 ident: 160_CR2 publication-title: Compr. Chemom. – start-page: 977 volume-title: Nonparametric statistical inference year: 2011 ident: 160_CR49 – volume: 2 start-page: 1 issue: 11 year: 2015 ident: 160_CR3 publication-title: Microsoft. Res. Whitepaper. – volume: 238 year: 2021 ident: 160_CR30 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116600 – volume: 69 start-page: 46 year: 2014 ident: 160_CR45 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 127 start-page: 58 year: 2019 ident: 160_CR22 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.002 – volume: 52 start-page: 2191 year: 2019 ident: 160_CR13 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9605-z – volume: 2 start-page: 302 issue: 2 year: 1991 ident: 160_CR6 publication-title: IEEE Trans. Neural. Networks. doi: 10.1109/72.80341 – volume: 111 start-page: 300 year: 2020 ident: 160_CR46 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 3 start-page: 579 issue: 4 year: 1991 ident: 160_CR4 publication-title: Neural. Comput. doi: 10.1162/neco.1991.3.4.579 – volume: 86 start-page: 225 year: 2005 ident: 160_CR36 publication-title: Am. Meteor. Soc. doi: 10.1175/BAMS-86-2-225 – volume: 95 start-page: 51 year: 2016 ident: 160_CR43 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 43 start-page: 570 issue: 4 year: 1995 ident: 160_CR1 publication-title: IEEE. Comput. Sci. Eng. – volume: 100 start-page: 820 year: 2016 ident: 160_CR28 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.077 – volume: 23 start-page: 5 year: 2020 ident: 160_CR16 publication-title: Sci. Technol. – volume: 166 year: 2020 ident: 160_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2020.108161 – volume: 13 year: 2018 ident: 160_CR34 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aad135 – volume: 36 start-page: 285 year: 2014 ident: 160_CR18 publication-title: Swarm. Evolut. Comput. – volume: 116 start-page: 87 year: 2012 ident: 160_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.062 – volume: 69 start-page: 554 year: 2007 ident: 160_CR37 publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2006.11.003 – volume: 105 year: 2021 ident: 160_CR15 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104439 – volume: 2 start-page: 985 issue: 25–29 year: 2004 ident: 160_CR9 publication-title: Proc. Int. Joint. Conf. Neural. Networks. (IJCNN2004). – volume: 19 start-page: 1930 year: 2015 ident: 160_CR33 publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-014-1197-4 – volume: 28 start-page: 777 year: 2008 ident: 160_CR32 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.06.024 – volume: 114 start-page: 163 year: 2017 ident: 160_CR39 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 23 start-page: 935 issue: 5 year: 2021 ident: 160_CR27 publication-title: J. Hydroinf. doi: 10.2166/hydro.2021.178 – volume: 61 start-page: 32 year: 2015 ident: 160_CR42 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – volume: 44 start-page: 813 year: 2016 ident: 160_CR11 publication-title: Neural. Process. Lett. doi: 10.1007/s11063-016-9496-z – volume: 63 start-page: 54 year: 2017 ident: 160_CR20 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.05.003 – volume: 254 year: 2021 ident: 160_CR35 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2021.105508 – volume: 50 start-page: 1211 issue: 8 year: 2005 ident: 160_CR7 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2005.852557 – volume: 25 start-page: 549 year: 2013 ident: 160_CR8 publication-title: Neural Comput & Applic doi: 10.1007/s00521-013-1522-8 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 160_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 160_CR31 – volume-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines nature-inspired optimizers. Studies in computational intelligence year: 2020 ident: 160_CR48 – volume: 8 start-page: 61107 year: 2020 ident: 160_CR25 publication-title: IEEE access doi: 10.1109/ACCESS.2020.2981968 – volume: 585 start-page: 162 year: 2021 ident: 160_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.051 – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 160_CR47 publication-title: In. J. Mathe. Model. Numer. Optim. – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 160_CR50 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: 160_CR40 doi: 10.1109/CEC.2014.6900329 – volume: 94 issue: 9 year: 2020 ident: 160_CR23 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106476 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 160_CR5 publication-title: IEEE Trans. Neural. Networks. doi: 10.1109/72.329697  | 
    
| SSID | ssj0002140044 ssib050732782  | 
    
| Score | 2.2944179 | 
    
| Snippet | Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the... Abstract Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Centroids Computational Intelligence Control Datasets Dew Dew point method Dew point temperature Engineering Extreme learning machine Heuristic methods Local optimization Machine learning Mathematical Logic and Foundations Mechatronics Metaheuristic Meteorological data NSSA-ELM Performance enhancement Research Article Robotics Salp search algorithm Search algorithms  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl7aHvqtuS6s5cCtRE8f2OselXYSQeEgFiZvlxwSQQna1DaIr9cdjO96wXGgPXBNHsj2fZz7H428I2cbaSh8FbMbHNc9Y2O5obWWmc1mLyoeEcUz5PzwS-2fs4Jyfr5X6CjlhvTxwP3HfuRRasJoiRqpcVrW1uTW0pgYddzZ431xWa5up4INpEbDJ0i2ZeFfOx_2Yb0uzWFs5Wz6IRFGw_wHLHA5GX5BnN-1cL29106zFnr3X5GUijTDpO_uGbGD7lrxaFWSAtD7fkb_T9jKe6MMv3cyhTyWGSXMxW1x1l9fgCSocex9xnS5fwvRPF_4PQlJZvYDDmFuJoFsHk_uzbehm8BNv4WR21XZwip5r91rMcLIIJz2hzXtytjc9_bGfpfIKmS151WVlWTgnTEHRjZEzRFMLGbRvcus9JDLPDbTxfMWTNFcZboxFz1ZozmrrnHGs_EA221mLHwlIp33oz6mllXcKFZeacq2NEaVAZ7gekWI11com7fFQAqNRg2pyNI_y5lHRPGo5It-Gb-a98sajrXeDBYeWQTU7PvBYUglL6l9YGpGtlf1VWsq_FZWCce5BW4zIzgoT968f69LOgJv_GMGnpxjBZ_KcBoiHPEW5RTa7xQ1-8aypM1_jArkD4PETNA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a3QE48I0oDOQDN2bROLHrHBDqoNOEtFLBJu0W-SsdUpaUkmlU4o_n2XVSdqm4Jrby8T78s997vwfw1pVG4ipgKB-XnGZ-u6OUkVSNZClyXBLGIeX_dCZOzrMvF_xiD2ZdLYxPq-x8YnDUtjH-jPw9kyLjHOcmH5c_qe8a5aOrXQsNFVsr2A-BYuwO7DPPjDWA_aPpbP6t0zAEPynr-Nu9r2aJ1-EQekbgToXMk1hZE-rrECuEHF1GQz9mur61egWS_1vItA-m3oe71_VSrW9UVf2zXh0_ggcRaJLJRjMew56rn8DDrokDiTb9FP5M68uQBUC-q2pJNunHZFIt8OPbyyuCoJZ8Rb9yFQs2yfR3688USWRmXZDTkI_piKotmWzj4aRtyGd3Q-bNj7olZw7x-Ya_mcxXPjrkxzyD8-Pp2acTGlsyUJPyvKVpmlgrdMKcHTueOadLIT1fzsigV3UZ4gmlEeMgsLO55lobhwiHjbLSWKttlj6HQd3U7gUQaRXChREzLEdHknOpGFdKa5EKZzVXQ0i6X12YyFfu22ZURc-0HMRToHiKIJ5iPYR3_Zzlhq1j5-gjL8F-pGfaDhea1aKIhltwKZTISuZc2KqleWnMyGhWMu0st2YIB538i2j-v4qtsg7hsNOJ7e1dr3TY681_fMHL3Q9_BfeYV16ftSgPYNCurt1rxFCtfhMN4y_j2hWD priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHyKwkB-4I2lS5zYdR4L6zQhbVRilcaT5a90E1lSlVSjiD8e23EyhtAE4i1KLlHsnO9-zt39DuCNKRSzXkBFZFyQKHPbHSEUi0TMCppblzD2Kf_HJ_Ronn04I2dbcNDVwvhs9y4k2dY0OJamqtlf6mK_L3yzTtwnz-LIN0qONiN7-Q5sU2IR-QC25yezyWe317JwPKLMs3GG4zwJtTN_ftAN_-Rp_G9gzz5ceh_urqul2FyJsvzFIx3ugOnG0iaifBmtGzlS33-jefzfwT6EBwGyokmrY49gy1SPYadrB4GCdXgCP6bVuc8nQJ9EuURtIjOalIt6ddGcXyILj9FHa6EuQ-knmn5r3N9JFDheF-jYZ3YaJCqNJteRddTU6MBcoVl9UTXo1Fik3zJBo9nKxZmczFOYH05P3x9FoblDpFKSN1GaJlpTmWCjx4ZkxsiCMse8Eytrn01mkYmQFi1ZiKhzSaRUxmIlHGeF0lrqLH0Gg6quzHNATAsLPGKscG5NUk6YwEQIKWlKjZZEDCHpPilXgfncNeAoec_Z7KeY2ynmfor5Zghv-3uWLe_HrdLvnKb0ko6z25-oVwseTAAnjAqaFdgYv-lL80KpWElcYGk00WoIu52e8WBIvnLMaEaIXTLJEPY6Vbm-fNsr7fX6-RcjePFv4i_hHnYK6fIh2S4MmtXavLLorJGvw-L7CQfgMPU priority: 102 providerName: Unpaywall  | 
    
| Title | Enhanced Salp Search Algorithm for Optimization Extreme Learning Machine and Application to Dew Point Temperature Prediction | 
    
| URI | https://link.springer.com/article/10.1007/s44196-022-00160-y https://www.proquest.com/docview/2864552671 https://link.springer.com/content/pdf/10.1007/s44196-022-00160-y.pdf https://doaj.org/article/586a64f2ee0642839fcc0cb2f2bed5dc  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050732782 issn: 1875-6891 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: AAJSJ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: C6C dateStart: 20211201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4NeNh4YBsbWhmr_LC3ESlxYtd5DF07VImuGlRiT5F_pSCFpCpBrNL--NmuE0Ca0PaSSIkTJbnz3efc3XcAn3UhmfECMiCDggSJXe5wLlnAQ1bQ1LiEgUv5P5vS03kyuSSXvijsts12b0OSzlJ3xW7GcbuEWRy45sjBegt2DP7AtmHD0Nc4WPuLI6uXia-Q-fulT7yQI-t_gjC7oOguvLyrlnx9z8vykd8Zv4E9DxhRtpHwW3ihq3143TZjQH5u7sPuI2bBd_B7VF252D465-USbZKKUVYu6tV1c3WDDFRF3421uPFlmGj0q7F_CpHnW12gM5dlqRGvFMoeotyoqdFXfY9m9XXVoAttUPeGlRnNVjbmY8e8h_l4dDE8DXyjhUDGJG2COI6UoiLCWg00SbQWBWWWBSeUxlbqxKAELgxyMXBNpYIIIbXBLThMCqmUUEl8ANtVXekPgJjiBgSEWOLUmIeUMI4J50LQmGolCO9B1H74XHoWctsMo8w7_mQnrNwIK3fCytc9-NJds9xwcDw7-sTKsxtp-bPdgXq1yP10zAmjnCYF1totwOK0kDKUAhdYaEWU7MFRqw25n9S3OWY0IcSob9SD41ZDHk4_90jHnRb9wxsc_t_dP8IrbFXb5iayI9huVnf6k0FKjejDFht_68NOlk3OJ2Z_MprOfvTddLFbOuy7fxDmzHw6y37-AaU1Erc | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaU9lA48GZIKaADnKgHW7YU-dBhUppOSpuQgXSmN6OX086kdkjdCZnht_HbWCmyQy8ZLr3akh_a1T60u98i9M7kioMWUAFt5zRIrLsjhOKBCHnOUlAJbZfy3x-w3lny5Zyeb6A_dS2MTausZaIT1LpU9oz8I-EsoRTmRp-mPwPbNcpGV-sWGsK3VtD7DmLMF3acmMUcXLjr_eNDoPd7Qo66o8-9wHcZCFRM0yqI40hrJiNidNvQxBiZM24hYEIFgsIkoCKFBLUNtopOJZVSGVDaJExypbXUSQzPvYe2kjhJwfnbOugOht9qjgZjKyY1XrzVDSSye8aFusFRCBhPI1_J4-r5wDZxOcEkcP2fg8UtbemaCtyyhJvg7QO0fVNMxWIuJpN_9OPRY_TQG7a4s-TEJ2jDFE_Ro7ppBPYy5Bn63S0uXNYB_i4mU7xMd8adyRgWu7q4wmBE468gx658gSju_qrsGSb2SLBj3Hf5nwaLQuPOKv6OqxIfmjkelpdFhUcG_IElXjQezmw0yo55js7uhDgv0GZRFuYlwlwLME9CokgKgiulXBAqhJQsZkZLKlooqpc6Ux4f3bbpmGQNsrMjTwbkyRx5skULfWjmTJfoIGtHH1gKNiMtsre7UM7GmRcUGeVMsCQnxjjXME5zpUIlSU6k0VSrFtqt6Z95cXOdrTZHC-3VPLG6ve6T9hq--Y8_2Fn_8rdouzfqn2anx4OTV-g-sYxsMyb5LtqsZjfmNdhvlXzjNwlGP-56X_4FCklTDQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYAeeJSiLhTwgRuNmji21zku212VR8tKtFJvll_ZVkqT1TZVWYkfj-08upVQBdfEjpLMjOezZ-YbgI8219x5AR3RYU4j4rc7UmoeyZjnLHMuYRhS_o-O2eEp-XpGz9aq-EO2exeSbGoaPEtTWe8vTL7fF745Jx6SZ3EUGiVHq4fwiDjv5nsYjNm4P2XBiddR0lbL_H3qHY8UiPvvoM0-QLoJT67LhVzdyKJY80HTF_CsBY9o1Ej7JTyw5RY87xozoNZOt2BzjWXwFfyelOchzo9-ymKBmgRjNCrm1fKiPr9EDraiH27luGxLMtHkV-1PDVHLvTpHRyHj0iJZGjS6jXijukIH9gbNqouyRifWIfCGoRnNlj7-48dsw-l0cjI-jNqmC5FOaVZHaZoYw1SCrRlaSqxVOeOeESfWbt20xCEGqRyKcdDNZIoqpa3DMDgmuTZGGZK-ho2yKu0OIG6kAwQx1jhzS0VGucRUSqVYyqxRVA4g6X680C0juW-MUYieSzkISzhhiSAssRrAp37OouHjuHf0Zy_PfqTn0g4XquVctKYpKGeSkRxbGzZjaZZrHWuFc6ysoUYPYLfTBtEa-JXAnBFKnSonA9jrNOT29n2vtNdr0T98wZv_e_oHeDw7mIrvX46_vYWn2Gu5T1nku7BRL6_tOwegavU-2MgfZQYSeg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHyKwkB-4I2lS5zYdR4L6zQhbVRilcaT5a90E1lSlVSjiD8e23EyhtAE4i1KLlHsnO9-zt39DuCNKRSzXkBFZFyQKHPbHSEUi0TMCppblzD2Kf_HJ_Ronn04I2dbcNDVwvhs9y4k2dY0OJamqtlf6mK_L3yzTtwnz-LIN0qONiN7-Q5sU2IR-QC25yezyWe317JwPKLMs3GG4zwJtTN_ftAN_-Rp_G9gzz5ceh_urqul2FyJsvzFIx3ugOnG0iaifBmtGzlS33-jefzfwT6EBwGyokmrY49gy1SPYadrB4GCdXgCP6bVuc8nQJ9EuURtIjOalIt6ddGcXyILj9FHa6EuQ-knmn5r3N9JFDheF-jYZ3YaJCqNJteRddTU6MBcoVl9UTXo1Fik3zJBo9nKxZmczFOYH05P3x9FoblDpFKSN1GaJlpTmWCjx4ZkxsiCMse8Eytrn01mkYmQFi1ZiKhzSaRUxmIlHGeF0lrqLH0Gg6quzHNATAsLPGKscG5NUk6YwEQIKWlKjZZEDCHpPilXgfncNeAoec_Z7KeY2ynmfor5Zghv-3uWLe_HrdLvnKb0ko6z25-oVwseTAAnjAqaFdgYv-lL80KpWElcYGk00WoIu52e8WBIvnLMaEaIXTLJEPY6Vbm-fNsr7fX6-RcjePFv4i_hHnYK6fIh2S4MmtXavLLorJGvw-L7CQfgMPU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Salp+Search+Algorithm+for+Optimization+Extreme+Learning+Machine+and+Application+to+Dew+Point+Temperature+Prediction&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Zhang%2C+Xiangmin&rft.au=Zhou%2C+Yongquan&rft.au=Huang%2C+Huajuan&rft.au=Luo%2C+Qifang&rft.date=2022-11-18&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-022-00160-y&rft.externalDocID=10_1007_s44196_022_00160_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |