A Survey of Deep Learning Applications to Autonomous Vehicle Control
Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning met...
        Saved in:
      
    
          | Published in | IEEE transactions on intelligent transportation systems Vol. 22; no. 2; pp. 712 - 733 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.02.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1524-9050 1558-0016  | 
| DOI | 10.1109/TITS.2019.2962338 | 
Cover
| Abstract | Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalising previously learned rules to new scenarios. For these reasons, the use of deep learning for vehicle control is becoming increasingly popular. Although important advancements have been achieved in this field, these works have not been fully summarised. This paper surveys a wide range of research works reported in the literature which aim to control a vehicle through deep learning methods. Although there exists overlap between control and perception, the focus of this paper is on vehicle control, rather than the wider perception problem which includes tasks such as semantic segmentation and object detection. The paper identifies the strengths and limitations of available deep learning methods through comparative analysis and discusses the research challenges in terms of computation, architecture selection, goal specification, generalisation, verification and validation, as well as safety. Overall, this survey brings timely and topical information to a rapidly evolving field relevant to intelligent transportation systems. | 
    
|---|---|
| AbstractList | Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalising previously learned rules to new scenarios. For these reasons, the use of deep learning for vehicle control is becoming increasingly popular. Although important advancements have been achieved in this field, these works have not been fully summarised. This paper surveys a wide range of research works reported in the literature which aim to control a vehicle through deep learning methods. Although there exists overlap between control and perception, the focus of this paper is on vehicle control, rather than the wider perception problem which includes tasks such as semantic segmentation and object detection. The paper identifies the strengths and limitations of available deep learning methods through comparative analysis and discusses the research challenges in terms of computation, architecture selection, goal specification, generalisation, verification and validation, as well as safety. Overall, this survey brings timely and topical information to a rapidly evolving field relevant to intelligent transportation systems. | 
    
| Author | Bowden, Richard Jin, Yaochu Fallah, Saber Barber, Phil Kuutti, Sampo  | 
    
| Author_xml | – sequence: 1 givenname: Sampo orcidid: 0000-0002-7020-4370 surname: Kuutti fullname: Kuutti, Sampo email: s.j.kuutti@surrey.ac.uk organization: Centre for Automotive Engineering, University of Surrey, Guildford, U.K – sequence: 2 givenname: Richard orcidid: 0000-0003-3285-8020 surname: Bowden fullname: Bowden, Richard email: r.bowden@surrey.ac.uk organization: Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, U.K – sequence: 3 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 4 givenname: Phil surname: Barber fullname: Barber, Phil email: pbarber2@jaguarlandrover.com organization: Jaguar Land Rover Ltd., Coventry, U.K – sequence: 5 givenname: Saber orcidid: 0000-0002-1298-1040 surname: Fallah fullname: Fallah, Saber email: s.fallah@surrey.ac.uk organization: Centre for Automotive Engineering, University of Surrey, Guildford, U.K  | 
    
| BookMark | eNp9kE1Lw0AQhhepYFv9AeJlwXPq7Ec-9lhaPwoFD61ew2Y70ZQ0G3c3Qv-9iRUPHjzNMLzPDPNMyKixDRJyzWDGGKi77Wq7mXFgasZVwoXIzsiYxXEWAbBkNPRcRgpiuCAT7_f9VMaMjclyTjed-8QjtSVdIrZ0jdo1VfNG521bV0aHyjaeBkvnXbCNPdjO01d8r0yNdGGb4Gx9Sc5LXXu8-qlT8vJwv108Revnx9Vivo6MiFWI-G5nVJYyaQBlYkSRaNBcaeBay74giBIKHmfACoE6LYXJCmCQopRCJEJMye1pb-vsR4c-5HvbuaY_mXOZJbFiKpZ9Kj2ljLPeOyxzU4XvN4LTVZ0zyAdl-aAsH5TlP8p6kv0hW1cdtDv-y9ycmAoRf_OZ6u0KJr4A3hx39w | 
    
| CODEN | ITISFG | 
    
| CitedBy_id | crossref_primary_10_1109_TITS_2021_3086397 crossref_primary_10_1007_s13177_025_00466_z crossref_primary_10_3390_s21082739 crossref_primary_10_1109_JSEN_2023_3280959 crossref_primary_10_1007_s41742_024_00668_5 crossref_primary_10_1109_TITS_2023_3328811 crossref_primary_10_1109_TC_2024_3475572 crossref_primary_10_1016_j_chaos_2021_111393 crossref_primary_10_3390_rs13173527 crossref_primary_10_3390_su142114462 crossref_primary_10_1109_TITS_2023_3270749 crossref_primary_10_1109_JEDS_2024_3352827 crossref_primary_10_1016_j_asoc_2024_111802 crossref_primary_10_1109_TITS_2024_3521385 crossref_primary_10_1007_s10489_024_06019_3 crossref_primary_10_1007_s10703_024_00457_y crossref_primary_10_1016_j_measurement_2024_114336 crossref_primary_10_1007_s10664_024_10521_0 crossref_primary_10_1109_LCSYS_2021_3087941 crossref_primary_10_1109_TITS_2022_3146038 crossref_primary_10_1016_j_jfranklin_2024_106709 crossref_primary_10_1016_j_cose_2024_104168 crossref_primary_10_1109_TVT_2024_3352543 crossref_primary_10_1364_AO_453929 crossref_primary_10_1109_ACCESS_2025_3544482 crossref_primary_10_1109_TCST_2023_3332438 crossref_primary_10_1109_TITS_2020_3037926 crossref_primary_10_1007_s11750_024_00683_x crossref_primary_10_3390_math11234762 crossref_primary_10_1016_j_asoc_2022_108995 crossref_primary_10_1109_TVT_2023_3314404 crossref_primary_10_1145_3477482_3477485 crossref_primary_10_3390_smartcities7010002 crossref_primary_10_1109_TITS_2023_3317475 crossref_primary_10_1109_TNSM_2021_3116665 crossref_primary_10_1109_TIM_2024_3381277 crossref_primary_10_1039_D4MH00302K crossref_primary_10_1364_OE_506519 crossref_primary_10_1016_j_cogsys_2023_101169 crossref_primary_10_3390_rs16071239 crossref_primary_10_1016_j_autcon_2022_104675 crossref_primary_10_3390_s23219006 crossref_primary_10_3390_s22249677 crossref_primary_10_1109_TITS_2024_3496500 crossref_primary_10_1109_TITS_2023_3286541 crossref_primary_10_1109_TITS_2023_3280200 crossref_primary_10_1109_TIV_2022_3224656 crossref_primary_10_1016_j_ymssp_2023_110426 crossref_primary_10_1109_TASE_2021_3100709 crossref_primary_10_1109_TKDE_2023_3235779 crossref_primary_10_3390_math11234791 crossref_primary_10_1109_TVT_2024_3389054 crossref_primary_10_3390_app13095272 crossref_primary_10_1016_j_vehcom_2023_100623 crossref_primary_10_1109_OJITS_2020_3027518 crossref_primary_10_1109_TIV_2023_3256972 crossref_primary_10_1142_S0218001423560049 crossref_primary_10_3390_vehicles5040073 crossref_primary_10_5604_01_3001_0016_0752 crossref_primary_10_3390_machines11070676 crossref_primary_10_3390_vehicles7010004 crossref_primary_10_1109_TITS_2021_3131637 crossref_primary_10_1109_TAI_2022_3225132 crossref_primary_10_1109_TDSC_2024_3424900 crossref_primary_10_3390_s23020660 crossref_primary_10_1038_s41746_023_00822_x crossref_primary_10_1109_TIV_2023_3303013 crossref_primary_10_1016_j_aei_2023_102328 crossref_primary_10_1109_ACCESS_2023_3329056 crossref_primary_10_3390_en14020517 crossref_primary_10_1016_j_patcog_2023_109592 crossref_primary_10_1109_TCYB_2022_3151880 crossref_primary_10_1109_TIV_2023_3284220 crossref_primary_10_1007_s41230_024_3094_x crossref_primary_10_1109_TCYB_2021_3049778 crossref_primary_10_1049_itr2_12471 crossref_primary_10_1109_TITS_2024_3474745 crossref_primary_10_1016_j_bjao_2024_100347 crossref_primary_10_3390_s23167018 crossref_primary_10_1145_3660827 crossref_primary_10_1109_ACCESS_2020_3035318 crossref_primary_10_1109_ACCESS_2024_3381488 crossref_primary_10_3389_frai_2022_861669 crossref_primary_10_1016_j_eswa_2023_120970 crossref_primary_10_1145_3533378 crossref_primary_10_1364_AO_534782 crossref_primary_10_7467_KSAE_2023_31_2_107 crossref_primary_10_3390_app12146951 crossref_primary_10_1145_3725739 crossref_primary_10_1007_s10270_023_01090_9 crossref_primary_10_1109_ACCESS_2022_3217213 crossref_primary_10_1016_j_jtte_2023_09_005 crossref_primary_10_1364_OE_517035 crossref_primary_10_1016_j_cosrev_2023_100568 crossref_primary_10_1177_03611981241262314 crossref_primary_10_1049_itr2_12385 crossref_primary_10_1109_ACCESS_2022_3147495 crossref_primary_10_3390_f15081337 crossref_primary_10_1515_pjbr_2022_0117 crossref_primary_10_1109_OJVT_2024_3369691 crossref_primary_10_1109_TITS_2022_3184990 crossref_primary_10_1109_ACCESS_2023_3274836 crossref_primary_10_1002_aisy_202100228 crossref_primary_10_1016_j_eswa_2025_126779 crossref_primary_10_1016_j_isatra_2023_12_033 crossref_primary_10_1007_s12553_020_00509_3 crossref_primary_10_1109_TVT_2024_3387737 crossref_primary_10_1109_OJITS_2023_3237977 crossref_primary_10_1016_j_ifacol_2022_10_440 crossref_primary_10_1109_TIV_2022_3173448 crossref_primary_10_1109_TVT_2024_3503609 crossref_primary_10_1007_s11042_020_09223_8 crossref_primary_10_1109_ACCESS_2022_3182659 crossref_primary_10_1109_TPEL_2023_3323627 crossref_primary_10_1109_ACCESS_2020_2997946 crossref_primary_10_1109_ACCESS_2020_3017883 crossref_primary_10_1016_j_jclepro_2022_134120 crossref_primary_10_1016_j_ijtst_2024_09_005 crossref_primary_10_1016_j_engappai_2023_106669 crossref_primary_10_1109_ACCESS_2021_3116353 crossref_primary_10_3390_a17110526 crossref_primary_10_1007_s41315_024_00385_4 crossref_primary_10_1016_j_jnca_2025_104165 crossref_primary_10_1016_j_knosys_2024_111766 crossref_primary_10_3390_make5030041 crossref_primary_10_1145_3616398 crossref_primary_10_3390_infrastructures6040051 crossref_primary_10_3934_mbe_2022160 crossref_primary_10_3390_s21010073 crossref_primary_10_1016_j_hlpt_2024_100892 crossref_primary_10_3389_fphot_2023_1336510 crossref_primary_10_1088_1748_3190_ac9ffc crossref_primary_10_1016_j_engappai_2024_109588 crossref_primary_10_1109_TCYB_2024_3490656 crossref_primary_10_1109_TIM_2023_3256459 crossref_primary_10_3390_s21062140 crossref_primary_10_3390_app14166977 crossref_primary_10_1002_adts_202200409 crossref_primary_10_3390_eng5040177 crossref_primary_10_1016_j_optmat_2023_114510 crossref_primary_10_1109_TGCN_2022_3163764 crossref_primary_10_1109_TIV_2020_3033878 crossref_primary_10_3390_s22114185 crossref_primary_10_3390_s22103608 crossref_primary_10_1016_j_neucom_2022_01_005 crossref_primary_10_1109_TITS_2022_3172442 crossref_primary_10_3390_app12105052 crossref_primary_10_3390_drones6120407 crossref_primary_10_1016_j_engappai_2024_108120 crossref_primary_10_1109_JSEN_2024_3390794 crossref_primary_10_1115_1_4051645 crossref_primary_10_1007_s13177_023_00376_y crossref_primary_10_1007_s11370_021_00398_z crossref_primary_10_32604_iasc_2023_037219 crossref_primary_10_1109_TIV_2022_3209926 crossref_primary_10_3390_s24175730 crossref_primary_10_1109_TITS_2024_3419988 crossref_primary_10_1016_j_comnet_2024_110854 crossref_primary_10_3390_electronics9111826 crossref_primary_10_1002_admt_202302238 crossref_primary_10_1109_TVT_2024_3394699 crossref_primary_10_1016_j_wear_2025_205865 crossref_primary_10_1109_ACCESS_2021_3127548 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1016_j_arcontrol_2022_11_001 crossref_primary_10_1002_asjc_2807 crossref_primary_10_1109_TITS_2021_3066154 crossref_primary_10_7717_peerj_cs_1550 crossref_primary_10_1007_s00521_022_07234_0 crossref_primary_10_1109_TITS_2022_3146575 crossref_primary_10_1016_j_buildenv_2023_110191 crossref_primary_10_3390_wevj16030138 crossref_primary_10_1080_19439962_2024_2400894 crossref_primary_10_1109_TITS_2021_3107587 crossref_primary_10_1109_TITS_2023_3250720 crossref_primary_10_1007_s10664_023_10413_9 crossref_primary_10_1109_ACCESS_2023_3330665 crossref_primary_10_1016_j_frl_2022_103617 crossref_primary_10_1016_j_jksuci_2021_07_020 crossref_primary_10_3390_info12100431 crossref_primary_10_1109_TITS_2022_3195605 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_1016_j_knosys_2024_111919 crossref_primary_10_1016_j_trc_2023_104451 crossref_primary_10_1109_JSEN_2020_3027684 crossref_primary_10_1109_TMECH_2023_3349052 crossref_primary_10_1109_TAI_2024_3373720 crossref_primary_10_3390_electronics11040639 crossref_primary_10_1016_j_heliyon_2024_e35269 crossref_primary_10_3390_act14010037 crossref_primary_10_1109_LRA_2021_3061336 crossref_primary_10_1109_TEVC_2023_3268076 crossref_primary_10_1177_09544070231204249 crossref_primary_10_3390_s21062032 crossref_primary_10_1109_TITS_2023_3245362 crossref_primary_10_3390_act13030101 crossref_primary_10_1007_s10479_021_04383_8 crossref_primary_10_1109_ACCESS_2023_3294256 crossref_primary_10_1109_TITS_2023_3299229 crossref_primary_10_1109_TITS_2023_3292278 crossref_primary_10_1109_TITS_2023_3308344 crossref_primary_10_1007_s00521_022_07947_2 crossref_primary_10_1109_TRS_2024_3488475 crossref_primary_10_1109_TIV_2022_3146639 crossref_primary_10_5937_jpmnt12_50607 crossref_primary_10_1016_j_chaos_2024_115850 crossref_primary_10_3390_robotics12040100 crossref_primary_10_1007_s13042_023_01845_2 crossref_primary_10_1109_MITS_2022_3174410 crossref_primary_10_1109_TSP_2024_3442858 crossref_primary_10_1177_09544070241277237 crossref_primary_10_1016_j_procs_2022_11_061 crossref_primary_10_1109_TFUZZ_2024_3491059 crossref_primary_10_3390_en17133059 crossref_primary_10_1108_JICV_08_2021_0012 crossref_primary_10_1109_ACCESS_2023_3295697 crossref_primary_10_3390_math12070992 crossref_primary_10_34133_2022_9851096 crossref_primary_10_1016_j_compositesa_2022_106973 crossref_primary_10_1016_j_prime_2024_100810 crossref_primary_10_1109_JSAC_2024_3413977 crossref_primary_10_3390_electronics14010153 crossref_primary_10_1016_j_measurement_2024_116212 crossref_primary_10_1109_JIOT_2024_3355853 crossref_primary_10_1038_s41598_022_27026_9 crossref_primary_10_1007_s43681_023_00388_0 crossref_primary_10_1016_j_engappai_2022_104717 crossref_primary_10_1049_tje2_12231 crossref_primary_10_1145_3653697 crossref_primary_10_1007_s11241_023_09405_1 crossref_primary_10_3390_en15051866 crossref_primary_10_3390_wevj15110518 crossref_primary_10_3390_en16041895 crossref_primary_10_1007_s10015_023_00863_1 crossref_primary_10_1109_TITS_2024_3494734 crossref_primary_10_1109_TITS_2022_3183893 crossref_primary_10_1007_s11042_022_12447_5 crossref_primary_10_5194_ms_12_419_2021 crossref_primary_10_23919_ICN_2024_0019 crossref_primary_10_3390_app10207171 crossref_primary_10_1007_s10489_024_06213_3 crossref_primary_10_1016_j_inffus_2022_08_009 crossref_primary_10_1109_TIV_2023_3321346 crossref_primary_10_3390_fi16070238 crossref_primary_10_1109_TITS_2022_3176970 crossref_primary_10_3102_10769986241268907 crossref_primary_10_3390_s25020531 crossref_primary_10_3390_s21206711 crossref_primary_10_3724_SP_J_1249_2023_03258 crossref_primary_10_1109_LCSYS_2023_3342771 crossref_primary_10_3390_electronics13030649 crossref_primary_10_3390_s22052013 crossref_primary_10_1109_COMST_2022_3149714 crossref_primary_10_1145_3565973 crossref_primary_10_1371_journal_pone_0306094 crossref_primary_10_1109_TITS_2022_3149763 crossref_primary_10_3390_s20133679 crossref_primary_10_3390_w16020196 crossref_primary_10_1016_j_procs_2021_12_315 crossref_primary_10_1109_JSEN_2020_3027097 crossref_primary_10_1177_09544070231189910 crossref_primary_10_1002_rob_22287 crossref_primary_10_3233_JIFS_219256 crossref_primary_10_1109_ACCESS_2022_3207759 crossref_primary_10_1002_rnc_5964 crossref_primary_10_1007_s12555_022_0513_x crossref_primary_10_3390_electronics11213628 crossref_primary_10_1007_s10015_022_00839_7 crossref_primary_10_1109_JIOT_2023_3279273 crossref_primary_10_1109_TITS_2021_3054625 crossref_primary_10_1109_JBHI_2024_3417229 crossref_primary_10_1186_s40537_024_01028_y crossref_primary_10_1016_j_jfranklin_2025_107610 crossref_primary_10_1016_j_compbiomed_2023_107133 crossref_primary_10_1109_TITS_2022_3149753 crossref_primary_10_1016_j_engappai_2022_105472 crossref_primary_10_37105_sd_214 crossref_primary_10_1016_j_physa_2022_128172 crossref_primary_10_1109_TAP_2022_3150762 crossref_primary_10_53469_jssh_2024_6_12__20 crossref_primary_10_1016_j_rico_2024_100379 crossref_primary_10_1109_JSYST_2022_3210209 crossref_primary_10_1109_ACCESS_2024_3429551 crossref_primary_10_1109_TITS_2024_3443653 crossref_primary_10_3390_pr10122710 crossref_primary_10_3390_fi16120480 crossref_primary_10_3389_frobt_2021_632394 crossref_primary_10_1016_j_measen_2023_100857 crossref_primary_10_1016_j_renene_2025_122716 crossref_primary_10_1515_teme_2021_0103 crossref_primary_10_1109_TITS_2021_3098636 crossref_primary_10_1109_JIOT_2023_3263487 crossref_primary_10_3390_s23249843 crossref_primary_10_1016_j_scico_2025_103269 crossref_primary_10_1016_j_neucom_2024_128482 crossref_primary_10_3390_electronics10161932 crossref_primary_10_1021_acs_iecr_3c01212 crossref_primary_10_1145_3637225 crossref_primary_10_1109_COMST_2021_3129079 crossref_primary_10_3390_app13020716 crossref_primary_10_3390_s22072554 crossref_primary_10_1364_OE_451907 crossref_primary_10_1109_TIV_2022_3223131 crossref_primary_10_1002_adfm_202113050 crossref_primary_10_1007_s11432_022_3826_6 crossref_primary_10_1109_TR_2024_3394894 crossref_primary_10_1016_j_conengprac_2023_105626 crossref_primary_10_1109_TITS_2024_3358380 crossref_primary_10_4271_12_08_04_0031 crossref_primary_10_32604_cmes_2025_061732 crossref_primary_10_1016_j_asoc_2024_111259 crossref_primary_10_1109_TCYB_2024_3410283 crossref_primary_10_1016_j_compag_2024_108650 crossref_primary_10_1016_j_eswa_2025_127243 crossref_primary_10_1109_TIV_2023_3332675 crossref_primary_10_12720_jait_14_5_1082_1087 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1109_TSMC_2023_3276218 crossref_primary_10_1016_j_jsv_2025_119022 crossref_primary_10_2139_ssrn_4021924 crossref_primary_10_1145_3592616 crossref_primary_10_1109_TMC_2024_3506161  | 
    
| Cites_doi | 10.1038/nature14539 10.1109/MSP.2017.2743240 10.1145/1721654.1721679 10.1007/3-540-49430-8_2 10.1109/CVPR.2009.5206631 10.1177/0278364917722396 10.1109/IVS.2018.8500556 10.1109/64.85920 10.1109/MCI.2017.2670463 10.1007/s40534-016-0117-3 10.1126/science.153.3731.34 10.1109/TITS.2011.2157145 10.1109/CVPR.2008.4587581 10.1007/978-3-7908-2604-3_16 10.1109/IVS.2017.7995850 10.1109/TITS.2003.821292 10.1007/BF00992698 10.1109/TIV.2016.2578706 10.1109/JIOT.2018.2812300 10.1109/TITS.2019.2901757 10.1007/978-3-642-35289-8_26 10.1109/ICCVW.2015.41 10.15607/RSS.2018.XIV.056 10.1016/j.neunet.2014.09.003 10.1038/538020a 10.1145/279943.279964 10.5220/0005299304860490 10.1016/j.arcontrol.2018.02.001 10.1109/MS.2017.79 10.1007/BF00114724 10.23919/ACC.1991.4791778 10.1109/CVPR.2019.01099 10.1016/0893-6080(95)90002-0 10.1109/ISCID.2016.2054 10.1137/S0363012901385691 10.1016/S1474-6670(17)55320-3 10.1177/0278364913495721 10.1109/MCI.2010.938364 10.1109/ITSC.2017.8317618 10.1109/CVPR.2016.282 10.5244/C.31.11 10.1177/0278364916679498 10.1038/nature14236 10.1016/0196-8858(85)90002-8 10.1007/978-3-030-01267-0_15 10.1109/ICRA.2018.8460487 10.1145/1015330.1015430 10.1109/TITS.2010.2046037 10.1109/ITSC.2017.8317828 10.1109/TNNLS.2018.2886017 10.1016/S0005-1098(02)00034-1 10.1109/IROS.2017.8202133 10.1145/1143844.1143936 10.1007/978-0-85729-085-4 10.1109/TNN.2007.899161 10.1109/TITS.2005.853698 10.1109/ADPRL.2007.368196 10.1109/TITS.2002.802929 10.1109/TCST.2013.2271276 10.1177/0278364910369715 10.1016/j.trc.2018.02.012 10.1145/3065386 10.1016/S0893-6080(01)00048-X 10.1007/978-3-319-63387-9_1 10.1613/jair.301 10.1109/TRO.2015.2496823 10.1109/IROS.2017.8206505 10.1109/MSPEC.2014.6821623 10.1016/j.robot.2016.08.001 10.1016/B978-1-55860-377-6.50040-2 10.1016/j.conengprac.2008.09.006 10.1145/2735960.2735971 10.1109/IVS.2008.4621222 10.1109/87.852914 10.21236/ADA585474 10.1016/j.neunet.2004.05.007 10.1007/978-1-4615-6325-9_4 10.1109/ICRA.2015.7139555 10.1007/978-3-030-01234-2_27 10.1080/00423114.2018.1492142 10.1016/S0005-1098(00)00116-3 10.1109/IVS.2017.7995748 10.1109/CEC.2012.6256507 10.1177/2041304110394727 10.1109/ICCV.2019.00942 10.1016/j.ejor.2005.01.036 10.1109/ITSC.2018.8569222 10.1177/0278364913491297 10.1109/ICHR.2007.4813899 10.23919/ACC.2017.7963716 10.1016/j.trf.2014.04.009 10.1109/TNN.2004.839354 10.1109/MIS.2008.34 10.1109/9.486648 10.1109/TITS.2017.2658662 10.2514/6.2005-6912 10.1109/CVPR.2012.6248074 10.1109/TSMCB.2008.2006368 10.1016/j.neucom.2012.09.034 10.1109/CVPR.2016.141 10.1007/s00500-013-1110-y 10.1109/CVPR.2019.00293 10.1109/ITSC.2018.8569529 10.1109/TITS.2010.2096812 10.1146/annurev-control-060117-105157 10.1109/MSP.2012.2205597 10.1109/ICIST.2015.7288976 10.1109/MCS.1996.546270 10.1007/978-3-319-00065-7_26 10.1007/11564096_32 10.1109/TSMC.2017.2712561 10.1109/TITS.2019.2916354 10.1109/ITSC.2017.8317839 10.1002/rob.20147 10.1089/big.2016.0051 10.1007/978-3-642-03991-1 10.1007/978-3-540-28650-9_4 10.1109/CVPR.2011.5995347 10.1109/JPROC.2012.2189803 10.1109/TSMCC.2012.2218595  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1109/TITS.2019.2962338 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-0016 | 
    
| EndPage | 733 | 
    
| ExternalDocumentID | 10_1109_TITS_2019_2962338 8951131  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Jaguar Land Rover funderid: 10.13039/100016335 – fundername: U.K.-Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/R512217/1 funderid: 10.13039/501100000266  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c359t-2ddc98714c0e46c3b6a0a29a02aa49a0e03f0b25801b3ea7f3c8b0107e4433633 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1524-9050 | 
    
| IngestDate | Sun Jun 29 15:48:25 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Oct 01 05:03:08 EDT 2025 Wed Aug 27 02:30:24 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-2ddc98714c0e46c3b6a0a29a02aa49a0e03f0b25801b3ea7f3c8b0107e4433633 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1298-1040 0000-0003-3285-8020 0000-0003-1100-0631 0000-0002-7020-4370  | 
    
| PQID | 2486591954 | 
    
| PQPubID | 75735 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TITS_2019_2962338 proquest_journals_2486591954 ieee_primary_8951131 crossref_primary_10_1109_TITS_2019_2962338  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on intelligent transportation systems | 
    
| PublicationTitleAbbrev | TITS | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref207 ref56 sutskever (ref26) 2014 ref59 ref205 ref206 ref203 (ref79) 2018 ref204 ref202 sallab (ref122) 2016 srivastava (ref191) 2014; 15 goodfellow (ref219) 2014 cai (ref170) 2019 ripley (ref185) 1996 morgan (ref159) 1989 ref51 ref46 ref218 ref45 bottou (ref53) 2008 levine (ref135) 2012 ref47 ref42 ref215 ref44 ref43 su (ref92) 2014 schulman (ref69) 2015 ref7 (ref148) 2017 ref9 ref4 ref6 ref5 ref100 ref101 van wesel (ref209) 2017 ref220 sutton (ref50) 1998; 9 nguyen (ref217) 2015 ref37 ref36 ref31 ref30 ref33 elsken (ref174) 2019; 20 ref32 huang (ref74) 2018 ref39 schneider (ref210) 1997 ref38 deisenroth (ref212) 2011 pomerleau (ref83) 1989 atkeson (ref197) 1994 ren (ref105) 2009; 39 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 bansal (ref142) 2018 ref29 (ref3) 2018 ng (ref187) 2004 salay (ref224) 2017 maurer (ref145) 2016 (ref225) 2011 ref129 ref97 yu (ref85) 2002 ref126 ref96 abbeel (ref136) 2007; 19 ref98 raffel (ref163) 2015 (ref2) 2017 singh (ref8) 2015 moriarty (ref86) 1998 ref133 ref95 ref131 ref94 ref132 ref130 nielsen (ref49) 2015 silver (ref66) 2014; 32 hashimoto (ref169) 2018 ref90 li (ref52) 2017 ross (ref54) 2011 ref137 ref138 benenson (ref35) 2014 merolla (ref188) 2016 hinton (ref190) 2012 tzeng (ref201) 2015 athalye (ref222) 2017 ref84 kumar (ref168) 2018 schalkoff (ref184) 1997 ref143 ref140 ref141 janai (ref34) 2017 ref229 ref108 barron (ref155) 2009 ref78 ref109 ref227 ref106 bellemare (ref118) 2016 ref228 ref107 ref104 ref226 ref77 ref223 ref102 ref76 ref103 lecun (ref158) 1989 levine (ref41) 2016 sun (ref99) 2016 lillicrap (ref124) 2015 ref71 ref111 ref70 ref73 ref230 bergstra (ref162) 2012; 13 ref110 xiong (ref214) 2016 buehler (ref16) 2009; 56 bagnell (ref211) 2004 ref68 bosankic (ref149) 2017 ref117 gupta (ref57) 2018 ref115 ref116 ref113 ref65 ref114 kolter (ref181) 2008; 1 ref60 ref62 williams (ref63) 1987 ref120 ref61 ref121 (ref12) 2017 shalev-shwartz (ref178) 2016 (ref112) 2015 de haan (ref55) 2019 goodfellow (ref48) 2016 ref171 ref172 schmidhuber (ref119) 1991 abraham (ref150) 2017 wang (ref128) 2018 bojarski (ref87) 2016 christiano (ref199) 2016 (ref1) 2017 laud (ref176) 2004 ref180 ref186 ref182 ref183 gu (ref154) 2016 sevchuk (ref164) 2016 ref147 salimans (ref156) 2017 zhang (ref125) 2016 muller (ref88) 2006 ref153 ref152 courbariaux (ref189) 2015 rusu (ref200) 2016 ref157 ref166 kurakin (ref221) 2016 ref160 ref161 ref13 ref15 (ref72) 2019 ref14 wang (ref58) 2016 ref11 ref10 scheidegger (ref173) 2019 van seijen (ref177) 2017 ref17 ng (ref175) 1999; 3 ref19 ref18 müller (ref144) 2018 hester (ref198) 2017 mnih (ref67) 2016 wilkinson (ref208) 2013 moldovan (ref213) 2012 levine (ref40) 2015; 17 thorpe (ref194) 2002 dosovitskiy (ref139) 2017 koenig (ref127) 2005 (ref89) 0 (ref80) 2018 liu (ref82) 2017 ref192 amodei (ref179) 2016 (ref81) 2018 ref195 ref196 ref193 eraqi (ref93) 2017 (ref146) 2016 bergstra (ref167) 2011 szegedy (ref216) 2013 ziebart (ref134) 2008 (ref123) 2019 knight (ref151) 2016 (ref75) 2018 kingma (ref91) 2014 sutton (ref64) 2000 snoek (ref165) 2012; 25  | 
    
| References_xml | – ident: ref46 doi: 10.1038/nature14539 – ident: ref51 doi: 10.1109/MSP.2017.2743240 – ident: ref5 doi: 10.1145/1721654.1721679 – year: 2015 ident: ref124 article-title: Continuous control with deep reinforcement learning publication-title: arXiv 1509 02971 – ident: ref161 doi: 10.1007/3-540-49430-8_2 – ident: ref77 doi: 10.1109/CVPR.2009.5206631 – ident: ref133 doi: 10.1177/0278364917722396 – year: 1997 ident: ref184 publication-title: Artificial Neural Networks – year: 2017 ident: ref198 article-title: Learning from demonstrations for real world reinforcement learning publication-title: arXiv 1704 03732 – ident: ref96 doi: 10.1109/IVS.2018.8500556 – year: 2016 ident: ref164 publication-title: Hyperparameter Optimization for Neural Networks – ident: ref13 doi: 10.1109/64.85920 – ident: ref113 doi: 10.1109/MCI.2017.2670463 – ident: ref147 doi: 10.1007/s40534-016-0117-3 – year: 2017 ident: ref150 publication-title: Consumer Interest in Automation Preliminary Observations Exploring a Year's Change – ident: ref153 doi: 10.1126/science.153.3731.34 – start-page: 78 year: 2004 ident: ref211 article-title: Learning decisions: Robustness, uncertainty, and appoximation – start-page: 1928 year: 2016 ident: ref67 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1109/TITS.2011.2157145 – start-page: 41 year: 2012 ident: ref135 article-title: Continuous inverse optimal control with locally optimal examples publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref76 doi: 10.1109/CVPR.2008.4587581 – ident: ref90 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref157 doi: 10.1109/IVS.2017.7995850 – ident: ref97 doi: 10.1109/TITS.2003.821292 – volume: 17 start-page: 1334 year: 2015 ident: ref40 article-title: End-to-end training of deep visuomotor policies publication-title: J Mach Learn Res – ident: ref60 doi: 10.1007/BF00992698 – start-page: 2546 year: 2011 ident: ref167 article-title: Algorithms for hyper-parameter optimization publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 2018 ident: ref142 article-title: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst publication-title: arXiv 1812 03079 – year: 2019 ident: ref170 article-title: Once for all: Train one network and specialize it for efficient deployment publication-title: arXiv 1908 09791 – ident: ref18 doi: 10.1109/TIV.2016.2578706 – ident: ref39 doi: 10.1109/JIOT.2018.2812300 – year: 2016 ident: ref179 article-title: Concrete problems in ai safety publication-title: arXiv 1606 06565 – year: 2017 ident: ref209 article-title: Challenges in the verification of reinforcement learning algorithms – volume: 13 start-page: 281 year: 2012 ident: ref162 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – ident: ref229 doi: 10.1109/TITS.2019.2901757 – ident: ref160 doi: 10.1007/978-3-642-35289-8_26 – ident: ref94 doi: 10.1109/ICCVW.2015.41 – volume: 15 start-page: 1929 year: 2014 ident: ref191 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J Mach Learn Res – ident: ref126 doi: 10.15607/RSS.2018.XIV.056 – ident: ref47 doi: 10.1016/j.neunet.2014.09.003 – ident: ref204 doi: 10.1038/538020a – ident: ref180 doi: 10.1145/279943.279964 – ident: ref38 doi: 10.5220/0005299304860490 – ident: ref31 doi: 10.1016/j.arcontrol.2018.02.001 – start-page: 3123 year: 2015 ident: ref189 article-title: Binaryconnect: Training deep neural networks with binary weights during propagations publication-title: Proc Adv Neural Inf Process Syst – start-page: 465 year: 2011 ident: ref212 article-title: Pilco: A model-based and data-efficient approach to policy search publication-title: Proc 28th Int Conf Mach Learn (ICML-11) – start-page: 3104 year: 2014 ident: ref26 article-title: Sequence to sequence learning with neural networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 2149 year: 2005 ident: ref127 article-title: Design and use paradigms for gazebo, an open-source multi-robot simulator publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst (IROS) – ident: ref226 doi: 10.1109/MS.2017.79 – year: 2011 ident: ref225 – volume: 9 year: 1998 ident: ref50 publication-title: Reinforcement Learning An Introduction – year: 2016 ident: ref151 publication-title: An Ambitious Plan to Build a Self-Driving Borg – ident: ref62 doi: 10.1007/BF00114724 – ident: ref103 doi: 10.23919/ACC.1991.4791778 – start-page: 2510 year: 2014 ident: ref92 article-title: A differential equation for modeling nesterov's accelerated gradient method: Theory and insights publication-title: Proc Adv Neural Inf Process Syst – ident: ref172 doi: 10.1109/CVPR.2019.01099 – ident: ref186 doi: 10.1016/0893-6080(95)90002-0 – year: 2018 ident: ref144 article-title: Driving policy transfer via modularity and abstraction publication-title: arXiv 1804 09364 – ident: ref120 doi: 10.1109/ISCID.2016.2054 – ident: ref59 doi: 10.1137/S0363012901385691 – year: 2017 ident: ref156 article-title: Evolution strategies as a scalable alternative to reinforcement learning publication-title: arXiv 1703 03864 – ident: ref14 doi: 10.1016/S1474-6670(17)55320-3 – ident: ref152 doi: 10.1177/0278364913495721 – year: 2015 ident: ref69 article-title: High-dimensional continuous control using generalized advantage estimation publication-title: arXiv 1506 02438 [cs] – volume: 3 start-page: 278 year: 1999 ident: ref175 article-title: Policy invariance under reward transformations: Theory and application to reward shaping publication-title: Proc 16th Int Conf Mach Learn – ident: ref44 doi: 10.1109/MCI.2010.938364 – ident: ref30 doi: 10.1109/ITSC.2017.8317618 – year: 2016 ident: ref99 article-title: Cooperative adaptive cruise control performance analysis – ident: ref218 doi: 10.1109/CVPR.2016.282 – ident: ref143 doi: 10.5244/C.31.11 – start-page: 5392 year: 2017 ident: ref177 article-title: Hybrid reward architecture for reinforcement learning publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref49 publication-title: Neural Networks and Deep Learning – year: 2014 ident: ref219 article-title: Explaining and harnessing adversarial examples publication-title: arXiv 1412 6572 – ident: ref73 doi: 10.1177/0278364916679498 – start-page: 1 year: 2017 ident: ref139 article-title: CARLA: An open urban driving simulator publication-title: Proc 1st Annu Conf Robot Learn – year: 2018 ident: ref3 publication-title: Global status report on road safety 2018 – ident: ref43 doi: 10.1038/nature14236 – ident: ref117 doi: 10.1016/0196-8858(85)90002-8 – ident: ref95 doi: 10.1007/978-3-030-01267-0_15 – year: 2016 ident: ref125 article-title: Query-efficient imitation learning for end-to-end autonomous driving publication-title: arXiv 1605 06450 [cs] – ident: ref138 doi: 10.1109/ICRA.2018.8460487 – ident: ref131 doi: 10.1145/1015330.1015430 – ident: ref215 doi: 10.1109/TITS.2010.2046037 – ident: ref78 doi: 10.1109/ITSC.2017.8317828 – start-page: 2829 year: 2016 ident: ref154 article-title: Continuous deep q-learning with model-based acceleration publication-title: Proc Int Conf Mach Learn – ident: ref223 doi: 10.1109/TNNLS.2018.2886017 – year: 2016 ident: ref145 publication-title: Autonomous Driving – ident: ref104 doi: 10.1016/S0005-1098(02)00034-1 – year: 2016 ident: ref48 publication-title: Deep Learning – ident: ref202 doi: 10.1109/IROS.2017.8202133 – ident: ref132 doi: 10.1145/1143844.1143936 – year: 2017 ident: ref1 publication-title: 2016 Fatal Motor Vehicle Crashes Overview – ident: ref4 doi: 10.1007/978-0-85729-085-4 – start-page: 1047 year: 1997 ident: ref210 article-title: Exploiting model uncertainty estimates for safe dynamic control learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref109 doi: 10.1109/TNN.2007.899161 – start-page: 173 year: 2016 ident: ref41 article-title: Learning hand-eye coordination for robotic grasping with large-scale data collection publication-title: Proc Int Symp Experim Robot – year: 2015 ident: ref201 article-title: Towards adapting deep visuomotor representations from simulated to real environments publication-title: arXiv 1511 07111 – ident: ref107 doi: 10.1109/TITS.2005.853698 – ident: ref65 doi: 10.1109/ADPRL.2007.368196 – ident: ref195 doi: 10.1109/TITS.2002.802929 – year: 2004 ident: ref176 article-title: Theory and application of reward shaping in reinforcement learning – start-page: 496 year: 2002 ident: ref194 article-title: The 1997 automated highway free agent demonstration publication-title: Proc Conf Intell Transp Syst – ident: ref110 doi: 10.1109/TCST.2013.2271276 – start-page: 78 year: 2004 ident: ref187 article-title: Feature selection, L1 vs. L2 regularization, and rotational invariance publication-title: Proc 21st Int Conf Mach Learn (ICML) – ident: ref182 doi: 10.1177/0278364910369715 – ident: ref33 doi: 10.1016/j.trc.2018.02.012 – ident: ref24 doi: 10.1145/3065386 – start-page: 427 year: 2015 ident: ref217 article-title: Deep neural networks are easily fooled publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – year: 2016 ident: ref178 article-title: Safe, multi-agent, reinforcement learning for autonomous driving publication-title: arXiv 1610 03295 – year: 2017 ident: ref52 article-title: Deep reinforcement learning: An overview publication-title: arXiv 1701 07274 – start-page: 222 year: 1991 ident: ref119 article-title: A possibility for implementing curiosity and boredom in model-building neural controllers publication-title: Proc Int Conf Simulation Adapt Behav Animals Animats – year: 2017 ident: ref82 article-title: CAAD: Computer architecture for autonomous driving publication-title: arXiv 1702 01894 – year: 2015 ident: ref112 article-title: European new car assessment programme: Test Protocol-AEB VRU systems – ident: ref19 doi: 10.1016/S0893-6080(01)00048-X – ident: ref220 doi: 10.1007/978-3-319-63387-9_1 – ident: ref114 doi: 10.1613/jair.301 – ident: ref37 doi: 10.1109/TRO.2015.2496823 – ident: ref141 doi: 10.1109/IROS.2017.8206505 – ident: ref11 doi: 10.1109/MSPEC.2014.6821623 – ident: ref28 doi: 10.1016/j.robot.2016.08.001 – ident: ref61 doi: 10.1016/B978-1-55860-377-6.50040-2 – start-page: 437 year: 1998 ident: ref86 article-title: Learning distributed strategies for traffic control publication-title: Proc 5th Int Conf Soc Adapt Behav – year: 2019 ident: ref72 publication-title: Waymo open dataset An autonomous driving dataset – ident: ref98 doi: 10.1016/j.conengprac.2008.09.006 – ident: ref205 doi: 10.1145/2735960.2735971 – ident: ref196 doi: 10.1109/IVS.2008.4621222 – year: 1996 ident: ref185 publication-title: Artificial Neural Networks – year: 1987 ident: ref63 publication-title: Reinforcement learning connectionist systems – ident: ref193 doi: 10.1109/87.852914 – year: 2017 ident: ref224 article-title: An analysis of ISO 26262: Using machine learning safely in automotive software publication-title: arXiv 1709 02435 – ident: ref206 doi: 10.21236/ADA585474 – year: 2017 ident: ref149 publication-title: How consumers' Perception of Autonomous Cars Will Influence Their Adoption – year: 2009 ident: ref155 publication-title: Parallelizing Reinforcement Learning – year: 2016 ident: ref146 publication-title: Cooperative Intelligent Transportation Systems-Research Theme Analysis Report – start-page: 1057 year: 2000 ident: ref64 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc Adv Neural Inf Process Syst – ident: ref45 doi: 10.1016/j.neunet.2004.05.007 – year: 2016 ident: ref214 article-title: Combining deep reinforcement learning and safety based control for autonomous driving publication-title: arXiv 1612 00147 – start-page: 1433 year: 2008 ident: ref134 article-title: Maximum Entropy Inverse Reinforcement Learning publication-title: Proc AAAI Conf Artif Intell – year: 2018 ident: ref75 publication-title: Udacity Self-Driving Car Dataset – year: 2014 ident: ref91 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref84 doi: 10.1007/978-1-4615-6325-9_4 – ident: ref20 doi: 10.1109/ICRA.2015.7139555 – start-page: 739 year: 2006 ident: ref88 article-title: Off-road obstacle avoidance through end-to-end learning publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref163 publication-title: Neural Network Hyperparameters – start-page: 9094 year: 2018 ident: ref57 article-title: Robot learning in homes: Improving generalization and reducing dataset bias publication-title: Proc Adv Neural Inf Process Syst – ident: ref137 doi: 10.1007/978-3-030-01234-2_27 – year: 2016 ident: ref58 article-title: Sample efficient actor-critic with experience replay publication-title: arXiv 1611 01224 – ident: ref7 doi: 10.1080/00423114.2018.1492142 – ident: ref106 doi: 10.1016/S0005-1098(00)00116-3 – volume: 32 year: 2014 ident: ref66 article-title: Deterministic policy gradient algorithms publication-title: Proc 31st Int Conf Mach Learn – ident: ref100 doi: 10.1109/IVS.2017.7995748 – ident: ref130 doi: 10.1109/CEC.2012.6256507 – year: 2018 ident: ref80 publication-title: Evolution of the Eye – start-page: 305 year: 1989 ident: ref83 article-title: Alvinn: An autonomous land vehicle in a neural network publication-title: Proc Adv Neural Inf Process Syst – ident: ref29 doi: 10.1177/2041304110394727 – ident: ref140 doi: 10.1109/ICCV.2019.00942 – start-page: 1471 year: 2016 ident: ref118 article-title: Unifying count-based exploration and intrinsic motivation publication-title: Proc Adv Neural Inf Process Syst – year: 2013 ident: ref208 publication-title: Final Report Regulatory Considerations for Adaptive Systems National Aeronautics and Space Administration – ident: ref17 doi: 10.1016/j.ejor.2005.01.036 – year: 2018 ident: ref169 article-title: Derivative free optimization via repeated classification publication-title: arXiv 1804 03761 – year: 2017 ident: ref34 article-title: Computer vision for autonomous vehicles: Problems, datasets and state of the art publication-title: arXiv 1704 05519 – year: 2012 ident: ref213 article-title: Safe exploration in Markov decision processes publication-title: arXiv 1205 4810 – year: 2016 ident: ref200 article-title: Sim-to-real robot learning from pixels with progressive nets publication-title: arXiv 1610 04286 – ident: ref129 doi: 10.1109/ITSC.2018.8569222 – year: 2019 ident: ref55 article-title: Causal confusion in imitation learning publication-title: arXiv 1905 11979 – volume: 25 start-page: 2960 year: 2012 ident: ref165 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Proc Adv Neural Inf Process Syst – year: 2016 ident: ref87 article-title: End to end learning for self-driving cars publication-title: arXiv 1604 07316 [cs] – ident: ref70 doi: 10.1177/0278364913491297 – start-page: 143 year: 1989 ident: ref158 article-title: Generalization and network design strategies publication-title: Connectionism in Perspective – volume: 20 start-page: 1 year: 2019 ident: ref174 article-title: Neural architecture search: A survey publication-title: J Mach Learn Res – ident: ref183 doi: 10.1109/ICHR.2007.4813899 – start-page: 161 year: 2008 ident: ref53 article-title: The tradeoffs of large scale learning publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2015 ident: ref8 article-title: Critical reasons for crashes investigated in the national motor vehicle crash causation survey – start-page: 663 year: 1994 ident: ref197 article-title: Using local trajectory optimizers to speed up global optimization in dynamic programming publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref42 doi: 10.23919/ACC.2017.7963716 – ident: ref10 doi: 10.1016/j.trf.2014.04.009 – ident: ref101 doi: 10.1109/TNN.2004.839354 – ident: ref6 doi: 10.1109/MIS.2008.34 – year: 2018 ident: ref74 article-title: The ApolloScape open dataset for autonomous driving and its application publication-title: arXiv 1803 06184 – ident: ref102 doi: 10.1109/9.486648 – ident: ref32 doi: 10.1109/TITS.2017.2658662 – year: 2018 ident: ref168 article-title: Parallel architecture and hyperparameter search via successive halving and classification publication-title: arXiv 1805 10255 – start-page: 627 year: 2011 ident: ref54 article-title: A reduction of imitation learning and structured prediction to no-regret online learning publication-title: Proc 14th Int Conf Artif Intell Statist – ident: ref207 doi: 10.2514/6.2005-6912 – year: 2013 ident: ref216 article-title: Intriguing properties of neural networks publication-title: arXiv 1312 6199 – ident: ref71 doi: 10.1109/CVPR.2012.6248074 – volume: 39 start-page: 431 year: 2009 ident: ref105 article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2006368 – ident: ref115 doi: 10.1016/j.neucom.2012.09.034 – volume: 19 start-page: 1 year: 2007 ident: ref136 article-title: An application of reinforcement learning to aerobatic helicopter flight publication-title: Proc Adv Neural Inf Process Syst – year: 2016 ident: ref122 article-title: End-to-End deep reinforcement learning for lane keeping assist publication-title: arXiv 1612 04340 – ident: ref36 doi: 10.1109/CVPR.2016.141 – ident: ref22 doi: 10.1007/s00500-013-1110-y – ident: ref171 doi: 10.1109/CVPR.2019.00293 – ident: ref227 doi: 10.1109/ITSC.2018.8569529 – year: 2018 ident: ref128 article-title: Deep object centric policies for autonomous driving publication-title: arXiv 1811 05432 – year: 2017 ident: ref93 article-title: End-to-end deep learning for steering autonomous vehicles considering temporal dependencies publication-title: arXiv 1710 03804 – ident: ref230 doi: 10.1109/TITS.2010.2096812 – ident: ref27 doi: 10.1146/annurev-control-060117-105157 – start-page: 412 year: 2002 ident: ref85 article-title: Road-following with continuous learning publication-title: Proc Intell Vehicles Symp – start-page: 630 year: 1989 ident: ref159 article-title: Generalization and parameter estimation in feedforward nets: Some experiments publication-title: Proc Adv Neural Inf Process Syst – year: 0 ident: ref89 publication-title: CarSim – year: 2017 ident: ref2 publication-title: 2016 road safety statistics What is behind the figures – year: 2019 ident: ref173 article-title: Constrained deep neural network architecture search for IoT devices accounting hardware calibration publication-title: arXiv 1909 10818 – ident: ref25 doi: 10.1109/MSP.2012.2205597 – year: 2016 ident: ref188 article-title: Deep neural networks are robust to weight binarization and other non-linear distortions publication-title: arXiv 1606 01981 – year: 2018 ident: ref79 publication-title: Autonomous car development platform from nvidia drive px2 – year: 2012 ident: ref190 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: arXiv 1207 0580 – year: 2017 ident: ref148 publication-title: Consumer Acceptance of Autonomous Vehicles – volume: 1 start-page: 769 year: 2008 ident: ref181 article-title: Hierarchical apprenticeship learning, with application to quadruped locomotion publication-title: Proc Adv Neural Inf Process Syst – ident: ref116 doi: 10.1109/ICIST.2015.7288976 – year: 2016 ident: ref199 article-title: Transfer from simulation to real world through learning deep inverse dynamics model publication-title: arXiv 1610 03518 – ident: ref192 doi: 10.1109/MCS.1996.546270 – start-page: 613 year: 2014 ident: ref35 article-title: Ten years of pedestrian detection, what have we learned publication-title: Proc Eur Conf Comput Vis – ident: ref21 doi: 10.1007/978-3-319-00065-7_26 – ident: ref121 doi: 10.1007/11564096_32 – ident: ref108 doi: 10.1109/TSMC.2017.2712561 – ident: ref228 doi: 10.1109/TITS.2019.2916354 – ident: ref111 doi: 10.1109/ITSC.2017.8317839 – ident: ref15 doi: 10.1002/rob.20147 – year: 2016 ident: ref221 article-title: Adversarial examples in the physical world publication-title: arXiv 1607 02533 – ident: ref203 doi: 10.1089/big.2016.0051 – year: 2017 ident: ref12 publication-title: Research on the Impacts of Connected and Autonomous Vehicles (CAVs) on Traffic Flow Summary Report – volume: 56 year: 2009 ident: ref16 publication-title: The DARPA Urban ChallengeAutonomous Vehicles in City Traffic doi: 10.1007/978-3-642-03991-1 – ident: ref166 doi: 10.1007/978-3-540-28650-9_4 – year: 2017 ident: ref222 article-title: Synthesizing robust adversarial examples publication-title: arXiv 1707 07397 – ident: ref56 doi: 10.1109/CVPR.2011.5995347 – year: 2018 ident: ref81 publication-title: Cyclone V-Overview – ident: ref9 doi: 10.1109/JPROC.2012.2189803 – ident: ref68 doi: 10.1109/TSMCC.2012.2218595 – year: 2019 ident: ref123 publication-title: The Open Racing Car Simulator  | 
    
| SSID | ssj0014511 | 
    
| Score | 2.7151468 | 
    
| Snippet | Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 712 | 
    
| SubjectTerms | advanced driver assistance Autonomous vehicles computer vision Control systems design Deep learning intelligent control Intelligent transportation systems Linear control Machine learning Neural networks Nonlinear analysis Nonlinear control Object recognition Perception Reinforcement learning Semantic segmentation Sensors Task analysis Teaching methods Training  | 
    
| Title | A Survey of Deep Learning Applications to Autonomous Vehicle Control | 
    
| URI | https://ieeexplore.ieee.org/document/8951131 https://www.proquest.com/docview/2486591954  | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4IwoFeWBCpBjbceyx4iFAKgsFsUV-XEACNVWbIMGvx07SqgKEmJLBjqw7O3fn--47hI4kEZJq5iKdCRNx53VhiCCRpi7OGLEuceG-Y3Anrh_47VP81EIn81oYAKjAZ9ALr1Uu3-W2DFdlp9K7A2ehaHopkaKu1ZpnDALPVsWNSnmkSDzLYJ4RdTq8Gd4HEJfqUeWtfShFWbBBVVOVH3_iyrxcraHBbGE1quS1VxamZz-_cTb-d-XraLXxM3G_3hgbqAWjTbSywD64hS76-L6cvMMHzjN8ATDGDdnqM-4vpLVxkeN-WYTih7yc4kd4CV_E5zXGfRs9XF0Oz6-jpqlCZFmsiog6Z5WPkrglwIVlRmiiqdKEas39AwjLiKGxt1yGgU4yZqXxQVsCnDMmGNtB7VE-gl2EFZWgqE2c9T5JnBmZCaEltUCJNNKxDiIzMae2YRwPjS_e0iryICoNmkmDZtJGMx10PJ8yruk2_hq8FSQ9H9gIuYO6M12mzYGcppRLEatAb7f3-6x9tEwDXKUCZHdRu5iUcOD9jcIcVhvtC6BPz_o | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5UA5lMeC2LKAD5wqsnX9in1ctVRb6PbSXdRb5MekSKBN1U2Q4NdjJ9nVqlSIU3KwI2vGzsx4vvkG4IOmSjPLQ2ZL5TIRoi4cVTSzLMiSUx_ykO47ZpdquhCfr-X1Dnzc1MIgYgs-w3F6bXP5ofJNuio70tEdOE5F04-kEEJ21VqbnEFi2mrZUZnIDJXrHOYxNUfz8_lVgnGZMTPR3qdilC0r1LZV-etf3BqYs6cwWy-tw5V8Hze1G_vf91gb_3ftz2C_9zTJpNsaz2EHly_gyRb_4ABOJ-SqufuJv0hVklPEW9LTrd6QyVZim9QVmTR1Kn-omhX5it_SF8lJh3J_CYuzT_OTada3Vcg8l6bOWAjexDhJeIpCee6UpZYZS5m1Ij6Q8pI6JqPtchxtXnKvXQzbchSCc8X5K9hdVkt8DcQwjYb5PPjolcjS6VIpq5lHRrXTgQ-BrsVc-J5zPLW--FG0sQc1RdJMkTRT9JoZwuFmym1HuPGvwYMk6c3AXshDGK11WfRHclUwoZU0ieDu4OFZ7-HxdD67KC7OL7-8gT2WwCstPHsEu_Vdg2-j91G7d-2m-wOxgtNH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Deep+Learning+Applications+to+Autonomous+Vehicle+Control&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Kuutti%2C+Sampo&rft.au=Bowden%2C+Richard&rft.au=Jin%2C+Yaochu&rft.au=Barber%2C+Phil&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=2&rft.spage=712&rft_id=info:doi/10.1109%2FTITS.2019.2962338&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |