Enhanced Salp Search Algorithm for Optimization Extreme Learning Machine and Application to Dew Point Temperature Prediction

Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 15; no. 1; pp. 1 - 20
Main Authors Zhang, Xiangmin, Zhou, Yongquan, Huang, Huajuan, Luo, Qifang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 18.11.2022
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6883
1875-6891
1875-6883
DOI10.1007/s44196-022-00160-y

Cover

Abstract Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models.
AbstractList Abstract Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models.
Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models.
ArticleNumber 98
Author Zhang, Xiangmin
Luo, Qifang
Zhou, Yongquan
Huang, Huajuan
Author_xml – sequence: 1
  givenname: Xiangmin
  surname: Zhang
  fullname: Zhang, Xiangmin
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis
– sequence: 2
  givenname: Yongquan
  orcidid: 0000-0003-4404-952X
  surname: Zhou
  fullname: Zhou, Yongquan
  email: yongquanzhou@126.com
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Xiangsihu College of Gunagxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis
– sequence: 3
  givenname: Huajuan
  surname: Huang
  fullname: Huang, Huajuan
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis
– sequence: 4
  givenname: Qifang
  surname: Luo
  fullname: Luo, Qifang
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis
BookMark eNqNkcFq3DAURU1JoWmaH-hK0LWbJ1mS5eWQTtvAlASSroUsPc9o8EiurCGZ0o-PMw5t6SJ0JSHuOXqP-7Y4CTFgUbyn8JEC1Bcj57SRJTBWAlAJ5eFVcUpVLUqpVHXy1_1NcT6OWwBglANwflr8WoaNCRYduTX9QG7RJLshi34dk8-bHeliItdD9jv_02QfA1k-5IQ7JKspGXxYk2_GbnxAYoIji2HovZ2DOZJPeE9uog-Z3OFuwGTyPiG5Sei8fcq8K153ph_x_Pk8K75_Xt5dfi1X11-uLher0laiyWVVUedkSxm6GgVHbDupRK0E2Foy5IqBaXnVgKpc04q2tSgUZ8A761zreHVWXM1eF81WD8nvTDroaLw-PsS01iZlb3vUQkkjeccQQXKmqqazFmzLOtaiE85Ormp27cNgDvem738LKeinPvTch5760Mc-9GGiPszUkOKPPY5Zb-M-hWlpzZTkQjBZ0ynF5pRNcRwTdv-nVv9A1udjBTkZ37-MPu8yTv-ENaY_U71APQJRr8Az
CitedBy_id crossref_primary_10_3934_era_2023145
crossref_primary_10_1016_j_seta_2023_103309
Cites_doi 10.1007/s11063-012-9236-y
10.1016/j.applthermaleng.2015.10.056
10.1016/j.eswa.2020.113803
10.1016/j.enconman.2017.08.014
10.1016/j.eswa.2018.03.024
10.1016/j.applthermaleng.2015.12.078
10.1016/j.ces.2021.116600
10.1016/j.advengsoft.2013.12.007
10.1016/j.eswa.2019.03.002
10.1007/s10462-017-9605-z
10.1109/72.80341
10.1016/j.future.2020.03.055
10.1162/neco.1991.3.4.579
10.1175/BAMS-86-2-225
10.1016/j.advengsoft.2016.01.008
10.1016/j.applthermaleng.2015.12.077
10.1016/j.measurement.2020.108161
10.1088/1748-9326/aad135
10.1016/j.neucom.2011.12.062
10.1016/j.jaridenv.2006.11.003
10.1016/j.engappai.2021.104439
10.1007/s12205-014-1197-4
10.1016/j.applthermaleng.2007.06.024
10.1016/j.advengsoft.2017.07.002
10.2166/hydro.2021.178
10.1016/j.neunet.2014.10.001
10.1007/s11063-016-9496-z
10.1016/j.engappai.2017.05.003
10.1016/j.atmosres.2021.105508
10.1109/TAC.2005.852557
10.1007/s00521-013-1522-8
10.1016/j.neucom.2005.12.126
10.1109/ACCESS.2020.2981968
10.1016/j.ins.2021.11.051
10.1016/j.swevo.2011.02.002
10.1109/CEC.2014.6900329
10.1016/j.asoc.2020.106476
10.1109/72.329697
ContentType Journal Article
Copyright The Author(s) 2022
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.1007/s44196-022-00160-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 20
ExternalDocumentID oai_doaj_org_article_586a64f2ee0642839fcc0cb2f2bed5dc
10.1007/s44196-022-00160-y
10_1007_s44196_022_00160_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U21A20464; 62066005
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
8FE
8FG
AZQEC
CCPQU
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADMSI
ADTOC
AHDSZ
H13
IL9
IPNFZ
M4Z
RIG
TDBHL
TFL
UNPAY
ID FETCH-LOGICAL-c359t-331dd6b12ed7e54eebf6857850c762e4820ab439083d9b5bbce584204fcddbd43
IEDL.DBID C24
ISSN 1875-6883
1875-6891
IngestDate Fri Oct 03 12:53:35 EDT 2025
Tue Aug 19 19:21:46 EDT 2025
Tue Oct 21 12:47:06 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Jul 01 01:20:20 EDT 2025
Fri Feb 21 02:44:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NSSA-ELM
Metaheuristic
Salp search algorithm
Extreme learning machine
Dew point temperature
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-331dd6b12ed7e54eebf6857850c762e4820ab439083d9b5bbce584204fcddbd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4404-952X
OpenAccessLink https://link.springer.com/10.1007/s44196-022-00160-y
PQID 2864552671
PQPubID 4869256
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_586a64f2ee0642839fcc0cb2f2bed5dc
unpaywall_primary_10_1007_s44196_022_00160_y
proquest_journals_2864552671
crossref_primary_10_1007_s44196_022_00160_y
crossref_citationtrail_10_1007_s44196_022_00160_y
springer_journals_10_1007_s44196_022_00160_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-18
PublicationDateYYYYMMDD 2022-11-18
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-18
  day: 18
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Han, Yao, Ling (CR12) 2012; 116
Eshtay, Faris (CR21) 2018; 104
Huang, Zhu, Siew (CR9) 2004; 2
Han, Zhu, Wang (CR26) 2021; 163
Li, Chen, Wang, Heidari (CR46) 2020; 111
Beldjilali, Benadda, Sadouni (CR16) 2020; 23
Kim, Singh, Lee, Seo (CR33) 2015; 19
CR31
Huang, Huang, Song, You (CR42) 2015; 61
Zhu, Ma, Zhao, Wang (CR25) 2020; 8
Wang, Tang (CR29) 2016; 98
Li, Peng, Irwin (CR7) 2005; 50
Li, Sun, Tseng, Li (CR22) 2019; 127
Wang, Chen, Li, Cai (CR20) 2017; 63
Derrac, García, Molina, Herrera (CR50) 2011; 1
Annema (CR2) 1995; 13
Yin, Dong, Chen, Ge (CR19) 2017; 150
Yang, Deb (CR47) 2010; 1
Niu, Ma, Li, Yan (CR11) 2016; 44
Gibbons, Chakraborti (CR49) 2011
Rajashree Dash, Dash n (CR18) 2014; 36
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR39) 2017; 114
Wen (CR23) 2020; 94
Pumo, Noto (CR35) 2021; 254
CR44
CR40
Huang, Zhu, Siew (CR10) 2006; 70
Hussain, Salleh, Shi, Shi (CR13) 2019; 52
Chen, Zhang, Karimian, Xiao (CR27) 2021; 23
Ding, Xinzheng, Nie (CR8) 2013; 25
Nguyen, Bui, Fujita, Hong (CR15) 2021; 105
Mirjalili, Lewis (CR43) 2016; 95
Cao, Lin, Huang (CR17) 2012; 36
Mirjalili, Mirjalili, Lewis (CR45) 2014; 69
Blanco, Pena (CR32) 2008; 28
Scarpa, Tagliafico (CR28) 2016; 100
Hagan, Menhaj (CR5) 1994; 5
Lawrence (CR36) 2005; 86
Wasko, William Tang, Mehrotra (CR34) 2018; 13
Baghban, Bahadori, Rozyn, Lee (CR38) 2016; 93
Zamfirache, Precup, Roman, Petriu (CR14) 2021; 585
Bai, Li-Gang, Ya (CR41) 2014; 2014
Mangasarian, Street, Wolberg (CR1) 1995; 43
Wang, Tao, Liu (CR30) 2021; 238
Faris, Mirjalili, Aljarah, Mafarja (CR48) 2020
Chen, Cowan, Grant (CR6) 1991; 2
Drezner (CR37) 2007; 69
Ovtcharov, Ruwase, Kim, Fowers, Strauss, Chung (CR3) 2015; 2
Chris (CR4) 1991; 3
Chen, Gu, Lin, Wang (CR24) 2020; 166
H Faris (160_CR48) 2020
TD Drezner (160_CR37) 2007; 69
S Chen (160_CR6) 1991; 2
D Pumo (160_CR35) 2021; 254
S Chen (160_CR24) 2020; 166
H Yin (160_CR19) 2017; 150
F Han (160_CR12) 2012; 116
S Li (160_CR46) 2020; 111
L-L Li (160_CR22) 2019; 127
S Mirjalili (160_CR45) 2014; 69
K Li (160_CR7) 2005; 50
S Ding (160_CR8) 2013; 25
P Niu (160_CR11) 2016; 44
160_CR44
IA Zamfirache (160_CR14) 2021; 585
YC Wang (160_CR29) 2016; 98
OL Mangasarian (160_CR1) 1995; 43
XS Yang (160_CR47) 2010; 1
J Derrac (160_CR50) 2011; 1
M Eshtay (160_CR21) 2018; 104
S Kim (160_CR33) 2015; 19
JD Gibbons (160_CR49) 2011
L Bai (160_CR41) 2014; 2014
B Chris (160_CR4) 1991; 3
GB Huang (160_CR9) 2004; 2
G Huang (160_CR42) 2015; 61
B Beldjilali (160_CR16) 2020; 23
Y Chen (160_CR27) 2021; 23
160_CR31
T Nguyen (160_CR15) 2021; 105
160_CR40
K Ovtcharov (160_CR3) 2015; 2
S Mirjalili (160_CR39) 2017; 114
MG Lawrence (160_CR36) 2005; 86
S Han (160_CR26) 2021; 163
PK Rajashree Dash (160_CR18) 2014; 36
JL Wang (160_CR30) 2021; 238
K Hussain (160_CR13) 2019; 52
X Wen (160_CR23) 2020; 94
MT Hagan (160_CR5) 1994; 5
JM Blanco (160_CR32) 2008; 28
A Baghban (160_CR38) 2016; 93
F Scarpa (160_CR28) 2016; 100
S Mirjalili (160_CR43) 2016; 95
J Cao (160_CR17) 2012; 36
M Wang (160_CR20) 2017; 63
GB Huang (160_CR10) 2006; 70
W Zhu (160_CR25) 2020; 8
C Wasko (160_CR34) 2018; 13
AJ Annema (160_CR2) 1995; 13
References_xml – volume: 23
  start-page: 935
  issue: 5
  year: 2021
  ident: CR27
  article-title: A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm
  publication-title: J. Hydroinf.
– volume: 150
  start-page: 108
  year: 2017
  end-page: 121
  ident: CR19
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Conver. Manag.
– volume: 94
  issue: 9
  year: 2020
  ident: CR23
  article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 285
  year: 2012
  end-page: 330
  ident: CR17
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Process Lett
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  end-page: 343
  ident: CR47
  article-title: Engineering optimisation by cuckoo search
  publication-title: In. J. Mathe. Model. Numer. Optim.
– volume: 2
  start-page: 1
  issue: 11
  year: 2015
  end-page: 4
  ident: CR3
  article-title: Accelerating deep convolutional neural networks using specialized hardware
  publication-title: Microsoft. Res. Whitepaper.
– volume: 3
  start-page: 579
  issue: 4
  year: 1991
  end-page: 588
  ident: CR4
  article-title: Improving the generalization properties of radial basis function neural networks
  publication-title: Neural. Comput.
– year: 2020
  ident: CR48
  publication-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines nature-inspired optimizers. Studies in computational intelligence
– volume: 23
  start-page: 5
  year: 2020
  end-page: 17
  ident: CR16
  article-title: Vehicles circuits optimization by combining GPS/GSM information with metaheuristic algorithms
  publication-title: Sci. Technol.
– volume: 104
  start-page: 134
  year: 2018
  end-page: 152
  ident: CR21
  article-title: Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems
  publication-title: Expert. Syst. Appl.
– volume: 36
  start-page: 285
  year: 2014
  end-page: 305
  ident: CR18
  article-title: A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction
  publication-title: Swarm. Evolut. Comput.
– volume: 28
  start-page: 777
  year: 2008
  end-page: 784
  ident: CR32
  article-title: Increase in the boiler's performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels
  publication-title: Appl. Therm. Eng.
– volume: 2
  start-page: 302
  issue: 2
  year: 1991
  end-page: 309
  ident: CR6
  article-title: Orthogonal least squares learning algorithm for radial basis function networks
  publication-title: IEEE Trans. Neural. Networks.
– volume: 93
  start-page: 1043
  year: 2016
  end-page: 1052
  ident: CR38
  article-title: Estimation of air dew point temperature using computational intelligence schemes
  publication-title: Appl. Therm. Eng.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR39
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 238
  year: 2021
  ident: CR30
  article-title: Numerical study on acid condensation and corrosion characteristics of three-dimensional finned tube surface
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 985
  issue: 25–29
  year: 2004
  end-page: 990
  ident: CR9
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: Proc. Int. Joint. Conf. Neural. Networks. (IJCNN2004).
– volume: 44
  start-page: 813
  year: 2016
  end-page: 830
  ident: CR11
  article-title: A kind of parameters self-adjusting extreme learning machine
  publication-title: Neural. Process. Lett.
– volume: 585
  start-page: 162
  year: 2021
  end-page: 175
  ident: CR14
  article-title: Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm
  publication-title: Inf. Sci.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR43
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 13
  start-page: 27
  issue: 4
  year: 1995
  end-page: 31
  ident: CR2
  article-title: Feed-forward neural networks
  publication-title: Compr. Chemom.
– volume: 166
  year: 2020
  ident: CR24
  article-title: Prediction, monitoring, and interpretation of dam leakageflow via adaptative kernel extreme learning machine
  publication-title: Measurement
– volume: 19
  start-page: 1930
  year: 2015
  end-page: 1940
  ident: CR33
  article-title: Modeling the physical dynamics of daily dew point temperature using soft computing techniques
  publication-title: KSCE J. Civ. Eng.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR45
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  end-page: 18
  ident: CR50
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 127
  start-page: 58
  year: 2019
  end-page: 67
  ident: CR22
  article-title: Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation
  publication-title: Expert Syst. Appl.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: CR46
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Futur. Gener. Comput. Syst.
– start-page: 977
  year: 2011
  end-page: 979
  ident: CR49
  publication-title: Nonparametric statistical inference
– volume: 8
  start-page: 61107
  year: 2020
  end-page: 61123
  ident: CR25
  article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine
  publication-title: IEEE access
– volume: 69
  start-page: 554
  year: 2007
  end-page: 568
  ident: CR37
  article-title: An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions
  publication-title: J. Arid Environ.
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR10
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 163
  year: 2021
  ident: CR26
  article-title: Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 105
  year: 2021
  ident: CR15
  article-title: Multiple-objective optimization applied in extracting multiple-choice tests
  publication-title: Eng. Appl. Artif. Intell.
– volume: 43
  start-page: 570
  issue: 4
  year: 1995
  end-page: 577
  ident: CR1
  article-title: Breast cancer diagnosis and prognosis via linear programming
  publication-title: IEEE. Comput. Sci. Eng.
– volume: 13
  year: 2018
  ident: CR34
  article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia
  publication-title: Environ. Res. Lett.
– volume: 254
  year: 2021
  ident: CR35
  article-title: Exploring the linkage between dew point temperature and precipitation extremes: A multi-time-scale analysis on a semi-arid Mediterranean region
  publication-title: Atmos. Res.
– ident: CR40
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: CR13
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artif Intell Rev
– volume: 63
  start-page: 54
  year: 2017
  end-page: 68
  ident: CR20
  article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction
  publication-title: Eng. Appl. Artif. Intell.
– ident: CR44
– volume: 50
  start-page: 1211
  issue: 8
  year: 2005
  end-page: 1216
  ident: CR7
  article-title: A fast nonlinear model identification method
  publication-title: IEEE Trans. Autom. Control
– volume: 100
  start-page: 820
  year: 2016
  end-page: 828
  ident: CR28
  article-title: Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point
  publication-title: Appl. Therm. Eng.
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  end-page: 993
  ident: CR5
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans. Neural. Networks.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR41
  article-title: A novel artificial bee colony algorithm based on internal-feedback strategy for image template matching
  publication-title: Sci World J
– volume: 86
  start-page: 225
  year: 2005
  end-page: 234
  ident: CR36
  article-title: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications
  publication-title: Am. Meteor. Soc.
– volume: 98
  start-page: 492
  year: 2016
  end-page: 501
  ident: CR29
  article-title: Estimation of sulfuric acid dew point temperature on heat transfer fin surface
  publication-title: Appl. Therm. Eng.
– volume: 25
  start-page: 549
  year: 2013
  end-page: 556
  ident: CR8
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput & Applic
– ident: CR31
– volume: 116
  start-page: 87
  year: 2012
  end-page: 93
  ident: CR12
  article-title: An improved evolutionary extreme learning machine based on particle swarm optimization
  publication-title: Neurocomputing
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: CR42
  article-title: Review treznds in extreme learning machines: A review
  publication-title: Neural Netw.
– volume: 36
  start-page: 285
  year: 2012
  ident: 160_CR17
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-012-9236-y
– volume: 93
  start-page: 1043
  year: 2016
  ident: 160_CR38
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.056
– volume: 163
  year: 2021
  ident: 160_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113803
– volume: 150
  start-page: 108
  year: 2017
  ident: 160_CR19
  publication-title: Energy Conver. Manag.
  doi: 10.1016/j.enconman.2017.08.014
– volume: 2014
  start-page: 1
  year: 2014
  ident: 160_CR41
  publication-title: Sci World J
– volume: 104
  start-page: 134
  year: 2018
  ident: 160_CR21
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.024
– volume: 98
  start-page: 492
  year: 2016
  ident: 160_CR29
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.078
– ident: 160_CR44
– volume: 13
  start-page: 27
  issue: 4
  year: 1995
  ident: 160_CR2
  publication-title: Compr. Chemom.
– start-page: 977
  volume-title: Nonparametric statistical inference
  year: 2011
  ident: 160_CR49
– volume: 2
  start-page: 1
  issue: 11
  year: 2015
  ident: 160_CR3
  publication-title: Microsoft. Res. Whitepaper.
– volume: 238
  year: 2021
  ident: 160_CR30
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116600
– volume: 69
  start-page: 46
  year: 2014
  ident: 160_CR45
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 127
  start-page: 58
  year: 2019
  ident: 160_CR22
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.002
– volume: 52
  start-page: 2191
  year: 2019
  ident: 160_CR13
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9605-z
– volume: 2
  start-page: 302
  issue: 2
  year: 1991
  ident: 160_CR6
  publication-title: IEEE Trans. Neural. Networks.
  doi: 10.1109/72.80341
– volume: 111
  start-page: 300
  year: 2020
  ident: 160_CR46
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 3
  start-page: 579
  issue: 4
  year: 1991
  ident: 160_CR4
  publication-title: Neural. Comput.
  doi: 10.1162/neco.1991.3.4.579
– volume: 86
  start-page: 225
  year: 2005
  ident: 160_CR36
  publication-title: Am. Meteor. Soc.
  doi: 10.1175/BAMS-86-2-225
– volume: 95
  start-page: 51
  year: 2016
  ident: 160_CR43
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 43
  start-page: 570
  issue: 4
  year: 1995
  ident: 160_CR1
  publication-title: IEEE. Comput. Sci. Eng.
– volume: 100
  start-page: 820
  year: 2016
  ident: 160_CR28
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.077
– volume: 23
  start-page: 5
  year: 2020
  ident: 160_CR16
  publication-title: Sci. Technol.
– volume: 166
  year: 2020
  ident: 160_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108161
– volume: 13
  year: 2018
  ident: 160_CR34
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad135
– volume: 36
  start-page: 285
  year: 2014
  ident: 160_CR18
  publication-title: Swarm. Evolut. Comput.
– volume: 116
  start-page: 87
  year: 2012
  ident: 160_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– volume: 69
  start-page: 554
  year: 2007
  ident: 160_CR37
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2006.11.003
– volume: 105
  year: 2021
  ident: 160_CR15
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104439
– volume: 2
  start-page: 985
  issue: 25–29
  year: 2004
  ident: 160_CR9
  publication-title: Proc. Int. Joint. Conf. Neural. Networks. (IJCNN2004).
– volume: 19
  start-page: 1930
  year: 2015
  ident: 160_CR33
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-014-1197-4
– volume: 28
  start-page: 777
  year: 2008
  ident: 160_CR32
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.06.024
– volume: 114
  start-page: 163
  year: 2017
  ident: 160_CR39
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 23
  start-page: 935
  issue: 5
  year: 2021
  ident: 160_CR27
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2021.178
– volume: 61
  start-page: 32
  year: 2015
  ident: 160_CR42
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 44
  start-page: 813
  year: 2016
  ident: 160_CR11
  publication-title: Neural. Process. Lett.
  doi: 10.1007/s11063-016-9496-z
– volume: 63
  start-page: 54
  year: 2017
  ident: 160_CR20
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.05.003
– volume: 254
  year: 2021
  ident: 160_CR35
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2021.105508
– volume: 50
  start-page: 1211
  issue: 8
  year: 2005
  ident: 160_CR7
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2005.852557
– volume: 25
  start-page: 549
  year: 2013
  ident: 160_CR8
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1522-8
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 160_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 160_CR31
– volume-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines nature-inspired optimizers. Studies in computational intelligence
  year: 2020
  ident: 160_CR48
– volume: 8
  start-page: 61107
  year: 2020
  ident: 160_CR25
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2020.2981968
– volume: 585
  start-page: 162
  year: 2021
  ident: 160_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.051
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 160_CR47
  publication-title: In. J. Mathe. Model. Numer. Optim.
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 160_CR50
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 160_CR40
  doi: 10.1109/CEC.2014.6900329
– volume: 94
  issue: 9
  year: 2020
  ident: 160_CR23
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106476
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 160_CR5
  publication-title: IEEE Trans. Neural. Networks.
  doi: 10.1109/72.329697
SSID ssj0002140044
ssib050732782
Score 2.2944179
Snippet Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the...
Abstract Extreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Centroids
Computational Intelligence
Control
Datasets
Dew
Dew point method
Dew point temperature
Engineering
Extreme learning machine
Heuristic methods
Local optimization
Machine learning
Mathematical Logic and Foundations
Mechatronics
Metaheuristic
Meteorological data
NSSA-ELM
Performance enhancement
Research Article
Robotics
Salp search algorithm
Search algorithms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl7aHvqtuS6s5cCtRE8f2OselXYSQeEgFiZvlxwSQQna1DaIr9cdjO96wXGgPXBNHsj2fZz7H428I2cbaSh8FbMbHNc9Y2O5obWWmc1mLyoeEcUz5PzwS-2fs4Jyfr5X6CjlhvTxwP3HfuRRasJoiRqpcVrW1uTW0pgYddzZ431xWa5up4INpEbDJ0i2ZeFfOx_2Yb0uzWFs5Wz6IRFGw_wHLHA5GX5BnN-1cL29106zFnr3X5GUijTDpO_uGbGD7lrxaFWSAtD7fkb_T9jKe6MMv3cyhTyWGSXMxW1x1l9fgCSocex9xnS5fwvRPF_4PQlJZvYDDmFuJoFsHk_uzbehm8BNv4WR21XZwip5r91rMcLIIJz2hzXtytjc9_bGfpfIKmS151WVlWTgnTEHRjZEzRFMLGbRvcus9JDLPDbTxfMWTNFcZboxFz1ZozmrrnHGs_EA221mLHwlIp33oz6mllXcKFZeacq2NEaVAZ7gekWI11com7fFQAqNRg2pyNI_y5lHRPGo5It-Gb-a98sajrXeDBYeWQTU7PvBYUglL6l9YGpGtlf1VWsq_FZWCce5BW4zIzgoT968f69LOgJv_GMGnpxjBZ_KcBoiHPEW5RTa7xQ1-8aypM1_jArkD4PETNA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a3QE48I0oDOQDN2bROLHrHBDqoNOEtFLBJu0W-SsdUpaUkmlU4o_n2XVSdqm4Jrby8T78s997vwfw1pVG4ipgKB-XnGZ-u6OUkVSNZClyXBLGIeX_dCZOzrMvF_xiD2ZdLYxPq-x8YnDUtjH-jPw9kyLjHOcmH5c_qe8a5aOrXQsNFVsr2A-BYuwO7DPPjDWA_aPpbP6t0zAEPynr-Nu9r2aJ1-EQekbgToXMk1hZE-rrECuEHF1GQz9mur61egWS_1vItA-m3oe71_VSrW9UVf2zXh0_ggcRaJLJRjMew56rn8DDrokDiTb9FP5M68uQBUC-q2pJNunHZFIt8OPbyyuCoJZ8Rb9yFQs2yfR3688USWRmXZDTkI_piKotmWzj4aRtyGd3Q-bNj7olZw7x-Ya_mcxXPjrkxzyD8-Pp2acTGlsyUJPyvKVpmlgrdMKcHTueOadLIT1fzsigV3UZ4gmlEeMgsLO55lobhwiHjbLSWKttlj6HQd3U7gUQaRXChREzLEdHknOpGFdKa5EKZzVXQ0i6X12YyFfu22ZURc-0HMRToHiKIJ5iPYR3_Zzlhq1j5-gjL8F-pGfaDhea1aKIhltwKZTISuZc2KqleWnMyGhWMu0st2YIB538i2j-v4qtsg7hsNOJ7e1dr3TY681_fMHL3Q9_BfeYV16ftSgPYNCurt1rxFCtfhMN4y_j2hWD
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHyKwkB-4I2lS5zYdR4L6zQhbVRilcaT5a90E1lSlVSjiD8e23EyhtAE4i1KLlHsnO9-zt39DuCNKRSzXkBFZFyQKHPbHSEUi0TMCppblzD2Kf_HJ_Ronn04I2dbcNDVwvhs9y4k2dY0OJamqtlf6mK_L3yzTtwnz-LIN0qONiN7-Q5sU2IR-QC25yezyWe317JwPKLMs3GG4zwJtTN_ftAN_-Rp_G9gzz5ceh_urqul2FyJsvzFIx3ugOnG0iaifBmtGzlS33-jefzfwT6EBwGyokmrY49gy1SPYadrB4GCdXgCP6bVuc8nQJ9EuURtIjOalIt6ddGcXyILj9FHa6EuQ-knmn5r3N9JFDheF-jYZ3YaJCqNJteRddTU6MBcoVl9UTXo1Fik3zJBo9nKxZmczFOYH05P3x9FoblDpFKSN1GaJlpTmWCjx4ZkxsiCMse8Eytrn01mkYmQFi1ZiKhzSaRUxmIlHGeF0lrqLH0Gg6quzHNATAsLPGKscG5NUk6YwEQIKWlKjZZEDCHpPilXgfncNeAoec_Z7KeY2ynmfor5Zghv-3uWLe_HrdLvnKb0ko6z25-oVwseTAAnjAqaFdgYv-lL80KpWElcYGk00WoIu52e8WBIvnLMaEaIXTLJEPY6Vbm-fNsr7fX6-RcjePFv4i_hHnYK6fIh2S4MmtXavLLorJGvw-L7CQfgMPU
  priority: 102
  providerName: Unpaywall
Title Enhanced Salp Search Algorithm for Optimization Extreme Learning Machine and Application to Dew Point Temperature Prediction
URI https://link.springer.com/article/10.1007/s44196-022-00160-y
https://www.proquest.com/docview/2864552671
https://link.springer.com/content/pdf/10.1007/s44196-022-00160-y.pdf
https://doaj.org/article/586a64f2ee0642839fcc0cb2f2bed5dc
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: AAJSJ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4NeNh4YBsbWhmr_LC3ESlxYtd5DF07VImuGlRiT5F_pSCFpCpBrNL--NmuE0Ca0PaSSIkTJbnz3efc3XcAn3UhmfECMiCDggSJXe5wLlnAQ1bQ1LiEgUv5P5vS03kyuSSXvijsts12b0OSzlJ3xW7GcbuEWRy45sjBegt2DP7AtmHD0Nc4WPuLI6uXia-Q-fulT7yQI-t_gjC7oOguvLyrlnx9z8vykd8Zv4E9DxhRtpHwW3ihq3143TZjQH5u7sPuI2bBd_B7VF252D465-USbZKKUVYu6tV1c3WDDFRF3421uPFlmGj0q7F_CpHnW12gM5dlqRGvFMoeotyoqdFXfY9m9XXVoAttUPeGlRnNVjbmY8e8h_l4dDE8DXyjhUDGJG2COI6UoiLCWg00SbQWBWWWBSeUxlbqxKAELgxyMXBNpYIIIbXBLThMCqmUUEl8ANtVXekPgJjiBgSEWOLUmIeUMI4J50LQmGolCO9B1H74XHoWctsMo8w7_mQnrNwIK3fCytc9-NJds9xwcDw7-sTKsxtp-bPdgXq1yP10zAmjnCYF1totwOK0kDKUAhdYaEWU7MFRqw25n9S3OWY0IcSob9SD41ZDHk4_90jHnRb9wxsc_t_dP8IrbFXb5iayI9huVnf6k0FKjejDFht_68NOlk3OJ2Z_MprOfvTddLFbOuy7fxDmzHw6y37-AaU1Erc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaU9lA48GZIKaADnKgHW7YU-dBhUppOSpuQgXSmN6OX086kdkjdCZnht_HbWCmyQy8ZLr3akh_a1T60u98i9M7kioMWUAFt5zRIrLsjhOKBCHnOUlAJbZfy3x-w3lny5Zyeb6A_dS2MTausZaIT1LpU9oz8I-EsoRTmRp-mPwPbNcpGV-sWGsK3VtD7DmLMF3acmMUcXLjr_eNDoPd7Qo66o8-9wHcZCFRM0yqI40hrJiNidNvQxBiZM24hYEIFgsIkoCKFBLUNtopOJZVSGVDaJExypbXUSQzPvYe2kjhJwfnbOugOht9qjgZjKyY1XrzVDSSye8aFusFRCBhPI1_J4-r5wDZxOcEkcP2fg8UtbemaCtyyhJvg7QO0fVNMxWIuJpN_9OPRY_TQG7a4s-TEJ2jDFE_Ro7ppBPYy5Bn63S0uXNYB_i4mU7xMd8adyRgWu7q4wmBE468gx658gSju_qrsGSb2SLBj3Hf5nwaLQuPOKv6OqxIfmjkelpdFhUcG_IElXjQezmw0yo55js7uhDgv0GZRFuYlwlwLME9CokgKgiulXBAqhJQsZkZLKlooqpc6Ux4f3bbpmGQNsrMjTwbkyRx5skULfWjmTJfoIGtHH1gKNiMtsre7UM7GmRcUGeVMsCQnxjjXME5zpUIlSU6k0VSrFtqt6Z95cXOdrTZHC-3VPLG6ve6T9hq--Y8_2Fn_8rdouzfqn2anx4OTV-g-sYxsMyb5LtqsZjfmNdhvlXzjNwlGP-56X_4FCklTDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYAeeJSiLhTwgRuNmji21zku212VR8tKtFJvll_ZVkqT1TZVWYkfj-08upVQBdfEjpLMjOezZ-YbgI8219x5AR3RYU4j4rc7UmoeyZjnLHMuYRhS_o-O2eEp-XpGz9aq-EO2exeSbGoaPEtTWe8vTL7fF745Jx6SZ3EUGiVHq4fwiDjv5nsYjNm4P2XBiddR0lbL_H3qHY8UiPvvoM0-QLoJT67LhVzdyKJY80HTF_CsBY9o1Ej7JTyw5RY87xozoNZOt2BzjWXwFfyelOchzo9-ymKBmgRjNCrm1fKiPr9EDraiH27luGxLMtHkV-1PDVHLvTpHRyHj0iJZGjS6jXijukIH9gbNqouyRifWIfCGoRnNlj7-48dsw-l0cjI-jNqmC5FOaVZHaZoYw1SCrRlaSqxVOeOeESfWbt20xCEGqRyKcdDNZIoqpa3DMDgmuTZGGZK-ho2yKu0OIG6kAwQx1jhzS0VGucRUSqVYyqxRVA4g6X680C0juW-MUYieSzkISzhhiSAssRrAp37OouHjuHf0Zy_PfqTn0g4XquVctKYpKGeSkRxbGzZjaZZrHWuFc6ysoUYPYLfTBtEa-JXAnBFKnSonA9jrNOT29n2vtNdr0T98wZv_e_oHeDw7mIrvX46_vYWn2Gu5T1nku7BRL6_tOwegavU-2MgfZQYSeg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHyKwkB-4I2lS5zYdR4L6zQhbVRilcaT5a90E1lSlVSjiD8e23EyhtAE4i1KLlHsnO9-zt39DuCNKRSzXkBFZFyQKHPbHSEUi0TMCppblzD2Kf_HJ_Ronn04I2dbcNDVwvhs9y4k2dY0OJamqtlf6mK_L3yzTtwnz-LIN0qONiN7-Q5sU2IR-QC25yezyWe317JwPKLMs3GG4zwJtTN_ftAN_-Rp_G9gzz5ceh_urqul2FyJsvzFIx3ugOnG0iaifBmtGzlS33-jefzfwT6EBwGyokmrY49gy1SPYadrB4GCdXgCP6bVuc8nQJ9EuURtIjOalIt6ddGcXyILj9FHa6EuQ-knmn5r3N9JFDheF-jYZ3YaJCqNJteRddTU6MBcoVl9UTXo1Fik3zJBo9nKxZmczFOYH05P3x9FoblDpFKSN1GaJlpTmWCjx4ZkxsiCMse8Eytrn01mkYmQFi1ZiKhzSaRUxmIlHGeF0lrqLH0Gg6quzHNATAsLPGKscG5NUk6YwEQIKWlKjZZEDCHpPilXgfncNeAoec_Z7KeY2ynmfor5Zghv-3uWLe_HrdLvnKb0ko6z25-oVwseTAAnjAqaFdgYv-lL80KpWElcYGk00WoIu52e8WBIvnLMaEaIXTLJEPY6Vbm-fNsr7fX6-RcjePFv4i_hHnYK6fIh2S4MmtXavLLorJGvw-L7CQfgMPU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Salp+Search+Algorithm+for+Optimization+Extreme+Learning+Machine+and+Application+to+Dew+Point+Temperature+Prediction&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Zhang%2C+Xiangmin&rft.au=Zhou%2C+Yongquan&rft.au=Huang%2C+Huajuan&rft.au=Luo%2C+Qifang&rft.date=2022-11-18&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-022-00160-y&rft.externalDocID=10_1007_s44196_022_00160_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon