A Survey of Deep Learning Applications to Autonomous Vehicle Control

Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning met...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 22; no. 2; pp. 712 - 733
Main Authors Kuutti, Sampo, Bowden, Richard, Jin, Yaochu, Barber, Phil, Fallah, Saber
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2019.2962338

Cover

Abstract Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalising previously learned rules to new scenarios. For these reasons, the use of deep learning for vehicle control is becoming increasingly popular. Although important advancements have been achieved in this field, these works have not been fully summarised. This paper surveys a wide range of research works reported in the literature which aim to control a vehicle through deep learning methods. Although there exists overlap between control and perception, the focus of this paper is on vehicle control, rather than the wider perception problem which includes tasks such as semantic segmentation and object detection. The paper identifies the strengths and limitations of available deep learning methods through comparative analysis and discusses the research challenges in terms of computation, architecture selection, goal specification, generalisation, verification and validation, as well as safety. Overall, this survey brings timely and topical information to a rapidly evolving field relevant to intelligent transportation systems.
AbstractList Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalising previously learned rules to new scenarios. For these reasons, the use of deep learning for vehicle control is becoming increasingly popular. Although important advancements have been achieved in this field, these works have not been fully summarised. This paper surveys a wide range of research works reported in the literature which aim to control a vehicle through deep learning methods. Although there exists overlap between control and perception, the focus of this paper is on vehicle control, rather than the wider perception problem which includes tasks such as semantic segmentation and object detection. The paper identifies the strengths and limitations of available deep learning methods through comparative analysis and discusses the research challenges in terms of computation, architecture selection, goal specification, generalisation, verification and validation, as well as safety. Overall, this survey brings timely and topical information to a rapidly evolving field relevant to intelligent transportation systems.
Author Bowden, Richard
Jin, Yaochu
Fallah, Saber
Barber, Phil
Kuutti, Sampo
Author_xml – sequence: 1
  givenname: Sampo
  orcidid: 0000-0002-7020-4370
  surname: Kuutti
  fullname: Kuutti, Sampo
  email: s.j.kuutti@surrey.ac.uk
  organization: Centre for Automotive Engineering, University of Surrey, Guildford, U.K
– sequence: 2
  givenname: Richard
  orcidid: 0000-0003-3285-8020
  surname: Bowden
  fullname: Bowden, Richard
  email: r.bowden@surrey.ac.uk
  organization: Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, U.K
– sequence: 3
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 4
  givenname: Phil
  surname: Barber
  fullname: Barber, Phil
  email: pbarber2@jaguarlandrover.com
  organization: Jaguar Land Rover Ltd., Coventry, U.K
– sequence: 5
  givenname: Saber
  orcidid: 0000-0002-1298-1040
  surname: Fallah
  fullname: Fallah, Saber
  email: s.fallah@surrey.ac.uk
  organization: Centre for Automotive Engineering, University of Surrey, Guildford, U.K
BookMark eNp9kE1Lw0AQhhepYFv9AeJlwXPq7Ec-9lhaPwoFD61ew2Y70ZQ0G3c3Qv-9iRUPHjzNMLzPDPNMyKixDRJyzWDGGKi77Wq7mXFgasZVwoXIzsiYxXEWAbBkNPRcRgpiuCAT7_f9VMaMjclyTjed-8QjtSVdIrZ0jdo1VfNG521bV0aHyjaeBkvnXbCNPdjO01d8r0yNdGGb4Gx9Sc5LXXu8-qlT8vJwv108Revnx9Vivo6MiFWI-G5nVJYyaQBlYkSRaNBcaeBay74giBIKHmfACoE6LYXJCmCQopRCJEJMye1pb-vsR4c-5HvbuaY_mXOZJbFiKpZ9Kj2ljLPeOyxzU4XvN4LTVZ0zyAdl-aAsH5TlP8p6kv0hW1cdtDv-y9ycmAoRf_OZ6u0KJr4A3hx39w
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2021_3086397
crossref_primary_10_1007_s13177_025_00466_z
crossref_primary_10_3390_s21082739
crossref_primary_10_1109_JSEN_2023_3280959
crossref_primary_10_1007_s41742_024_00668_5
crossref_primary_10_1109_TITS_2023_3328811
crossref_primary_10_1109_TC_2024_3475572
crossref_primary_10_1016_j_chaos_2021_111393
crossref_primary_10_3390_rs13173527
crossref_primary_10_3390_su142114462
crossref_primary_10_1109_TITS_2023_3270749
crossref_primary_10_1109_JEDS_2024_3352827
crossref_primary_10_1016_j_asoc_2024_111802
crossref_primary_10_1109_TITS_2024_3521385
crossref_primary_10_1007_s10489_024_06019_3
crossref_primary_10_1007_s10703_024_00457_y
crossref_primary_10_1016_j_measurement_2024_114336
crossref_primary_10_1007_s10664_024_10521_0
crossref_primary_10_1109_LCSYS_2021_3087941
crossref_primary_10_1109_TITS_2022_3146038
crossref_primary_10_1016_j_jfranklin_2024_106709
crossref_primary_10_1016_j_cose_2024_104168
crossref_primary_10_1109_TVT_2024_3352543
crossref_primary_10_1364_AO_453929
crossref_primary_10_1109_ACCESS_2025_3544482
crossref_primary_10_1109_TCST_2023_3332438
crossref_primary_10_1109_TITS_2020_3037926
crossref_primary_10_1007_s11750_024_00683_x
crossref_primary_10_3390_math11234762
crossref_primary_10_1016_j_asoc_2022_108995
crossref_primary_10_1109_TVT_2023_3314404
crossref_primary_10_1145_3477482_3477485
crossref_primary_10_3390_smartcities7010002
crossref_primary_10_1109_TITS_2023_3317475
crossref_primary_10_1109_TNSM_2021_3116665
crossref_primary_10_1109_TIM_2024_3381277
crossref_primary_10_1039_D4MH00302K
crossref_primary_10_1364_OE_506519
crossref_primary_10_1016_j_cogsys_2023_101169
crossref_primary_10_3390_rs16071239
crossref_primary_10_1016_j_autcon_2022_104675
crossref_primary_10_3390_s23219006
crossref_primary_10_3390_s22249677
crossref_primary_10_1109_TITS_2024_3496500
crossref_primary_10_1109_TITS_2023_3286541
crossref_primary_10_1109_TITS_2023_3280200
crossref_primary_10_1109_TIV_2022_3224656
crossref_primary_10_1016_j_ymssp_2023_110426
crossref_primary_10_1109_TASE_2021_3100709
crossref_primary_10_1109_TKDE_2023_3235779
crossref_primary_10_3390_math11234791
crossref_primary_10_1109_TVT_2024_3389054
crossref_primary_10_3390_app13095272
crossref_primary_10_1016_j_vehcom_2023_100623
crossref_primary_10_1109_OJITS_2020_3027518
crossref_primary_10_1109_TIV_2023_3256972
crossref_primary_10_1142_S0218001423560049
crossref_primary_10_3390_vehicles5040073
crossref_primary_10_5604_01_3001_0016_0752
crossref_primary_10_3390_machines11070676
crossref_primary_10_3390_vehicles7010004
crossref_primary_10_1109_TITS_2021_3131637
crossref_primary_10_1109_TAI_2022_3225132
crossref_primary_10_1109_TDSC_2024_3424900
crossref_primary_10_3390_s23020660
crossref_primary_10_1038_s41746_023_00822_x
crossref_primary_10_1109_TIV_2023_3303013
crossref_primary_10_1016_j_aei_2023_102328
crossref_primary_10_1109_ACCESS_2023_3329056
crossref_primary_10_3390_en14020517
crossref_primary_10_1016_j_patcog_2023_109592
crossref_primary_10_1109_TCYB_2022_3151880
crossref_primary_10_1109_TIV_2023_3284220
crossref_primary_10_1007_s41230_024_3094_x
crossref_primary_10_1109_TCYB_2021_3049778
crossref_primary_10_1049_itr2_12471
crossref_primary_10_1109_TITS_2024_3474745
crossref_primary_10_1016_j_bjao_2024_100347
crossref_primary_10_3390_s23167018
crossref_primary_10_1145_3660827
crossref_primary_10_1109_ACCESS_2020_3035318
crossref_primary_10_1109_ACCESS_2024_3381488
crossref_primary_10_3389_frai_2022_861669
crossref_primary_10_1016_j_eswa_2023_120970
crossref_primary_10_1145_3533378
crossref_primary_10_1364_AO_534782
crossref_primary_10_7467_KSAE_2023_31_2_107
crossref_primary_10_3390_app12146951
crossref_primary_10_1145_3725739
crossref_primary_10_1007_s10270_023_01090_9
crossref_primary_10_1109_ACCESS_2022_3217213
crossref_primary_10_1016_j_jtte_2023_09_005
crossref_primary_10_1364_OE_517035
crossref_primary_10_1016_j_cosrev_2023_100568
crossref_primary_10_1177_03611981241262314
crossref_primary_10_1049_itr2_12385
crossref_primary_10_1109_ACCESS_2022_3147495
crossref_primary_10_3390_f15081337
crossref_primary_10_1515_pjbr_2022_0117
crossref_primary_10_1109_OJVT_2024_3369691
crossref_primary_10_1109_TITS_2022_3184990
crossref_primary_10_1109_ACCESS_2023_3274836
crossref_primary_10_1002_aisy_202100228
crossref_primary_10_1016_j_eswa_2025_126779
crossref_primary_10_1016_j_isatra_2023_12_033
crossref_primary_10_1007_s12553_020_00509_3
crossref_primary_10_1109_TVT_2024_3387737
crossref_primary_10_1109_OJITS_2023_3237977
crossref_primary_10_1016_j_ifacol_2022_10_440
crossref_primary_10_1109_TIV_2022_3173448
crossref_primary_10_1109_TVT_2024_3503609
crossref_primary_10_1007_s11042_020_09223_8
crossref_primary_10_1109_ACCESS_2022_3182659
crossref_primary_10_1109_TPEL_2023_3323627
crossref_primary_10_1109_ACCESS_2020_2997946
crossref_primary_10_1109_ACCESS_2020_3017883
crossref_primary_10_1016_j_jclepro_2022_134120
crossref_primary_10_1016_j_ijtst_2024_09_005
crossref_primary_10_1016_j_engappai_2023_106669
crossref_primary_10_1109_ACCESS_2021_3116353
crossref_primary_10_3390_a17110526
crossref_primary_10_1007_s41315_024_00385_4
crossref_primary_10_1016_j_jnca_2025_104165
crossref_primary_10_1016_j_knosys_2024_111766
crossref_primary_10_3390_make5030041
crossref_primary_10_1145_3616398
crossref_primary_10_3390_infrastructures6040051
crossref_primary_10_3934_mbe_2022160
crossref_primary_10_3390_s21010073
crossref_primary_10_1016_j_hlpt_2024_100892
crossref_primary_10_3389_fphot_2023_1336510
crossref_primary_10_1088_1748_3190_ac9ffc
crossref_primary_10_1016_j_engappai_2024_109588
crossref_primary_10_1109_TCYB_2024_3490656
crossref_primary_10_1109_TIM_2023_3256459
crossref_primary_10_3390_s21062140
crossref_primary_10_3390_app14166977
crossref_primary_10_1002_adts_202200409
crossref_primary_10_3390_eng5040177
crossref_primary_10_1016_j_optmat_2023_114510
crossref_primary_10_1109_TGCN_2022_3163764
crossref_primary_10_1109_TIV_2020_3033878
crossref_primary_10_3390_s22114185
crossref_primary_10_3390_s22103608
crossref_primary_10_1016_j_neucom_2022_01_005
crossref_primary_10_1109_TITS_2022_3172442
crossref_primary_10_3390_app12105052
crossref_primary_10_3390_drones6120407
crossref_primary_10_1016_j_engappai_2024_108120
crossref_primary_10_1109_JSEN_2024_3390794
crossref_primary_10_1115_1_4051645
crossref_primary_10_1007_s13177_023_00376_y
crossref_primary_10_1007_s11370_021_00398_z
crossref_primary_10_32604_iasc_2023_037219
crossref_primary_10_1109_TIV_2022_3209926
crossref_primary_10_3390_s24175730
crossref_primary_10_1109_TITS_2024_3419988
crossref_primary_10_1016_j_comnet_2024_110854
crossref_primary_10_3390_electronics9111826
crossref_primary_10_1002_admt_202302238
crossref_primary_10_1109_TVT_2024_3394699
crossref_primary_10_1016_j_wear_2025_205865
crossref_primary_10_1109_ACCESS_2021_3127548
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1016_j_arcontrol_2022_11_001
crossref_primary_10_1002_asjc_2807
crossref_primary_10_1109_TITS_2021_3066154
crossref_primary_10_7717_peerj_cs_1550
crossref_primary_10_1007_s00521_022_07234_0
crossref_primary_10_1109_TITS_2022_3146575
crossref_primary_10_1016_j_buildenv_2023_110191
crossref_primary_10_3390_wevj16030138
crossref_primary_10_1080_19439962_2024_2400894
crossref_primary_10_1109_TITS_2021_3107587
crossref_primary_10_1109_TITS_2023_3250720
crossref_primary_10_1007_s10664_023_10413_9
crossref_primary_10_1109_ACCESS_2023_3330665
crossref_primary_10_1016_j_frl_2022_103617
crossref_primary_10_1016_j_jksuci_2021_07_020
crossref_primary_10_3390_info12100431
crossref_primary_10_1109_TITS_2022_3195605
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1016_j_knosys_2024_111919
crossref_primary_10_1016_j_trc_2023_104451
crossref_primary_10_1109_JSEN_2020_3027684
crossref_primary_10_1109_TMECH_2023_3349052
crossref_primary_10_1109_TAI_2024_3373720
crossref_primary_10_3390_electronics11040639
crossref_primary_10_1016_j_heliyon_2024_e35269
crossref_primary_10_3390_act14010037
crossref_primary_10_1109_LRA_2021_3061336
crossref_primary_10_1109_TEVC_2023_3268076
crossref_primary_10_1177_09544070231204249
crossref_primary_10_3390_s21062032
crossref_primary_10_1109_TITS_2023_3245362
crossref_primary_10_3390_act13030101
crossref_primary_10_1007_s10479_021_04383_8
crossref_primary_10_1109_ACCESS_2023_3294256
crossref_primary_10_1109_TITS_2023_3299229
crossref_primary_10_1109_TITS_2023_3292278
crossref_primary_10_1109_TITS_2023_3308344
crossref_primary_10_1007_s00521_022_07947_2
crossref_primary_10_1109_TRS_2024_3488475
crossref_primary_10_1109_TIV_2022_3146639
crossref_primary_10_5937_jpmnt12_50607
crossref_primary_10_1016_j_chaos_2024_115850
crossref_primary_10_3390_robotics12040100
crossref_primary_10_1007_s13042_023_01845_2
crossref_primary_10_1109_MITS_2022_3174410
crossref_primary_10_1109_TSP_2024_3442858
crossref_primary_10_1177_09544070241277237
crossref_primary_10_1016_j_procs_2022_11_061
crossref_primary_10_1109_TFUZZ_2024_3491059
crossref_primary_10_3390_en17133059
crossref_primary_10_1108_JICV_08_2021_0012
crossref_primary_10_1109_ACCESS_2023_3295697
crossref_primary_10_3390_math12070992
crossref_primary_10_34133_2022_9851096
crossref_primary_10_1016_j_compositesa_2022_106973
crossref_primary_10_1016_j_prime_2024_100810
crossref_primary_10_1109_JSAC_2024_3413977
crossref_primary_10_3390_electronics14010153
crossref_primary_10_1016_j_measurement_2024_116212
crossref_primary_10_1109_JIOT_2024_3355853
crossref_primary_10_1038_s41598_022_27026_9
crossref_primary_10_1007_s43681_023_00388_0
crossref_primary_10_1016_j_engappai_2022_104717
crossref_primary_10_1049_tje2_12231
crossref_primary_10_1145_3653697
crossref_primary_10_1007_s11241_023_09405_1
crossref_primary_10_3390_en15051866
crossref_primary_10_3390_wevj15110518
crossref_primary_10_3390_en16041895
crossref_primary_10_1007_s10015_023_00863_1
crossref_primary_10_1109_TITS_2024_3494734
crossref_primary_10_1109_TITS_2022_3183893
crossref_primary_10_1007_s11042_022_12447_5
crossref_primary_10_5194_ms_12_419_2021
crossref_primary_10_23919_ICN_2024_0019
crossref_primary_10_3390_app10207171
crossref_primary_10_1007_s10489_024_06213_3
crossref_primary_10_1016_j_inffus_2022_08_009
crossref_primary_10_1109_TIV_2023_3321346
crossref_primary_10_3390_fi16070238
crossref_primary_10_1109_TITS_2022_3176970
crossref_primary_10_3102_10769986241268907
crossref_primary_10_3390_s25020531
crossref_primary_10_3390_s21206711
crossref_primary_10_3724_SP_J_1249_2023_03258
crossref_primary_10_1109_LCSYS_2023_3342771
crossref_primary_10_3390_electronics13030649
crossref_primary_10_3390_s22052013
crossref_primary_10_1109_COMST_2022_3149714
crossref_primary_10_1145_3565973
crossref_primary_10_1371_journal_pone_0306094
crossref_primary_10_1109_TITS_2022_3149763
crossref_primary_10_3390_s20133679
crossref_primary_10_3390_w16020196
crossref_primary_10_1016_j_procs_2021_12_315
crossref_primary_10_1109_JSEN_2020_3027097
crossref_primary_10_1177_09544070231189910
crossref_primary_10_1002_rob_22287
crossref_primary_10_3233_JIFS_219256
crossref_primary_10_1109_ACCESS_2022_3207759
crossref_primary_10_1002_rnc_5964
crossref_primary_10_1007_s12555_022_0513_x
crossref_primary_10_3390_electronics11213628
crossref_primary_10_1007_s10015_022_00839_7
crossref_primary_10_1109_JIOT_2023_3279273
crossref_primary_10_1109_TITS_2021_3054625
crossref_primary_10_1109_JBHI_2024_3417229
crossref_primary_10_1186_s40537_024_01028_y
crossref_primary_10_1016_j_jfranklin_2025_107610
crossref_primary_10_1016_j_compbiomed_2023_107133
crossref_primary_10_1109_TITS_2022_3149753
crossref_primary_10_1016_j_engappai_2022_105472
crossref_primary_10_37105_sd_214
crossref_primary_10_1016_j_physa_2022_128172
crossref_primary_10_1109_TAP_2022_3150762
crossref_primary_10_53469_jssh_2024_6_12__20
crossref_primary_10_1016_j_rico_2024_100379
crossref_primary_10_1109_JSYST_2022_3210209
crossref_primary_10_1109_ACCESS_2024_3429551
crossref_primary_10_1109_TITS_2024_3443653
crossref_primary_10_3390_pr10122710
crossref_primary_10_3390_fi16120480
crossref_primary_10_3389_frobt_2021_632394
crossref_primary_10_1016_j_measen_2023_100857
crossref_primary_10_1016_j_renene_2025_122716
crossref_primary_10_1515_teme_2021_0103
crossref_primary_10_1109_TITS_2021_3098636
crossref_primary_10_1109_JIOT_2023_3263487
crossref_primary_10_3390_s23249843
crossref_primary_10_1016_j_scico_2025_103269
crossref_primary_10_1016_j_neucom_2024_128482
crossref_primary_10_3390_electronics10161932
crossref_primary_10_1021_acs_iecr_3c01212
crossref_primary_10_1145_3637225
crossref_primary_10_1109_COMST_2021_3129079
crossref_primary_10_3390_app13020716
crossref_primary_10_3390_s22072554
crossref_primary_10_1364_OE_451907
crossref_primary_10_1109_TIV_2022_3223131
crossref_primary_10_1002_adfm_202113050
crossref_primary_10_1007_s11432_022_3826_6
crossref_primary_10_1109_TR_2024_3394894
crossref_primary_10_1016_j_conengprac_2023_105626
crossref_primary_10_1109_TITS_2024_3358380
crossref_primary_10_4271_12_08_04_0031
crossref_primary_10_32604_cmes_2025_061732
crossref_primary_10_1016_j_asoc_2024_111259
crossref_primary_10_1109_TCYB_2024_3410283
crossref_primary_10_1016_j_compag_2024_108650
crossref_primary_10_1016_j_eswa_2025_127243
crossref_primary_10_1109_TIV_2023_3332675
crossref_primary_10_12720_jait_14_5_1082_1087
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_TSMC_2023_3276218
crossref_primary_10_1016_j_jsv_2025_119022
crossref_primary_10_2139_ssrn_4021924
crossref_primary_10_1145_3592616
crossref_primary_10_1109_TMC_2024_3506161
Cites_doi 10.1038/nature14539
10.1109/MSP.2017.2743240
10.1145/1721654.1721679
10.1007/3-540-49430-8_2
10.1109/CVPR.2009.5206631
10.1177/0278364917722396
10.1109/IVS.2018.8500556
10.1109/64.85920
10.1109/MCI.2017.2670463
10.1007/s40534-016-0117-3
10.1126/science.153.3731.34
10.1109/TITS.2011.2157145
10.1109/CVPR.2008.4587581
10.1007/978-3-7908-2604-3_16
10.1109/IVS.2017.7995850
10.1109/TITS.2003.821292
10.1007/BF00992698
10.1109/TIV.2016.2578706
10.1109/JIOT.2018.2812300
10.1109/TITS.2019.2901757
10.1007/978-3-642-35289-8_26
10.1109/ICCVW.2015.41
10.15607/RSS.2018.XIV.056
10.1016/j.neunet.2014.09.003
10.1038/538020a
10.1145/279943.279964
10.5220/0005299304860490
10.1016/j.arcontrol.2018.02.001
10.1109/MS.2017.79
10.1007/BF00114724
10.23919/ACC.1991.4791778
10.1109/CVPR.2019.01099
10.1016/0893-6080(95)90002-0
10.1109/ISCID.2016.2054
10.1137/S0363012901385691
10.1016/S1474-6670(17)55320-3
10.1177/0278364913495721
10.1109/MCI.2010.938364
10.1109/ITSC.2017.8317618
10.1109/CVPR.2016.282
10.5244/C.31.11
10.1177/0278364916679498
10.1038/nature14236
10.1016/0196-8858(85)90002-8
10.1007/978-3-030-01267-0_15
10.1109/ICRA.2018.8460487
10.1145/1015330.1015430
10.1109/TITS.2010.2046037
10.1109/ITSC.2017.8317828
10.1109/TNNLS.2018.2886017
10.1016/S0005-1098(02)00034-1
10.1109/IROS.2017.8202133
10.1145/1143844.1143936
10.1007/978-0-85729-085-4
10.1109/TNN.2007.899161
10.1109/TITS.2005.853698
10.1109/ADPRL.2007.368196
10.1109/TITS.2002.802929
10.1109/TCST.2013.2271276
10.1177/0278364910369715
10.1016/j.trc.2018.02.012
10.1145/3065386
10.1016/S0893-6080(01)00048-X
10.1007/978-3-319-63387-9_1
10.1613/jair.301
10.1109/TRO.2015.2496823
10.1109/IROS.2017.8206505
10.1109/MSPEC.2014.6821623
10.1016/j.robot.2016.08.001
10.1016/B978-1-55860-377-6.50040-2
10.1016/j.conengprac.2008.09.006
10.1145/2735960.2735971
10.1109/IVS.2008.4621222
10.1109/87.852914
10.21236/ADA585474
10.1016/j.neunet.2004.05.007
10.1007/978-1-4615-6325-9_4
10.1109/ICRA.2015.7139555
10.1007/978-3-030-01234-2_27
10.1080/00423114.2018.1492142
10.1016/S0005-1098(00)00116-3
10.1109/IVS.2017.7995748
10.1109/CEC.2012.6256507
10.1177/2041304110394727
10.1109/ICCV.2019.00942
10.1016/j.ejor.2005.01.036
10.1109/ITSC.2018.8569222
10.1177/0278364913491297
10.1109/ICHR.2007.4813899
10.23919/ACC.2017.7963716
10.1016/j.trf.2014.04.009
10.1109/TNN.2004.839354
10.1109/MIS.2008.34
10.1109/9.486648
10.1109/TITS.2017.2658662
10.2514/6.2005-6912
10.1109/CVPR.2012.6248074
10.1109/TSMCB.2008.2006368
10.1016/j.neucom.2012.09.034
10.1109/CVPR.2016.141
10.1007/s00500-013-1110-y
10.1109/CVPR.2019.00293
10.1109/ITSC.2018.8569529
10.1109/TITS.2010.2096812
10.1146/annurev-control-060117-105157
10.1109/MSP.2012.2205597
10.1109/ICIST.2015.7288976
10.1109/MCS.1996.546270
10.1007/978-3-319-00065-7_26
10.1007/11564096_32
10.1109/TSMC.2017.2712561
10.1109/TITS.2019.2916354
10.1109/ITSC.2017.8317839
10.1002/rob.20147
10.1089/big.2016.0051
10.1007/978-3-642-03991-1
10.1007/978-3-540-28650-9_4
10.1109/CVPR.2011.5995347
10.1109/JPROC.2012.2189803
10.1109/TSMCC.2012.2218595
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2019.2962338
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 733
ExternalDocumentID 10_1109_TITS_2019_2962338
8951131
Genre orig-research
GrantInformation_xml – fundername: Jaguar Land Rover
  funderid: 10.13039/100016335
– fundername: U.K.-Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/R512217/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2ddc98714c0e46c3b6a0a29a02aa49a0e03f0b25801b3ea7f3c8b0107e4433633
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Sun Jun 29 15:48:25 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Oct 01 05:03:08 EDT 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2ddc98714c0e46c3b6a0a29a02aa49a0e03f0b25801b3ea7f3c8b0107e4433633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1298-1040
0000-0003-3285-8020
0000-0003-1100-0631
0000-0002-7020-4370
PQID 2486591954
PQPubID 75735
PageCount 22
ParticipantIDs crossref_citationtrail_10_1109_TITS_2019_2962338
proquest_journals_2486591954
ieee_primary_8951131
crossref_primary_10_1109_TITS_2019_2962338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref207
ref56
sutskever (ref26) 2014
ref59
ref205
ref206
ref203
(ref79) 2018
ref204
ref202
sallab (ref122) 2016
srivastava (ref191) 2014; 15
goodfellow (ref219) 2014
cai (ref170) 2019
ripley (ref185) 1996
morgan (ref159) 1989
ref51
ref46
ref218
ref45
bottou (ref53) 2008
levine (ref135) 2012
ref47
ref42
ref215
ref44
ref43
su (ref92) 2014
schulman (ref69) 2015
ref7
(ref148) 2017
ref9
ref4
ref6
ref5
ref100
ref101
van wesel (ref209) 2017
ref220
sutton (ref50) 1998; 9
nguyen (ref217) 2015
ref37
ref36
ref31
ref30
ref33
elsken (ref174) 2019; 20
ref32
huang (ref74) 2018
ref39
schneider (ref210) 1997
ref38
deisenroth (ref212) 2011
pomerleau (ref83) 1989
atkeson (ref197) 1994
ren (ref105) 2009; 39
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
bansal (ref142) 2018
ref29
(ref3) 2018
ng (ref187) 2004
salay (ref224) 2017
maurer (ref145) 2016
(ref225) 2011
ref129
ref97
yu (ref85) 2002
ref126
ref96
abbeel (ref136) 2007; 19
ref98
raffel (ref163) 2015
(ref2) 2017
singh (ref8) 2015
moriarty (ref86) 1998
ref133
ref95
ref131
ref94
ref132
ref130
nielsen (ref49) 2015
silver (ref66) 2014; 32
hashimoto (ref169) 2018
ref90
li (ref52) 2017
ross (ref54) 2011
ref137
ref138
benenson (ref35) 2014
merolla (ref188) 2016
hinton (ref190) 2012
tzeng (ref201) 2015
athalye (ref222) 2017
ref84
kumar (ref168) 2018
schalkoff (ref184) 1997
ref143
ref140
ref141
janai (ref34) 2017
ref229
ref108
barron (ref155) 2009
ref78
ref109
ref227
ref106
bellemare (ref118) 2016
ref228
ref107
ref104
ref226
ref77
ref223
ref102
ref76
ref103
lecun (ref158) 1989
levine (ref41) 2016
sun (ref99) 2016
lillicrap (ref124) 2015
ref71
ref111
ref70
ref73
ref230
bergstra (ref162) 2012; 13
ref110
xiong (ref214) 2016
buehler (ref16) 2009; 56
bagnell (ref211) 2004
ref68
bosankic (ref149) 2017
ref117
gupta (ref57) 2018
ref115
ref116
ref113
ref65
ref114
kolter (ref181) 2008; 1
ref60
ref62
williams (ref63) 1987
ref120
ref61
ref121
(ref12) 2017
shalev-shwartz (ref178) 2016
(ref112) 2015
de haan (ref55) 2019
goodfellow (ref48) 2016
ref171
ref172
schmidhuber (ref119) 1991
abraham (ref150) 2017
wang (ref128) 2018
bojarski (ref87) 2016
christiano (ref199) 2016
(ref1) 2017
laud (ref176) 2004
ref180
ref186
ref182
ref183
gu (ref154) 2016
sevchuk (ref164) 2016
ref147
salimans (ref156) 2017
zhang (ref125) 2016
muller (ref88) 2006
ref153
ref152
courbariaux (ref189) 2015
rusu (ref200) 2016
ref157
ref166
kurakin (ref221) 2016
ref160
ref161
ref13
ref15
(ref72) 2019
ref14
wang (ref58) 2016
ref11
ref10
scheidegger (ref173) 2019
van seijen (ref177) 2017
ref17
ng (ref175) 1999; 3
ref19
ref18
müller (ref144) 2018
hester (ref198) 2017
mnih (ref67) 2016
wilkinson (ref208) 2013
moldovan (ref213) 2012
levine (ref40) 2015; 17
thorpe (ref194) 2002
dosovitskiy (ref139) 2017
koenig (ref127) 2005
(ref89) 0
(ref80) 2018
liu (ref82) 2017
ref192
amodei (ref179) 2016
(ref81) 2018
ref195
ref196
ref193
eraqi (ref93) 2017
(ref146) 2016
bergstra (ref167) 2011
szegedy (ref216) 2013
ziebart (ref134) 2008
(ref123) 2019
knight (ref151) 2016
(ref75) 2018
kingma (ref91) 2014
sutton (ref64) 2000
snoek (ref165) 2012; 25
References_xml – ident: ref46
  doi: 10.1038/nature14539
– ident: ref51
  doi: 10.1109/MSP.2017.2743240
– ident: ref5
  doi: 10.1145/1721654.1721679
– year: 2015
  ident: ref124
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– ident: ref161
  doi: 10.1007/3-540-49430-8_2
– ident: ref77
  doi: 10.1109/CVPR.2009.5206631
– ident: ref133
  doi: 10.1177/0278364917722396
– year: 1997
  ident: ref184
  publication-title: Artificial Neural Networks
– year: 2017
  ident: ref198
  article-title: Learning from demonstrations for real world reinforcement learning
  publication-title: arXiv 1704 03732
– ident: ref96
  doi: 10.1109/IVS.2018.8500556
– year: 2016
  ident: ref164
  publication-title: Hyperparameter Optimization for Neural Networks
– ident: ref13
  doi: 10.1109/64.85920
– ident: ref113
  doi: 10.1109/MCI.2017.2670463
– ident: ref147
  doi: 10.1007/s40534-016-0117-3
– year: 2017
  ident: ref150
  publication-title: Consumer Interest in Automation Preliminary Observations Exploring a Year's Change
– ident: ref153
  doi: 10.1126/science.153.3731.34
– start-page: 78
  year: 2004
  ident: ref211
  article-title: Learning decisions: Robustness, uncertainty, and appoximation
– start-page: 1928
  year: 2016
  ident: ref67
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.1109/TITS.2011.2157145
– start-page: 41
  year: 2012
  ident: ref135
  article-title: Continuous inverse optimal control with locally optimal examples
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref76
  doi: 10.1109/CVPR.2008.4587581
– ident: ref90
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref157
  doi: 10.1109/IVS.2017.7995850
– ident: ref97
  doi: 10.1109/TITS.2003.821292
– volume: 17
  start-page: 1334
  year: 2015
  ident: ref40
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J Mach Learn Res
– ident: ref60
  doi: 10.1007/BF00992698
– start-page: 2546
  year: 2011
  ident: ref167
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2018
  ident: ref142
  article-title: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst
  publication-title: arXiv 1812 03079
– year: 2019
  ident: ref170
  article-title: Once for all: Train one network and specialize it for efficient deployment
  publication-title: arXiv 1908 09791
– ident: ref18
  doi: 10.1109/TIV.2016.2578706
– ident: ref39
  doi: 10.1109/JIOT.2018.2812300
– year: 2016
  ident: ref179
  article-title: Concrete problems in ai safety
  publication-title: arXiv 1606 06565
– year: 2017
  ident: ref209
  article-title: Challenges in the verification of reinforcement learning algorithms
– volume: 13
  start-page: 281
  year: 2012
  ident: ref162
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: ref229
  doi: 10.1109/TITS.2019.2901757
– ident: ref160
  doi: 10.1007/978-3-642-35289-8_26
– ident: ref94
  doi: 10.1109/ICCVW.2015.41
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref191
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J Mach Learn Res
– ident: ref126
  doi: 10.15607/RSS.2018.XIV.056
– ident: ref47
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref204
  doi: 10.1038/538020a
– ident: ref180
  doi: 10.1145/279943.279964
– ident: ref38
  doi: 10.5220/0005299304860490
– ident: ref31
  doi: 10.1016/j.arcontrol.2018.02.001
– start-page: 3123
  year: 2015
  ident: ref189
  article-title: Binaryconnect: Training deep neural networks with binary weights during propagations
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 465
  year: 2011
  ident: ref212
  article-title: Pilco: A model-based and data-efficient approach to policy search
  publication-title: Proc 28th Int Conf Mach Learn (ICML-11)
– start-page: 3104
  year: 2014
  ident: ref26
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2149
  year: 2005
  ident: ref127
  article-title: Design and use paradigms for gazebo, an open-source multi-robot simulator
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst (IROS)
– ident: ref226
  doi: 10.1109/MS.2017.79
– year: 2011
  ident: ref225
– volume: 9
  year: 1998
  ident: ref50
  publication-title: Reinforcement Learning An Introduction
– year: 2016
  ident: ref151
  publication-title: An Ambitious Plan to Build a Self-Driving Borg
– ident: ref62
  doi: 10.1007/BF00114724
– ident: ref103
  doi: 10.23919/ACC.1991.4791778
– start-page: 2510
  year: 2014
  ident: ref92
  article-title: A differential equation for modeling nesterov's accelerated gradient method: Theory and insights
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref172
  doi: 10.1109/CVPR.2019.01099
– ident: ref186
  doi: 10.1016/0893-6080(95)90002-0
– year: 2018
  ident: ref144
  article-title: Driving policy transfer via modularity and abstraction
  publication-title: arXiv 1804 09364
– ident: ref120
  doi: 10.1109/ISCID.2016.2054
– ident: ref59
  doi: 10.1137/S0363012901385691
– year: 2017
  ident: ref156
  article-title: Evolution strategies as a scalable alternative to reinforcement learning
  publication-title: arXiv 1703 03864
– ident: ref14
  doi: 10.1016/S1474-6670(17)55320-3
– ident: ref152
  doi: 10.1177/0278364913495721
– year: 2015
  ident: ref69
  article-title: High-dimensional continuous control using generalized advantage estimation
  publication-title: arXiv 1506 02438 [cs]
– volume: 3
  start-page: 278
  year: 1999
  ident: ref175
  article-title: Policy invariance under reward transformations: Theory and application to reward shaping
  publication-title: Proc 16th Int Conf Mach Learn
– ident: ref44
  doi: 10.1109/MCI.2010.938364
– ident: ref30
  doi: 10.1109/ITSC.2017.8317618
– year: 2016
  ident: ref99
  article-title: Cooperative adaptive cruise control performance analysis
– ident: ref218
  doi: 10.1109/CVPR.2016.282
– ident: ref143
  doi: 10.5244/C.31.11
– start-page: 5392
  year: 2017
  ident: ref177
  article-title: Hybrid reward architecture for reinforcement learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref49
  publication-title: Neural Networks and Deep Learning
– year: 2014
  ident: ref219
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv 1412 6572
– ident: ref73
  doi: 10.1177/0278364916679498
– start-page: 1
  year: 2017
  ident: ref139
  article-title: CARLA: An open urban driving simulator
  publication-title: Proc 1st Annu Conf Robot Learn
– year: 2018
  ident: ref3
  publication-title: Global status report on road safety 2018
– ident: ref43
  doi: 10.1038/nature14236
– ident: ref117
  doi: 10.1016/0196-8858(85)90002-8
– ident: ref95
  doi: 10.1007/978-3-030-01267-0_15
– year: 2016
  ident: ref125
  article-title: Query-efficient imitation learning for end-to-end autonomous driving
  publication-title: arXiv 1605 06450 [cs]
– ident: ref138
  doi: 10.1109/ICRA.2018.8460487
– ident: ref131
  doi: 10.1145/1015330.1015430
– ident: ref215
  doi: 10.1109/TITS.2010.2046037
– ident: ref78
  doi: 10.1109/ITSC.2017.8317828
– start-page: 2829
  year: 2016
  ident: ref154
  article-title: Continuous deep q-learning with model-based acceleration
  publication-title: Proc Int Conf Mach Learn
– ident: ref223
  doi: 10.1109/TNNLS.2018.2886017
– year: 2016
  ident: ref145
  publication-title: Autonomous Driving
– ident: ref104
  doi: 10.1016/S0005-1098(02)00034-1
– year: 2016
  ident: ref48
  publication-title: Deep Learning
– ident: ref202
  doi: 10.1109/IROS.2017.8202133
– ident: ref132
  doi: 10.1145/1143844.1143936
– year: 2017
  ident: ref1
  publication-title: 2016 Fatal Motor Vehicle Crashes Overview
– ident: ref4
  doi: 10.1007/978-0-85729-085-4
– start-page: 1047
  year: 1997
  ident: ref210
  article-title: Exploiting model uncertainty estimates for safe dynamic control learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref109
  doi: 10.1109/TNN.2007.899161
– start-page: 173
  year: 2016
  ident: ref41
  article-title: Learning hand-eye coordination for robotic grasping with large-scale data collection
  publication-title: Proc Int Symp Experim Robot
– year: 2015
  ident: ref201
  article-title: Towards adapting deep visuomotor representations from simulated to real environments
  publication-title: arXiv 1511 07111
– ident: ref107
  doi: 10.1109/TITS.2005.853698
– ident: ref65
  doi: 10.1109/ADPRL.2007.368196
– ident: ref195
  doi: 10.1109/TITS.2002.802929
– year: 2004
  ident: ref176
  article-title: Theory and application of reward shaping in reinforcement learning
– start-page: 496
  year: 2002
  ident: ref194
  article-title: The 1997 automated highway free agent demonstration
  publication-title: Proc Conf Intell Transp Syst
– ident: ref110
  doi: 10.1109/TCST.2013.2271276
– start-page: 78
  year: 2004
  ident: ref187
  article-title: Feature selection, L1 vs. L2 regularization, and rotational invariance
  publication-title: Proc 21st Int Conf Mach Learn (ICML)
– ident: ref182
  doi: 10.1177/0278364910369715
– ident: ref33
  doi: 10.1016/j.trc.2018.02.012
– ident: ref24
  doi: 10.1145/3065386
– start-page: 427
  year: 2015
  ident: ref217
  article-title: Deep neural networks are easily fooled
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– year: 2016
  ident: ref178
  article-title: Safe, multi-agent, reinforcement learning for autonomous driving
  publication-title: arXiv 1610 03295
– year: 2017
  ident: ref52
  article-title: Deep reinforcement learning: An overview
  publication-title: arXiv 1701 07274
– start-page: 222
  year: 1991
  ident: ref119
  article-title: A possibility for implementing curiosity and boredom in model-building neural controllers
  publication-title: Proc Int Conf Simulation Adapt Behav Animals Animats
– year: 2017
  ident: ref82
  article-title: CAAD: Computer architecture for autonomous driving
  publication-title: arXiv 1702 01894
– year: 2015
  ident: ref112
  article-title: European new car assessment programme: Test Protocol-AEB VRU systems
– ident: ref19
  doi: 10.1016/S0893-6080(01)00048-X
– ident: ref220
  doi: 10.1007/978-3-319-63387-9_1
– ident: ref114
  doi: 10.1613/jair.301
– ident: ref37
  doi: 10.1109/TRO.2015.2496823
– ident: ref141
  doi: 10.1109/IROS.2017.8206505
– ident: ref11
  doi: 10.1109/MSPEC.2014.6821623
– ident: ref28
  doi: 10.1016/j.robot.2016.08.001
– ident: ref61
  doi: 10.1016/B978-1-55860-377-6.50040-2
– start-page: 437
  year: 1998
  ident: ref86
  article-title: Learning distributed strategies for traffic control
  publication-title: Proc 5th Int Conf Soc Adapt Behav
– year: 2019
  ident: ref72
  publication-title: Waymo open dataset An autonomous driving dataset
– ident: ref98
  doi: 10.1016/j.conengprac.2008.09.006
– ident: ref205
  doi: 10.1145/2735960.2735971
– ident: ref196
  doi: 10.1109/IVS.2008.4621222
– year: 1996
  ident: ref185
  publication-title: Artificial Neural Networks
– year: 1987
  ident: ref63
  publication-title: Reinforcement learning connectionist systems
– ident: ref193
  doi: 10.1109/87.852914
– year: 2017
  ident: ref224
  article-title: An analysis of ISO 26262: Using machine learning safely in automotive software
  publication-title: arXiv 1709 02435
– ident: ref206
  doi: 10.21236/ADA585474
– year: 2017
  ident: ref149
  publication-title: How consumers' Perception of Autonomous Cars Will Influence Their Adoption
– year: 2009
  ident: ref155
  publication-title: Parallelizing Reinforcement Learning
– year: 2016
  ident: ref146
  publication-title: Cooperative Intelligent Transportation Systems-Research Theme Analysis Report
– start-page: 1057
  year: 2000
  ident: ref64
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref45
  doi: 10.1016/j.neunet.2004.05.007
– year: 2016
  ident: ref214
  article-title: Combining deep reinforcement learning and safety based control for autonomous driving
  publication-title: arXiv 1612 00147
– start-page: 1433
  year: 2008
  ident: ref134
  article-title: Maximum Entropy Inverse Reinforcement Learning
  publication-title: Proc AAAI Conf Artif Intell
– year: 2018
  ident: ref75
  publication-title: Udacity Self-Driving Car Dataset
– year: 2014
  ident: ref91
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref84
  doi: 10.1007/978-1-4615-6325-9_4
– ident: ref20
  doi: 10.1109/ICRA.2015.7139555
– start-page: 739
  year: 2006
  ident: ref88
  article-title: Off-road obstacle avoidance through end-to-end learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref163
  publication-title: Neural Network Hyperparameters
– start-page: 9094
  year: 2018
  ident: ref57
  article-title: Robot learning in homes: Improving generalization and reducing dataset bias
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref137
  doi: 10.1007/978-3-030-01234-2_27
– year: 2016
  ident: ref58
  article-title: Sample efficient actor-critic with experience replay
  publication-title: arXiv 1611 01224
– ident: ref7
  doi: 10.1080/00423114.2018.1492142
– ident: ref106
  doi: 10.1016/S0005-1098(00)00116-3
– volume: 32
  year: 2014
  ident: ref66
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref100
  doi: 10.1109/IVS.2017.7995748
– ident: ref130
  doi: 10.1109/CEC.2012.6256507
– year: 2018
  ident: ref80
  publication-title: Evolution of the Eye
– start-page: 305
  year: 1989
  ident: ref83
  article-title: Alvinn: An autonomous land vehicle in a neural network
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1177/2041304110394727
– ident: ref140
  doi: 10.1109/ICCV.2019.00942
– start-page: 1471
  year: 2016
  ident: ref118
  article-title: Unifying count-based exploration and intrinsic motivation
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2013
  ident: ref208
  publication-title: Final Report Regulatory Considerations for Adaptive Systems National Aeronautics and Space Administration
– ident: ref17
  doi: 10.1016/j.ejor.2005.01.036
– year: 2018
  ident: ref169
  article-title: Derivative free optimization via repeated classification
  publication-title: arXiv 1804 03761
– year: 2017
  ident: ref34
  article-title: Computer vision for autonomous vehicles: Problems, datasets and state of the art
  publication-title: arXiv 1704 05519
– year: 2012
  ident: ref213
  article-title: Safe exploration in Markov decision processes
  publication-title: arXiv 1205 4810
– year: 2016
  ident: ref200
  article-title: Sim-to-real robot learning from pixels with progressive nets
  publication-title: arXiv 1610 04286
– ident: ref129
  doi: 10.1109/ITSC.2018.8569222
– year: 2019
  ident: ref55
  article-title: Causal confusion in imitation learning
  publication-title: arXiv 1905 11979
– volume: 25
  start-page: 2960
  year: 2012
  ident: ref165
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref87
  article-title: End to end learning for self-driving cars
  publication-title: arXiv 1604 07316 [cs]
– ident: ref70
  doi: 10.1177/0278364913491297
– start-page: 143
  year: 1989
  ident: ref158
  article-title: Generalization and network design strategies
  publication-title: Connectionism in Perspective
– volume: 20
  start-page: 1
  year: 2019
  ident: ref174
  article-title: Neural architecture search: A survey
  publication-title: J Mach Learn Res
– ident: ref183
  doi: 10.1109/ICHR.2007.4813899
– start-page: 161
  year: 2008
  ident: ref53
  article-title: The tradeoffs of large scale learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2015
  ident: ref8
  article-title: Critical reasons for crashes investigated in the national motor vehicle crash causation survey
– start-page: 663
  year: 1994
  ident: ref197
  article-title: Using local trajectory optimizers to speed up global optimization in dynamic programming
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref42
  doi: 10.23919/ACC.2017.7963716
– ident: ref10
  doi: 10.1016/j.trf.2014.04.009
– ident: ref101
  doi: 10.1109/TNN.2004.839354
– ident: ref6
  doi: 10.1109/MIS.2008.34
– year: 2018
  ident: ref74
  article-title: The ApolloScape open dataset for autonomous driving and its application
  publication-title: arXiv 1803 06184
– ident: ref102
  doi: 10.1109/9.486648
– ident: ref32
  doi: 10.1109/TITS.2017.2658662
– year: 2018
  ident: ref168
  article-title: Parallel architecture and hyperparameter search via successive halving and classification
  publication-title: arXiv 1805 10255
– start-page: 627
  year: 2011
  ident: ref54
  article-title: A reduction of imitation learning and structured prediction to no-regret online learning
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref207
  doi: 10.2514/6.2005-6912
– year: 2013
  ident: ref216
  article-title: Intriguing properties of neural networks
  publication-title: arXiv 1312 6199
– ident: ref71
  doi: 10.1109/CVPR.2012.6248074
– volume: 39
  start-page: 431
  year: 2009
  ident: ref105
  article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2006368
– ident: ref115
  doi: 10.1016/j.neucom.2012.09.034
– volume: 19
  start-page: 1
  year: 2007
  ident: ref136
  article-title: An application of reinforcement learning to aerobatic helicopter flight
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref122
  article-title: End-to-End deep reinforcement learning for lane keeping assist
  publication-title: arXiv 1612 04340
– ident: ref36
  doi: 10.1109/CVPR.2016.141
– ident: ref22
  doi: 10.1007/s00500-013-1110-y
– ident: ref171
  doi: 10.1109/CVPR.2019.00293
– ident: ref227
  doi: 10.1109/ITSC.2018.8569529
– year: 2018
  ident: ref128
  article-title: Deep object centric policies for autonomous driving
  publication-title: arXiv 1811 05432
– year: 2017
  ident: ref93
  article-title: End-to-end deep learning for steering autonomous vehicles considering temporal dependencies
  publication-title: arXiv 1710 03804
– ident: ref230
  doi: 10.1109/TITS.2010.2096812
– ident: ref27
  doi: 10.1146/annurev-control-060117-105157
– start-page: 412
  year: 2002
  ident: ref85
  article-title: Road-following with continuous learning
  publication-title: Proc Intell Vehicles Symp
– start-page: 630
  year: 1989
  ident: ref159
  article-title: Generalization and parameter estimation in feedforward nets: Some experiments
  publication-title: Proc Adv Neural Inf Process Syst
– year: 0
  ident: ref89
  publication-title: CarSim
– year: 2017
  ident: ref2
  publication-title: 2016 road safety statistics What is behind the figures
– year: 2019
  ident: ref173
  article-title: Constrained deep neural network architecture search for IoT devices accounting hardware calibration
  publication-title: arXiv 1909 10818
– ident: ref25
  doi: 10.1109/MSP.2012.2205597
– year: 2016
  ident: ref188
  article-title: Deep neural networks are robust to weight binarization and other non-linear distortions
  publication-title: arXiv 1606 01981
– year: 2018
  ident: ref79
  publication-title: Autonomous car development platform from nvidia drive px2
– year: 2012
  ident: ref190
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv 1207 0580
– year: 2017
  ident: ref148
  publication-title: Consumer Acceptance of Autonomous Vehicles
– volume: 1
  start-page: 769
  year: 2008
  ident: ref181
  article-title: Hierarchical apprenticeship learning, with application to quadruped locomotion
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref116
  doi: 10.1109/ICIST.2015.7288976
– year: 2016
  ident: ref199
  article-title: Transfer from simulation to real world through learning deep inverse dynamics model
  publication-title: arXiv 1610 03518
– ident: ref192
  doi: 10.1109/MCS.1996.546270
– start-page: 613
  year: 2014
  ident: ref35
  article-title: Ten years of pedestrian detection, what have we learned
  publication-title: Proc Eur Conf Comput Vis
– ident: ref21
  doi: 10.1007/978-3-319-00065-7_26
– ident: ref121
  doi: 10.1007/11564096_32
– ident: ref108
  doi: 10.1109/TSMC.2017.2712561
– ident: ref228
  doi: 10.1109/TITS.2019.2916354
– ident: ref111
  doi: 10.1109/ITSC.2017.8317839
– ident: ref15
  doi: 10.1002/rob.20147
– year: 2016
  ident: ref221
  article-title: Adversarial examples in the physical world
  publication-title: arXiv 1607 02533
– ident: ref203
  doi: 10.1089/big.2016.0051
– year: 2017
  ident: ref12
  publication-title: Research on the Impacts of Connected and Autonomous Vehicles (CAVs) on Traffic Flow Summary Report
– volume: 56
  year: 2009
  ident: ref16
  publication-title: The DARPA Urban ChallengeAutonomous Vehicles in City Traffic
  doi: 10.1007/978-3-642-03991-1
– ident: ref166
  doi: 10.1007/978-3-540-28650-9_4
– year: 2017
  ident: ref222
  article-title: Synthesizing robust adversarial examples
  publication-title: arXiv 1707 07397
– ident: ref56
  doi: 10.1109/CVPR.2011.5995347
– year: 2018
  ident: ref81
  publication-title: Cyclone V-Overview
– ident: ref9
  doi: 10.1109/JPROC.2012.2189803
– ident: ref68
  doi: 10.1109/TSMCC.2012.2218595
– year: 2019
  ident: ref123
  publication-title: The Open Racing Car Simulator
SSID ssj0014511
Score 2.7151468
Snippet Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 712
SubjectTerms advanced driver assistance
Autonomous vehicles
computer vision
Control systems design
Deep learning
intelligent control
Intelligent transportation systems
Linear control
Machine learning
Neural networks
Nonlinear analysis
Nonlinear control
Object recognition
Perception
Reinforcement learning
Semantic segmentation
Sensors
Task analysis
Teaching methods
Training
Title A Survey of Deep Learning Applications to Autonomous Vehicle Control
URI https://ieeexplore.ieee.org/document/8951131
https://www.proquest.com/docview/2486591954
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4IwoFeWBCpBjbceyx4iFAKgsFsUV-XEACNVWbIMGvx07SqgKEmJLBjqw7O3fn--47hI4kEZJq5iKdCRNx53VhiCCRpi7OGLEuceG-Y3Anrh_47VP81EIn81oYAKjAZ9ALr1Uu3-W2DFdlp9K7A2ehaHopkaKu1ZpnDALPVsWNSnmkSDzLYJ4RdTq8Gd4HEJfqUeWtfShFWbBBVVOVH3_iyrxcraHBbGE1quS1VxamZz-_cTb-d-XraLXxM3G_3hgbqAWjTbSywD64hS76-L6cvMMHzjN8ATDGDdnqM-4vpLVxkeN-WYTih7yc4kd4CV_E5zXGfRs9XF0Oz6-jpqlCZFmsiog6Z5WPkrglwIVlRmiiqdKEas39AwjLiKGxt1yGgU4yZqXxQVsCnDMmGNtB7VE-gl2EFZWgqE2c9T5JnBmZCaEltUCJNNKxDiIzMae2YRwPjS_e0iryICoNmkmDZtJGMx10PJ8yruk2_hq8FSQ9H9gIuYO6M12mzYGcppRLEatAb7f3-6x9tEwDXKUCZHdRu5iUcOD9jcIcVhvtC6BPz_o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5UA5lMeC2LKAD5wqsnX9in1ctVRb6PbSXdRb5MekSKBN1U2Q4NdjJ9nVqlSIU3KwI2vGzsx4vvkG4IOmSjPLQ2ZL5TIRoi4cVTSzLMiSUx_ykO47ZpdquhCfr-X1Dnzc1MIgYgs-w3F6bXP5ofJNuio70tEdOE5F04-kEEJ21VqbnEFi2mrZUZnIDJXrHOYxNUfz8_lVgnGZMTPR3qdilC0r1LZV-etf3BqYs6cwWy-tw5V8Hze1G_vf91gb_3ftz2C_9zTJpNsaz2EHly_gyRb_4ABOJ-SqufuJv0hVklPEW9LTrd6QyVZim9QVmTR1Kn-omhX5it_SF8lJh3J_CYuzT_OTada3Vcg8l6bOWAjexDhJeIpCee6UpZYZS5m1Ij6Q8pI6JqPtchxtXnKvXQzbchSCc8X5K9hdVkt8DcQwjYb5PPjolcjS6VIpq5lHRrXTgQ-BrsVc-J5zPLW--FG0sQc1RdJMkTRT9JoZwuFmym1HuPGvwYMk6c3AXshDGK11WfRHclUwoZU0ieDu4OFZ7-HxdD67KC7OL7-8gT2WwCstPHsEu_Vdg2-j91G7d-2m-wOxgtNH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Deep+Learning+Applications+to+Autonomous+Vehicle+Control&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Kuutti%2C+Sampo&rft.au=Bowden%2C+Richard&rft.au=Jin%2C+Yaochu&rft.au=Barber%2C+Phil&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=2&rft.spage=712&rft_id=info:doi/10.1109%2FTITS.2019.2962338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon